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Abstract— Enforcing safety on precise trajectory tracking
is critical for aerial robotics subject to wind disturbances.
In this paper, we present a learning-based safety-preserving
cascaded quadratic programming control (SPQC) for safe tra-
jectory tracking under wind disturbances. The SPQC controller
consists of a position-level controller and an attitude-level
controller. Gaussian Processes (GPs) are utilized to estimate
the uncertainties caused by wind disturbances, and then a
nominal Lyapunov-based cascaded quadratic program (QP)
controller is designed to track the reference trajectory. To
avoid unexpected obstacles when tracking, safety constraints
represented by control barrier functions (CBFs) are enforced on
each nominal QP controller in a way of minimal modification.
The performance of the proposed SPQC controller is illustrated
through numerical validations of (a) trajectory tracking under
different wind disturbances, and (b) trajectory tracking in a
cluttered environment with a dense time-varying obstacle field
under wind disturbances.

I. INTRODUCTION

Safe trajectory tracking is an essential requirement for
autonomous aerial vehicles, where an aerial vehicle is re-
quired to track a reference trajectory and avoid unexpected
obstacles. To achieve high-accuracy tracking and avoid ob-
stacles, the typical approach utilizes a high-level planner to
generate a safe trajectory, and a low-level controller running
at a much higher frequency than the planner to track the
planned trajectory [1].

In practice, for high-speed quadrotor tracking in a clutter
scenario with dense obstacles and limited sensing range,
it is challenging for a planner to replan a safe trajectory
in real-time. On the other hand, it is difficult to obtain
an accurate model for the low-level tracking controller due
to wind disturbances, which may cause the safety-critical
quadrotor system to deviate from the planned trajectory and
even collide with obstacles. These challenges show an urgent
need for designing a safe tracking controller that ensures
both obstacle avoidance and accurate trajectory tracking for
a quadrotor with a limited sensing range and under uncertain
wind disturbances.

In recent years, for safe trajectory tracking, the cascaded
architecture [2], [3] using control barrier functions (CBFs)
to ensure safety has shown great potential for addressing
these challenges with practical feasibility. CBFs [4] have
been widely used to enforce safety constraints, and have
proved to be an effective strategy to avoid obstacles for
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Fig. 1. The cascaded controller consists of a position-level QP and an
attitude-level QP. Reference inputs are provided to position and attitude
controllers. The GPs estimate the wind disturbances and generate a high
confidence interval bound D(q). With the D(q), the position controller
generates the desired thrust F , and the attitude controller generates
the desired body rotational rates ω.

safety-critical systems. In [5], a learning-based CBF is pre-
sented to constrain a quadrotor within a static ellipsoid safe
region under wind disturbances. In [3], a cascaded quadratic
program (QP) safety-critical controller incorporating CBFs
and control Lyapunov functions (CLFs) is proposed. In this
work, the quadrotor with a limited sensing range can asymp-
totically track a reference trajectory by constructing stability
constraints (represented by CLFs), and simultaneously avoid
obstacles by constructing safety constraints (represented by
CBFs). Although this controller can handle time-varying
constraints, a precise model of the system is required to
enforce the constraints.

Alternatively, Model Predictive Control (MPC) [6] is an
effective finite-horizon optimal control method to handle
constraints naturally in a safe tracking control problem. In[7],
a Nonlinear MPC is proposed to track the desired trajectory
while avoiding obstacles. While this controller can mediate
the trade-off between safety and tracking, disturbances are
not considered in its model. [8] proposes a Nonlinear MPC
for safe trajectory tracking with obstacle avoidance capacity
under constant disturbances. Although this method can ef-
ficiently deal with obstacles when tracking a trajectory, the
considered obstacles are assumed to be static.

Considering the limitations of current approaches, a safe
tracking controller is desirable to be developed for a quadro-
tor subject to a limited sensing range to ensure accurate
trajectory tracking and enforce safety constraints under wind
disturbances. Particularly, it should drive the quadrotor back
to the predefined reference trajectory after safely avoiding
unexpected static and dynamic obstacles.

In this paper, drawing inspiration from the cascaded archi-
tecture [3], we propose a learning-based safety-preserving
cascaded QP control (SPQC) approach composed of a
position-level controller and an attitude-level controller, as
illustrated in Fig. 1. We utilize the Gaussian Process (GP)
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to estimate a high confidence interval D(q) accounting
for the model uncertainties caused by wind disturbances.
Then, a local motion planning (LMP) method is designed
based on the D(q) to generate a reference orientation for
the attitude controller. In each QP controller, a stability
constraint based on CLF is formulated to develop a nominal
Lyapunov-based cascaded tracking controller for accurate
tracking. Considering safety, the Iterative Regional Inflation
by Semidefinite programming (IRIS) algorithm [9] is adopted
to construct a time-varying obstacle-free safe region and then
use this safe region to design two CBFs to enforce safety
constraints both on the position level and the attitude level for
the nominal cascaded tracking controller. Finally, the safety
constraints are enforced to minimally modify the Lyapunov-
based tracking controller to formulate the SPQC controller.

The main contributions of this paper are presented as
follows:
• A learning-based SPQC controller consists of a

position-level and an attitude-level controller is pre-
sented for quadrotors to safely track the reference
trajectory with obstacle avoidance capacity under wind
disturbances. An LMP algorithm is designed for the
attitude-level controller for accurate tracking under wind
disturbances.

• Two CBFs are designed to enforce safety constraints
on the position and attitude level for the quadrotor to
minimally modify the controls generated by the nominal
tracking controller via constrained QPs.

• The proposed SPQC controller is validated through
numerical simulations on a quadrotor in a cluttered
environment under varying wind disturbances.

This paper is organized as follows: Section II presents
the preliminaries used in this paper. Section III illustrates
the proposed SPQC controller. Section IV shows simulation
results to validate and clarify our SPQC controller. Finally,
conclusions are drawn in Section V.

II. PRELIMINARIES
In this section, we briefly provide a review of CBFs [4]

and quadrotor dynamics to formulate the safe learning-based
tracking control problem for Quadrotors.
A. Control Barrier Function

Consider a control affine system
ẋ = f(x) +G(x)u, (1)

where x ∈ X ⊆ Rn, u ∈ U ⊆ Rm denote the state and the
control input of the system, respectively. The function f :
Rn → Rn and G : Rn → Rn×m are Lipschitz continuous.

The safety set S of the system can be defined by
S := {x ∈ X |h(x) ≥ 0}, (2)

where h : Rn → R is a continuously differentiable function
related to state constraints.
Definition 2. The set S is called forward invariant , if for
every x0 ∈ S, x(t, x0) ∈ S for all t ∈ R+

0 .
To ensure forward invariance of S, e.g. quadrotors stay

in the collision-free safety set at all times, we consider the
following definition.

Definition 3 (Definition 5 of [4]). For the dynamical sys-
tem (1), given a set S ⊂ Rn defined by (2) for a continuously
differentiable function h : Rn → R, the function h is called
a Zeroing Control Barrier Function (ZCBF ) defined on
the set D with S ⊆ D ⊂ Rn, if there exists an extended
class K function (κ(0) = 0 and strictly increasing) α such
that

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0,∀x ∈ D, (3)

where L represents the Lie derivatives. To be more specific:

Lfh(x) =
∂h(x)

∂x
f(x), Lgh(x) =

∂h(x)

∂x
g(x). (4)

ZCBF is a special control barrier function that comes
with asymptotic stability [10]. The existence of a ZCBF
implies the asymptotic stability and forward invariance of
S as proved in [10].

B. Dynamics of Quadrotor
The motion of the quadrotor can be described by six

degrees of freedom: The translational position (x, y, z) in
the inertial coordinate system O and attitude represented by
Euler angles (roll φ, pitch θ, and yaw ψ). The vehicle attitude
is defined by the rotation matrix R ∈ SO(3) [8] from the
vehicle coordinate system V to the inertial coordinate system
O.

Considering the unknown wind force dw caused by wind
disturbances [11], we adopt the following model to describe
the nonlinear quadrotor dynamics,

ṗ = v, (5)
mv̇ = mge3 +Re3F + dw, (6)

Ṙ = RS(ω), (7)
where e3 = [0, 0, 1]T is the unit vector. m > 0 and g
denote the mass and the gravity acceleration, respectively.
p = [x, y, z]T and v = [vx, vy, vz]

T denotes the translational
position and velocity in O, respectively. F denotes the total
thrust generated from the four rotors in V , and S(.) is skew-
symmetric mapping. The control inputs of the quadrotor are
denoted by the body rotational rates ω = [ωx, ωy, ωz]

T and
the thrust force F ∈ R along the body axis in the vehicle
coordinate system V . dw = [Wx,Wy,Wz]

T is unknown wind
force acting on the quadrotor.

In this paper, we consider the following state-space
nonlinear control affine quadrotor system with partially
unknown dynamics, i.e.,

q̇ = f(q) +G(q)u+ d(q), (8)
where q = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ]T and u = [F, ωx, ωy, ωz]

T

denote the state and control input, respectively. f : R9 → R9

and G : R9 → R9×4 compose a priori model representing
our knowledge of the actual system, and d : R9 → R9 is
the model error representing the effects of wind disturbances
acting on the quadrotor.

C. Problem Statement

The safe trajectory tracking problem considered herein can
be described as follows. Let the quadrotor with a limited
sensing range have an initial state (consisting of initial
position x0, y0, z0, velocity ẋ0, ẏ0, ż0, attitude θ0, φ0, ψ0),
and the reference yaw ψd = 0. The quadrotor should track



a given reference trajectory pd(t) = [xd(t), yd(t), zd(t)]
T

in a varying wind field while avoiding unexpected static and
dynamic obstacles. If it deviates from the reference trajectory
due to a sudden wind disturbance or after avoiding obstacles,
it should rapidly converge to pd(t).

III. METHODOLOGY

In this section, we describe the proposed learning-based
safety-preserving cascaded QP control (SPQC) for the sys-
tem (8) that exploits the disturbance model to provide
accurate tracking with safety and input constraints.

We follow a cascaded approach described in [3]. The cas-
caded controller consists of two QP controllers: a position-
level QP controller and an attitude-level QP controller, as il-
lustrated in Fig. 1. The position-level QP controller generates
the desired thrust F , and the attitude-level QP controller uti-
lizes this thrust together with the high confidence uncertainty
interval D(q) estimated via GPs to compute the desired body
rotational rates ω = [ωx, ωy, ωz]

T . Besides, a corresponding
safety constraint is designed to minimally modify each
nominal QP controller to keep the quadrotor within the
obstacle-free region and avoid unexpected obstacles when
the quadrotor is tracking the reference trajectory.

A. Gaussian Processes

We use the Gaussian process (GP) to learn the evolving
model error d(q) in (8) caused by uncertain wind distur-
bances dw. A GP is a nonparametric regression method that
can estimate complex functions and their uncertain distribu-
tion [12]. Given n observations Dn := {qi, d̂(qi)}ni=1, the
mean and variance of d(q∗) at the query state q∗ can be
given by

µ(q∗) = kTn (K + σ2I)−1d̂n, (9)

σ2(q∗) = k(q∗, q∗)− kTn (K + σ2I)−1kn, (10)
respectively, where d̂n = [d̂(q1), d̂(q2), ..., d̂(qn)] is the
observed vector subject to a zero mean Gaussian noise υ ∼
N (0, σ2). K ∈ Rn×n is the covariance matrix with entries,
where [K](i,j) = k(qi, qj), i, j ∈ {1, ..., n}, and k(qi, qj) is
the kernel function. kn = [k(q1, q∗), k(q2, q∗), ..., k(qn, q∗)],
and I ∈ Rn×n is the identity matrix.

With the system model error learned by GPs, a reliable
high confidence interval D(q) on the uncertain dynamics
d(q) can be obtained by designing the constant cδ [12].

D(q) = {d | µ(x)− cδσ(q) ≤ d ≤ µ(q) + cδσ(q)}. (11)

For instance, 95.5% and 99.7% confidence are achieved
at cδ = 2 and cδ = 3, respectively.

B. Nominal Lyapunov-based Cascaded QP Controller
A nominal Lyapunov-based cascaded QP controller is

proposed for trajectory tracking based on CLFs and GPs
without the consideration of obstacle avoidance. We first
construct a position-level QP controller to track the position
of the quadrotor. Then, an attitude-level QP controller with
a local motion planning strategy is designed to adjust the
attitude of the quadrotor.

1) Position-level QP controller: Given a reference tra-
jectory pd = [xd, yd, zd]

T , we can construct the following
quadratic CLF:

Vp =
1

2
λ1e

T
p ep +

1

2
λ2e

T
ṗ eṗ, (12)

where ep = p − [xd, yd, zd]
T , eṗ = ṗ − [ẋd, ẏd, żd]

T , p =
[x, y, z]T is the current position of the quadrotor, the λ1 > 0
and λ2 > 0.

Considering wind disturbances, GPs are employed to esti-
mate the model uncertainties in terms of the predicted mean
µ(q) and variance σ(q) of the model error d(q) through (9)
and (10). As shown by our previous work [13], stability
constraints can be constructed based on the CLF Vp to ensure
stable high tracking performance for the uncertain dynamical
system (8). Hence, based on our previous work [13], we can
construct a position-level QP controller to compute a nominal
thrust F ∗n for tracking as follows:

F ∗n = arg min
(F,β)∈R2

1

2
H1F +Kββ

2 (13)

s.t. LgVpF + LfVp + LµVp

+ cδ|LσVp| ≤ −cpVp + β, (Stability constraints)
0 ≤ F ≤ Fmax, (Control constraints)

where Fmax ∈ U is the upper bound of thrust, and cp is a
positive constant. H1 ∈ R+, Kβ ∈ R+, and β is a slack
variable to ensure there is no conflict among the stability
constraints and control constraints in (13). LµVp and LσVp
denote the Lie derivatives of Vp with respect to µ and σ,
respectively.
Remark 1. Note that the optimization (13) is not sensitive to
the parameter Kβ . The violation of the stability constraints
can be heavily penalized as long as the Kβ is large enough
(e.g. 1020).

2) Local motion planning (LMP): During trajectory
tracking, a quadrotor may deviate from the reference tra-
jectory due to a sudden wind disturbance or unexpected
obstacles. In this study, we proposed an LMP algorithm to
obtain a reference attitude for the quadrotor to drive it back
to its reference trajectory under wind disturbances. The LMP
method is described from the view of discrete control with
a control period of ∆t.

Let p(t1) = [x(t1), y(t1), z(t1)]T and pd(t1) =
[xd(t1), yd(t1), zd(t1)]T denote the position of a quadro-
tor and the target waypoint of reference trajectory at
time t1, respectively. We use GPs to estimate the mean
wind disturbances µp(p(t1)) = [dx, dy, dz]

T at position
level, and µṗ(p(t1)) = [dẋ, dẏ, dż]

T at velocity level
based on (9). Hence, we can get the next nominal posi-
tion p̃(t2) = [x̃(t2), ỹ(t2), z̃(t2)]T and velocity ˙̃p(t2) =
[ ˙̃x(t2), ˙̃y(t2), ˙̃z(t2)]T of the quadrotor based on the nominal
thrust F ∗n generated by the position-level QP controller (13).

To generate the desired orientation of the quadrotor for
tracking, we can adjust the orientation of thrust at time t1
to obtain the desired thrust direction at position level as
illustrated in Fig. 2. The desired direction of the thrust F
at the velocity level at t2 can be obtained in a similar way



Fig. 2. The local motion planning algorithm. pd(t1), pd(t2) and pd(t3)
are three adjacent target waypoints in a reference trajectory. p̃(t2) and ˙̃p(t2)
are the next nominal position and velocity, respectively. The blue line is the
offset vector of the quadrotor at position level at t2, and the red line is the
desired thrust direction of the quadrotor at the position level.

to that of the desired thrust direction at the position level,
and we do not show it in Fig. 2 due to lack of space.

The desired direction of the thrust F at position level at
time t2 can be denoted as follows:

Rpe3 =
pd(t3)− p̃(t2)− µp(p̃(t2))− ˙̃p(t2)∆t+ ge3

2
(∆t)2

||pd(t3)− p̃(t2)− µp(p̃(t2))− ˙̃p(t2)∆t+ ge3
2

(∆t)2||
.

(14)
The desired direction of the thrust F at velocity level at

time t2 can be denoted as follows:

Rve3 =
ṗd(t3)− ˙̃p(t2)− µṗ(p̃(t2)) + ge3∆t

||ṗd(t3)− ˙̃p(t2)− µṗ(p̃(t2)) + ge3∆t||
. (15)

Then, we can obtain the desired attitude Ωpd =
[θpd, φpd, ψd]

T at position level and the desired attitude
Ωvd = [θvd, φvd, ψd]

T at velocity level by solving (14)
and (15). Thus, we can obtain the desired attitude Ωd as
follows:

Ωd = λ3Ωpd + (1− λ3)Ωvd, (16)
where λ3 ∈ (0, 1) is a weight coefficient.

Hence, we can construct a quadratic CLF Va based on the
desired attitude Ωd as follows:

Va =
1

2
λ4e

T
Ωd
eΩd

, (17)

where eΩd
= Ω− Ωd, Ω = [θ, φ, ψ]T , the λ4 > 0.

3) Orientation-level QP controller: A procedure similar
to design the position-level QP controller (13) can be used for
the formulation of the attitude-level QP controller as follows:

ω∗n = arg min
(ω,γ)∈R4

1

2
ωTH2ω +Kγγ

2 (18)

s.t. LgVaω + LfVa + LµVa

+ cδ|LσVa| ≤ −caVa + γ, (Stability constraints)
− ωmax ≤ ω ≤ ωmax, (Control constraints)

where ωmax is the upper bound of body rotational rates,
H2 ∈ R3×3 is positive definite, ca is a positive constant. γ
is a slack variable for stability constraints, Kγ ∈ R+.
Remark 2. Note that the optimization (18) is not sensitive to
the parameter Kγ . The violation of the stability constraints
can be heavily penalized as long as the Kγ is large enough
(e.g. 1020).

With the Lyapunov-based cascaded QP controller com-
posed of (13) and (18), the quadrotor can accurately track
the reference trajectory pd(t) even under wind disturbances.

Fig. 3. The illustration of quadrotor obstacle avoidance. The success of
quadrotor obstacle avoidance depends both on its position and orientation.
The quadrotor is in the safe state S if it stays in the obstacle-free ellipsoid,
and this can be captured through the condition: hp ≥ 0. The quadrotor Q2
is more capable of avoiding the obstacle than quadrotor Q1, and this can be
captured through the condition: ĥR := r2 ·R2e3 > 0 > hR := r1 ·R1e3.

C. Safety Barrier Scheme with a Limited Sensing Range
In practice, for quadrotor tracking in cluttered environ-

ments, the reference trajectory becomes unsafe when there
exist unexpected obstacles in or near the trajectory. The
quadrotor should sacrifice its tracking performance and ad-
just its attitude to avoid unexpected obstacles as shown in
Fig. 3.

1) Safety obstacle-free region: An ellipsoid safe region
can be obtained for the quadrotor with a limited sensing
range based on the IRIS algorithm [9]. The IRIS algorithm is
efficient in quickly computing the largest ellipsoidal regions
of obstacle-free space through semidefinite programming.
For a quadrotor tracking task, when there exist obstacles
within its sensing region, a maximum ellipsoid in mathemat-
ical form can be constructed by utilizing the distance from
the quadrotor to the obstacles in each direction.
Remark 3. Note that the quadrotor has a limited omnidi-
rectional sensing range sr, such that a point ξ ∈ R3×1 on
an obstacle Bs is detected only when ||p − ξ|| ≤ sr, where
p = [x, y, z]T is the current position of the quadrotor in the
inertial coordinate system O.

We represent the inscribed ellipsoid as an image of the unit
ball:ε(C, ζ) = {Co+ ζ | ‖o‖ = 1}, where o ∈ R3×1, oT o =
1 denotes a unit ball, C ∈ R3×3 denotes the mapping matrix,
and ζ ∈ R3×1 denotes the offset vector. The matrix C and
ζ can be obtained for specific polyhedrons (e.g. obstacles)
based on the IRIS algorithm. Then, we can get the following
equation via equivalent transformation:

(ε− ζ)TC−1TC−1(ε− ζ) = 1. (19)

Finally, we can construct a ZCBF hp at the position level
by taking the inscribed ellipsoid as the safe region of the
quadrotor:

hp = 1− (p− ζ)TC−1TC−1(p− ζ), (20)

where p = [x, y, z]T is the current position of quadrotor.
Remark 4. Note that hp ≥ 0 shows that the quadrotor stays
within the safety ellipsoid region S.

We can construct another ZCBF hq to drive the direction
of the quadrotor thrust toward the center of the obstacle-free
ellipsoid to avoid obstacles as illustrated in Fig. 3:

hR = r · q, (21)
where r = d− p, q = Re3.



2) Safety-preserving cascaded QP control (SPQC): A
minimally modified SPQC controller can be designed to
avoid obstacles based on the ZCBF hp, hq and the estimated
high-confidence interval D(q) (11) accounting for wind
disturbances. The SPQC is designed to modify the nominal
tracking controller in a way of minimally modified. GPs are
employed to estimate the wind disturbances in terms of the
predicted mean µ(q) and variance σ(q) of the model error
d(q) through (9) and (10).

As shown by our previous work [13], safety constraints
can be enforced on the uncertain system (8) based on the
ZCBF hp to keep the quadrotor’s position in the safe region
S. Hence, the position-level safety constraints can be
enforced as follows:
Position-level QP: Minimally modification
F ∗ = arg min

(F,η)∈Rm+1

||F − F ∗n ||2 +Kηη
2 (22)

s.t. Lfhp + Lghpu+ Lµhp

− cδ|Lσhp|+ α1(hp) ≥ −η, (Safety constraints)
Fmin ≤ F ≤ Fmax, (Control constraints)

where F ∗n is the thrust generated by the nominal position-
level controller (13), Kη ∈ R+, and η ∈ R is a slack variable.

To avoid obstacles, a safe attitude-level QP based on the
ZCBF hR is designed to construct the attitude-level safety
constraints as follows:
Attitude-level QP: Minimally modification
ω∗ = arg min

(ω,ε)∈Rm+1

||ω − ω∗n||2 +Kεε
2 (23)

s.t. LfhR + LghRu+ LµhR

− cδ|LσhR|+ α2(hR) ≥ −ε, (Safety constraints)
− ωmax ≤ ω ≤ ωmax, (Control constraints)

where ω∗n is the body rotational rates generated by the
nominal attitude-level controller (18), Kε ∈ R+, and ε ∈ R
is a slack variable.
Remark 5. Note that the solution F ∗(x) and ω∗(x) to the
QP in (22) and (23) are always feasible because the slack
variables η and ε can ensure no conflict among the safety
and control input constraints. Furthermore, the weights Kη

and Kε are set large values (e.g. Kη = 1030, Kε = 1030)
to penalize safety violation, and hence, the optimizations in
(22) and (23) are not sensitive to the Kη and Kε parameters.
Remark 6. Note that the safety constraints in (22) and
(23) are enforced to minimally modify the nominal controls
generated by the Lyapunov-based cascaded QP controller
composed of (13) and (18) via constrained QPs.

IV. NUMERICAL VALIDATION

We built a simulator with Python 3.6 to numerically
validate the performance of the proposed SPQC controller.
The python library CVXOPT [14] is utilized to solve the
QP problem. The simulation time is set to be 20 s, and
the control frequency is 50 Hz. The quadrotor model is a
crazyflie 2.0 with a two-meter sensing range. The mass of
the quadrotor m = 0.027kg , the maximum thrust Fmax =
0.6N , and the body rotational rate |ω| ≤ 10rad s−1.

(a) Tracking error (b) Estimated disturbance

Fig. 4. Trajectory tracking result of the SPQC controller under wind
disturbances. Note that the jumps in Zone C of 4(a) are caused by a sudden
gust disturbance. The wind disturbance estimated via GPs is shown in 4(b).

TABLE I
ROOT MEAN SQUARE (RMS) TRACKING ERROR (IN METER) IN EACH

ZONE FOR DIFFERENT CONTROLLERS ON THE QUADROTOR

Uncertainty Wind Disturbance NMPC [15] SPQC-N SPQC
Zone A Constant 0.0499 0.0724 0.0198
Zone B Changing 0.0409 0.0883 0.0003
Zone C Sudden 0.0485 0.0867 0.0137

A. Experimental setup

In the experiments, we assess two aspects of the proposed
SPQC controller: (i) trajectory tracking performance under
different wind disturbances, and (ii) trajectory tracking with
obstacle avoidance under varying wind disturbances. The
reference trajectory is given as a spiral curve pd(t) =
[2sin(0.5t), 2−2cos(0.5t), 0.2t]> and ψd(t) = 0. The initial
state of the quadrotor is q = [ 0 m, 0 m, 0 m, 0 m/s, 0 m/s,
0 m/s, 0 rad, 0 rad, 0 rad ]T .

We use 3 GPs to learn the uncertainty vector
d(q) (8). Each GP uses the same mixture of linear
and radial basis function (RBF) kernels k(x, x′) =
σ2
f exp (− 1

2 (x− x′)TL−2(x− x′)) to capture the model un-
certainties that result from wind disturbances, where L = 10
and σf = 1. Each GP uses the past Ts = 20 observations
collected at 50 Hz. To generate high confidence intervals to
estimate wind disturbances, we use [µ(x) − 3σ(q), µ(x) +
3σ(q)] as high confidence intervals D(q) (11).

B. Trajectory Tracking under Different Wind Disturbances
As shown in Fig. 4(b), we define zones A, B and C with

different wind disturbances. In zone A, the wind disturbance
is constant: dw = [−0.06, 0.06, 0.03]T (N). In zone B,
a varying wind field 4dw = −0.05sin(p − p0)nw(N),
where p0 = [0.28, 4, 0]T (m) and nw = diag([0.6,−0.7, 0])
is added to dw to assess the adaptability to changing
wind disturbances. In zone C, a large wind gust 4dw =
[0.2, 0.18, 0.1]T (N) is added to dw on the system from
t = 14(s) to t = 14.2(s) to push the quadrotor away from the
trajectory to assess the robustness to irresistible disturbances.

It can be seen from Fig. 4(a), the position error converges
to a small value in each zone. The sudden gust pushes
the quadrotor away from the trajectory when the quadrotor
travels in zone C, and the SPQC controller enables the
quadrotor back to the trajectory after the gust. Fig. 4(a) shows
that the actual wind disturbance lies within the uncertainty
interval estimated via GPs when the quadrotor is in zone A
and B. Besides, the actual wind disturbance lies within the
uncertainty interval after the sudden wind blow in zone C.



(a) Snapshot at t = 2s. (b) Snapshot at t = 8s (c) Snapshot at t = 20s (d) Tracking error
Fig. 5. Numerical validation of the quadrotor flight through a densely cluttered obstacle field under varying wind disturbances. Snapshots of the simulation
are shown in 5(a), 5(b) and 5(c), respectively. The red solid line and the black dashed line denote the actual and reference trajectory, respectively. The
red and blue obstacles denote the dynamic and static obstacle crossing the reference trajectory, respectively. The tracking error in each axis between the
actual and reference trajectory is shown in 5(d).When the reference trajectory violates the safety constraint (by passing through an obstacle), the controller
automatically relaxes trajectory tracking to strictly enforce safety constraints. Simulation video: https://youtu.be/p-K3v9Z4OvA.

We compare the SPQC controller with the NMPC [15]
and an SPQC-N controller, where the SPQC-N is an ablation
version of SPQC without estimated model uncertainties. The
Root Mean Square Error (RMSE) of position tracking for
each controller is shown in Table. I. In each zone, the SPQC
method achieves a smaller tracking error than the NMPC and
SPQC-N controller.

C. Trajectory Tracking with Obstacles
In the second experiment, the quadrotor is commanded

to track the same dynamic time-varying trajectory pd(t)
under a varying wind disturbance. The wind disturbance
dw = [0.08cos(y−1), 0.08cos(x), 0.05sin(z−2)]T (N). The
reference trajectory pd(t) is surrendered by static obstacles.
Two dynamic obstacles fly to the quadrotor along the ref-
erence trajectory pd(t) with a speed of 0.78m/s when the
quadrotor is tracking the pd(t).

Figure 5(d) shows the tracking error between the quadrotor
position and the reference trajectory pd(t). When there are
no obstacles along the trajectory, the tracking error con-
verges to a small value. Furthermore, at about 2.5, 7, 14,
and 16 seconds in the simulation time, the tracking errors
rise to high values which indicates that the quadrotor has
changed its trajectory to avoid collision with the detected
obstacles. Fig. 5 shows that the SPQC controller stably
tracks the reference trajectory when the trajectory is safe,
while the controller relaxes tracking the reference when
avoiding obstacles. These simulation results indicate that the
SPQC controller can mediate the trade-off between safety
and tracking performance.

V. CONCLUSION

This paper presents a novel learning-based SPQC scheme
that achieves high-accuracy tracking performance while
guaranteeing safety for the quadrotor with a limited sens-
ing range under wind disturbances. The proposed SPQC
scheme consists of a nominal tracking controller and the
safety constraints based on ZCBFs. In this control scheme,
the GPs are exploited to estimate the uncertainties of the
wind disturbances, and an LMP algorithm is designed to
generate the desired tracking attitude. By minimally modi-
fying the nominal tracking controls, the quadrotor can avoid
unexpected obstacles while staying within the safety region
represented by ZCBFs. The proposed SPQC algorithm was

shown to improve tracking performance compared with an
NMPC [15] method under different disturbances. Numerical
simulation results show that the SPQC controller was capable
of performing the trajectory tracking task with obstacle
avoidance capacity under varying wind disturbances.
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