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Abstract— We propose a simple and computationally efficient
approach for designing a robust Model Predictive Controller
(MPC) for constrained uncertain linear systems. The uncer-
tainty is modeled as an additive disturbance and an additive
error on the system dynamics matrices. Set based bounds for
each component of the model uncertainty are assumed to be
known. We separate the constraint tightening strategy into two
parts, depending on the length of the MPC horizon. For a
horizon length of one, the robust MPC problem is solved exactly,
whereas for other horizon lengths, the model uncertainty is
over-approximated with a net-additive component. The result-
ing MPC controller guarantees robust satisfaction of state and
input constraints in closed-loop with the uncertain system. With
appropriately designed terminal components and an adaptive
horizon strategy, we prove the controller’s recursive feasibility
and stability of the origin. With numerical simulations, we
demonstrate that our proposed approach gains up to 15x
online computation speedup over a tube MPC strategy, while
stabilizing about 98% of the latter’s region of attraction.

I. INTRODUCTION

Model Predictive Control (MPC) is an optimal control
strategy that satisfies imposed constraints on system states
and inputs [1]–[3]. The presence of uncertainty in the predic-
tion model is a key challenge in MPC design. For uncertain
linear systems in presence of only an additive disturbance in
the system model, as finding the optimal policy is NP-hard,
computationally tractable suboptimal robust MPC techniques
such as tube MPC [2], [4]–[8] have been widely utilized. The
idea in these techniques is to restrict the input policy to the
space of affine state feedback policies and then tightening
the imposed constraints around a predicted nominal (i.e.,
certainty-equivalent) trajectory within a tube. This ensures
that the realized system trajectory satisfies imposed con-
straints robustly for all disturbances in the system.

Robust MPC design for uncertain linear systems in pres-
ence of both a mismatch in the system dynamics matrices and
an additive disturbance is computationally more intensive
and is a topic of ongoing research [9]–[11]. In order to
design a computationally efficient classical shrinking or fixed
radius tube MPC [2, Chapter 3] in presence of mismatch in
the system matrices, the contribution of uncertainty due to
the mismatches can be lumped together with the additive
disturbance. A worst-case bound for this quantity can be
found and then a method such as [6] can be used. However,
the work in [12] points out that such an approach can lead
to overly conservative behavior, which they circumvent by
utilizing a System Level Synthesis based approach.
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In this paper we show that such a naive “net-additive”
uncertainty approach may not always lead to overly con-
servative behavior over [12], if the terminal constraints are
appropriately chosen and an adaptive horizon strategy is
adopted. Our method can also be used to obtain a single roll-
out policy for robust constraint satisfaction, without solving
the MPC problem repeatedly. Our key contributions are:
• We split the constraint tightening into two cases based

on the horizon length. For horizon of one, the robust
MPC problem is solved exactly. For larger horizons,
we lump the model uncertainty into a net-additive
component and compute constraint tightenings along the
prediction horizon based on its worst-case bound.

• We solve a set of tractable convex optimization prob-
lems online using an adaptive horizon approach for
the MPC controller synthesis. With an appropriately
constructed terminal set and a terminal cost we prove
recursive feasibility of the controller synthesis problem
in closed-loop and input to state stability of the origin.

• We numerically compare our proposed robust MPC ap-
proach with the tube MPC from [5] and the constrained
LQR algorithm from [12]. In the first case, we gain up
to 15x speedup of online control computations while
stabilizing approximately 98% of the tube MPC’s region
of attraction (ROA). In the latter case, our approach
obtains an up to 12x larger ROA with the open-loop
roll-out policy.

Notation
The induced p-norm of any matrix A is given by ‖A‖p =

supx 6=0
‖Ax‖p
‖x‖p , where ‖ · ‖p is the p-norm of a vector. The

sign u ≥ v between two vectors u, v denotes element-wise
inequality. The convex combination of the matrices X,Y is
denoted as conv(X,Y ). A⊕B denotes the Minkowski sum
of the two sets A and B. A⊗B denotes Kronecker product.
In denotes an identity matrix of size n. Consistency property
is ‖Xy‖q ≤ ‖X‖p‖y‖q , for any matrix X and vector y.

II. PROBLEM FORMULATION

We consider the linear system

xt+1 = Axt +But + wt, x0 = xS , (1)

where xt ∈ Rd is the state and ut ∈ Rm is the input at
time step t, and A and B are system dynamics matrices
of appropriate dimensions. We assume that A and B are
unknown matrices with estimates Ā and B̄ available to the
control designer. In particular, we consider

A = Ā+ ∆tr
A, B = B̄ + ∆tr

B , (2)
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where the true parametric uncertainty matrices ∆tr
A and ∆tr

B

are unknown and belong to convex and compact sets

∆tr
A ∈ PA, ∆tr

B ∈ PB . (3)

Furthermore, we consider that the sets PA and PB are convex
hulls of known vertex matrices {∆(1)

A ,∆
(2)
A , . . . ,∆

(na)
A } and

{∆(1)
B ,∆

(2)
B , . . . ,∆

(nb)
B }, with fixed na, nb > 0:

PA = conv(∆
(1)
A ,∆

(2)
A , . . . ,∆

(na)
A ), (4a)

PB = conv(∆
(1)
B ,∆

(2)
B , . . . ,∆

(nb)
B ). (4b)

System (1) is also affected by a disturbance wt with a convex
and compact support W ⊂ Rd, at all times t ≥ 0.

We are interested in synthesizing a robust MPC for (1), by
repeatedly solving the following optimal control problem:

min
Ut(·)

t+N−1∑
k=t

`
(
x̄k|t, uk|t

(
x̄k|t

))
+Q(x̄t+N |t) (5a)

s.t., x̄k+1|t = Āx̄k|t + B̄uk|t(x̄k|t), (5b)
xk+1|t = Axk|t +Buk|t(xk|t) + wk|t, (5c)
with A = Ā+ ∆A, B = B̄ + ∆B , (5d)

Hxxk|t ≤ hx, Huuk|t(xk|t) ≤ hu, (5e)
xt+N |t ∈ XN , (5f)

∀wk|t ∈W, ∀∆A ∈ PA, ∀∆B ∈ PB , (5g)
∀k ∈ {t, t+ 1, . . . , (t+N − 1)},
xt|t = x̄t|t = xt,

with Ut(·) = {ut|t, ut+1|t(·), . . . , ut+N−1|t(·)}, and apply-
ing the optimal MPC policy

uMPC
t (xt) = u?t|t(xt), (6)

to system (1) in closed-loop, where xk|t is the predicted
state at time step k for any possible uncertainty real-
ization, obtained by applying the predicted input policies
{ut|t, ut+1|t(·), . . . , uk−1|t(·)} to system (1), and {x̄k|t, ūk|t}
with ūk|t = uk|t(x̄k|t) denote the nominal state and cor-
responding input respectively. The constraints (5e)-(5f) are
satisfied for all uncertainty realizations in (5g), where Hx ∈
Rs×d, hx ∈ Rs, Hu ∈ Ro×m and hu ∈ Ro parametrize
compact sets. Finally, the stage cost `(x, u) = x>Px +
u>Ru, and the terminal cost Q(x) = x>PNx. The main
challenges with solving (5) are:
(A) The state and input constraints are to be satisfied ro-

bustly under the presence of mismatch in the system
dynamics matrices and disturbances. That is, (5e)-(5f)-
(5g) need to be reformulated for a numerical algorithm.

(B) Optimizing over policies {u0, u1(·), u2(·), . . . } in (5) is
not tractable in general for constrained linear systems.

(C) The feasibility of problem (5) is to be guaranteed
robustly at all time steps t ≥ 0. That is,

Hxxt ≤ hx, HuuMPC
t (xt) ≤ hu, ∀wt ∈W,∀t ≥ 0,

where xt+1 = Axt +BuMPC
t (xt) + wt.

Methods addressing Challenge (B) and Challenge (C) are
well established in MPC literature. In the following sections,
we show how we address Challenge (A).
Approach Insight: We lump the component of model mis-
match together with the additive disturbance into a “net-
additive” uncertainty. We design a simple and computa-
tionally efficient shrinking tube MPC leveraging worst-case
bounds of this net-additive uncertainty only along the predic-
tion horizon, and an exact system uncertainty representation
for the construction of the terminal set. Notice that shrinking
tube MPC strategies such as [4], [6] using the net-additive
uncertainty bounds both along the prediction horizon and for
the computation of the terminal set, can be extremely con-
servative as pointed out in [12], [13]. Therefore, numerous
alternative strategies such as polytopic, homothetic and elas-
tic tube MPC [5], [9], [10] have been introduced to lower this
conservatism by circumventing the net-additive uncertainty
bounds. This however increases the online computation times
of these algorithms [2], [11]. In Section V, we show with
numerical simulations that our approach balances the trade-
off between conservatism and computational complexity.
In the example under study, we obtain about 15x online
computation speedup over the polytopic tube MPC method
of [5], while stabilizing about 98% of its region of attraction.

III. ROBUST MPC DESIGN

In this section we present the steps of the proposed robust
MPC design approach, which solves problem (5) at all t ≥ 0.

A. Net-Additive Uncertainty Representation

We lump the effect of the parametric uncertainty and the
additive disturbance into an augmented disturbance w̃t. We
denote w̃t = ∆Axt + ∆But +wt, and ‖w̃t‖ ≤ w̃max, for all
t ≥ 0, with the bound w̃max = maxt≥0 ‖w̃t‖ computed as:

max
t≥0
‖w̃t‖ ≤ max

t≥0
(‖∆Axt‖+ ‖∆But‖+ ‖wt‖), (7a)

≤ max
t≥0

(‖∆A‖p‖xt‖+ ‖∆B‖p‖ut‖+ ‖wt‖), (7b)

= ‖∆A‖p‖x‖max + ‖∆B‖p‖u‖max + ‖w‖max, (7c)
= w̃max,

with ∆A ∈ PA and ∆B ∈ PB . In (7a) we have used the
triangle inequality and in (7b) the consistency property of
induced norms. Values of ‖x‖max, ‖u‖max and ‖w‖max in
(7c) can be obtained from compact constraints (5e) and W.

B. Control Policy Parametrization

To address Challenge (B), for all predicted steps k ∈
{t, t+ 1, . . . , t+N − 1} over the MPC horizon, the control
policy is chosen as [6], [14]:

uk|t(xk|t) =

k−1∑
l=t

Mk,l|tw̃l|t + ūk|t, (8)

where Mk|t are the planned feedback gains at time step t and
ūk|t = uk|t(x̄k|t) are the nominal inputs. Then the sequence



of predicted inputs can be written as ut = M
(N)
t w̃t + ū

(N)
t ,

where M
(N)
t ∈ RmN×dN and ū

(N)
t ∈ RmN are

M
(N)
t =


0 . . . . . . 0

Mt+1,t 0 . . . 0
...

. . . . . .
...

Mt+N−1,t . . . Mt+N−1,t+N−2 0

 ,
ū

(N)
t = [ū>t|t, ū

>
t+1|t, . . . , ū

>
t+N−1|t]

>,

and
ut = [u>t|t, u

>
t+1|t(·), . . . , u

>
t+N−1|t(·)]

>,

w̃t =
[
w̃>t|t w̃>t+1|t . . . w̃>t+N−1|t

]>
,

with ‖w̃t‖ ≤ w̃max for all t ≥ 0.

C. Terminal Set Construction

We present the construction of the terminal set XN in this
section to address Challenge (C) mentioned in Section III.
Consider a linear state feedback policy for constructing XN

κN (x) = Kx, (9)

where K ∈ Rm×d is the feedback gain. Recall the sets PA

and PB from (4). We define

PA∆ = {Am : Am = Ā+ ∆A, ∀∆A ∈ PA},
PB∆ = {Bm : Bm = B̄ + ∆B , ∀∆B ∈ PB}.

Under policy (9), the closed-loop system dynamics matrix
considered for constructing the terminal set satisfies

Acl = A+BK ∈ PA∆ ⊕ PB∆K.

Assumption 1: Acl
m = (Am+BmK) is stable for all Am ∈

PA∆
and Bm ∈ PB∆

.
Using Assumption 1, the terminal set XN can then be

computed as the maximal robust positive invariant set for

xt+1 = (Am +BmK)xt + wt,

for all Am ∈ PA∆ , Bm ∈ PB∆ , and for all wt ∈W. That is
for all x ∈ XN we have that

Hxx ≤ hx, HuKx ≤ hu and (Am +BmK)x+ w ∈ XN ,

∀Am ∈ PA∆
, ∀Bm ∈ PB∆

, ∀w ∈W. (10)

D. MPC Problem with Adaptive Horizon

We now present the MPC reformulation of (5) which guar-
antees recursive feasibility and Input to State Stability. Note,
the terminal set XN is robustly invariant to all uncertainty of
the form: ∀∆A ∈ PA, ∀∆B ∈ PB , ∀w ∈W, ∀t ≥ 0, when
the state feedback policy κN (x) = Kx is used in closed-
loop with system (1). However, along the prediction horizon
we synthesize bound (7) using more conservative tightenings
from Hölder’s and triangle inequalities, and the induced norm
consistency property. Thus the uncertainty bounds along the
horizon over-approximate the effect of the true uncertainty
used to compute the terminal set. This implies that the
classical shifting argument [3, Chapter 12] for recursive MPC
feasibility cannot be used. To resolve this issue, we solve a

set of N convex optimization problems at any t for control
synthesis, with the prediction horizon Nt ∈ {1, 2, . . . , N}.
If one of these N problems is feasible at time step 0, we
guarantee feasibility of at least one of them for all t ≥ 0.

We first use policy (8) to reformulate the robust state
constraints in (5) along and at the end of the prediction
horizon. Let the terminal set XN in (10) be defined by
XN = {x : Hx

Nx ≤ hxN}, with Hx
N ∈ Rr×d, hxN ∈ Rr.

For a horizon length of Nt, we denote matrices Fx =
diag(INt−1 ⊗ Hx, Hx

N ) ∈ R(s(Nt−1)+r)×dNt and fx =
[(hx)>, (hx)>, . . . , (hxN )>]> ∈ Rs(Nt−1)+r. Also denote the
set W̃ = {w̃ ∈ RdNt : ‖w̃t‖ ≤ w̃max}. Then we consider
the following two cases as1:

Case 1: Nt = 1:

max
wt∈W

∆A∈PA
∆B∈PB

Hx
N (Ā+ ∆A)xt + (B̄ + ∆B)ū

(1)
t + wt) ≤ hxN ,

(11a)
Case 2: Nt ≥ 2:

max
w̃t∈W̃

Fx
(
Āxt + Cū

(Nt)
t + (CM

(Nt)
t + G)w̃t

)
≤ fx,

(11b)

where matrices Ā,C and G are defined in the Appendix.
Remark 1: In (11a) we exactly propagate the system

uncertainty for robustification. This ensures the feasibility
of (11a) inside XN , which is a robust positive invariant
set computed from (10) also using the exact uncertainty
representation. As such uncertainty propagation is compu-
tationally intense over multi step predictions, in (11b) we
over-approximate system uncertainty using bounds (7).

Now, denote the matrices Hu = INt ⊗Hu ∈ RoNt×mNt ,
and hu = [(hu)>, (hu)>, . . . , (hu)>]> ∈ RoNt . Once the
state constraints are formulated, the input constraints in (5)
along the prediction horizon can be written as:

max
w̃t∈W̃

Hu
(
M

(Nt)
t w̃t + ū

(Nt)
t

)
≤ hu, (12)

for Nt ∈ {1, 2, . . . , N}. Using (11)-(12), we solve at any t:

V MPC
t→t+Nt

(xt, Nt) :=

min
M

(Nt)
t ,ū

(Nt)
t

[
(x̄

(Nt)
t )> (ū

(Nt)
t )>

]
Q̄(Nt)

[
x̄

(Nt)
t

ū
(Nt)
t

]
s.t., x̄

(Nt)
t = Āxt + Cū

(Nt)
t ,

(11a), (12) if Nt = 1, else (11b), (12),
∀k = {t, t+ 1, . . . , t+Nt − 1},
x̄t|t = xt,

(13)

for Nt ∈ {1, 2, . . . , N}, where Q̄(Nt) = diag(INt
⊗

P, PN , INt ⊗R). We reformulate (13) as a convex program
with standard duality arguments. After solving (13) for Nt ∈
{1, 2, . . . , N}, we set

N?
t = arg min

N̄∈{1,2,...,N}
V MPC
t→t+Nt

(xt, N̄). (14)

1Note that the dimensions of Fx, fx, Ā, C, G and w̃t vary depending
on Nt. We omit showing this dependence explicitly for brevity.



Afterwards, we pick the solution associated with N?
t , and

apply the corresponding optimal input

u?t|t(xt) = u?t (xt) = ū?t|t, (15)

to system (1), with V MPC
t→t+N?

t
(xt, N

?
t ) = J?(xt). We then

resolve (13) at (t+ 1) for Nt+1 ∈ {1, 2, . . . , N}.

IV. FEASIBILITY AND STABILITY

In this section we prove the feasibility and stability prop-
erties of the proposed robust MPC.

A. Feasibility

Theorem 1: Consider the closed-loop system (1) and (15).
Let problem (13) be feasible at time step t = 0 for some
horizon length Nt ∈ {1, 2, . . . , N}. Then problem (13) is
feasible at all time steps t ≥ 1 for some horizon length
Nt ∈ {1, 2, . . . , N}, possibly time-varying.

Proof: See Appendix.

B. Stability

To prove the stability of the origin in closed-loop, we first
introduce the following set of assumptions and definitions.

Assumption 2: Denote the set of state and input con-
straints in (5e) as X and U , respectively. We assume that
the convex, compact sets X ,U and W contain the origin in
their interior.

Definition 1 (N -Step Robust Controllable Set): Given a
control policy π(·) and the closed-loop system xt+1 =
Axt+Bπ(xt)+wt with wt ∈W for all t ≥ 0, we recursively
define the N -Step Robust Controllable set to the set S as

Ct→t+k+1(S) = Pre(Ct→t+k(S), A,B,W, π(·)) ∩ X ,

with Ct→t(S) = S, for k = {0, 1, . . . , N − 1},

where Pre(S, A,B,W, π(·)) defines the set of states of the
system xt+1 = Axt + Bπ(xt) + wt, which evolve into the
target set S in one time step for all wt ∈W.
An algorithm to compute an inner approximation of such a
set is presented in [15], [16], which we call the approximate
N -Step Robust Controllable Set.

Definition 2 (ROA of the Robust MPC): The ROA for the
proposed robust MPC, denoted by R, is defined as the union
of the Nt-Step Robust Controllable Sets to the terminal set
XN under the policy (15), for Nt ∈ {1, 2, . . . , N}.
An inner approximation to the ROA, which we call the
approximate ROA, can be obtained using the approximate
N -Step Robust Controllable Sets.

Assumption 3: The matrices P and R in `(x, u) =
x>Px+ u>Ru are positive definite, i.e., P � 0 and R � 0.

Assumption 4: The matrix PN which defines the terminal
cost in (13) is chosen as a matrix PN � 0 satisfying

x>
(
− PN + (P +K>RK) + Ā>clPN Ācl

)
x ≤ 0 (16)

for all x ∈ XN , where Ācl = Ā+ B̄K.
Definition 3 (ISS Lyapunov Function [17]): Consider the

closed-loop system given by

xt+1 = Axt +Bu?t|t(xt) + wt, ∀t ≥ 0. (17)

Then the origin is called Input to State Stable (ISS), with
a ROA R ⊂ Rd, if there exists class-K∞ functions α1(·),
α2(·), α3(·), a class-K function σ(·) and a function V (·) :
Rd 7→ R≥0 continuous at the origin, such that,

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ R,
V (xt+1)− V (xt) ≤ −α3(‖xt‖) + σ(‖w̃i‖L∞),

where w̃i = ∆tr
Axi + ∆tr

Bui + wi and ‖w̃i‖L∞ =
supi∈{0,...,t} ‖w̃i‖. Function V (·) is called an ISS Lyapunov
function for (17).

Theorem 2: Let Assumptions 1-4 hold and let x0 ∈ R.
Then, the optimal cost of (13) with (14), i.e., J?(xt) is an
ISS Lyapunov function for the closed-loop system (17). This
guarantees Input to State Stability of the origin of (17).

Proof: See Appendix.

V. NUMERICAL SIMULATIONS

We choose N = 5 and compute approximate solutions to
the example problem given in [16]. The feedback gain K sat-
isfying Assumption 1 is chosen as K = −[0.4866, 0.4374].
The source codes are at https://github.com
/monimoyb/RMPC SimpleTube.

A. Comparison with [5]

The tube cross section (Z) is chosen as the minimal robust
positive invariant set [2, Definition 3.4] for system (1) under
a feedback u = −[0.7701, 0.7936]x, and the terminal set
(Xf ) is chosen as XN in (10). See [5] for details on these
quantities. We then choose a set of Ninit = 100 initial states
xS , created by a 10 × 10 uniformly spaced grid of the set
of state constraints. From each of these initial state samples
we check the feasibility of the tube MPC problem in [5,
Section 5]. The code to solve the tube MPC is used from
[18]. The convex hull of the feasible initial states (largest
out of horizons N ≤ 5) inner approximates the ROA of
the tube MPC. This is compared to the approximate ROA
of our proposed robust MPC. The comparison is shown in
Fig. 1. The approximate ROA from our approach is about
1.05x larger in volume, but containing 98% of that of the
tube MPC. However, for any N ≤ 5, the tube MPC needs

� Approx. ROA of Proposed Robust MPC
� Approx. ROA of Tube MPC in [5]

Fig. 1: Comparison of the approximate ROA.

https://github.com/monimoyb/RMPC_SimpleTube
https://github.com/monimoyb/RMPC_SimpleTube


higher computation times than for all Nt ∈ {1, 2, . . . , N}
combined in our approach. This is shown in Table I.

TABLE I: Avg. online computation times [sec]. Values are
obtained with a MacBook Pro 16inch, 2019, 2.3 GHz 8-Core
Intel Core i9, 16 GB memory, using the Gurobi solver.

Horizon Proposed Robust MPC Tube MPC in [5]
Nt = 1 0.0026 0.0062
Nt = 2 0.0023 0.0753
Nt = 3 0.0038 0.1612
Nt = 4 0.0056 0.2556
Nt = 5 0.0078 0.3384

Remark 2: See [16] on how to outperform the tube MPC
both in conservatism and online computational complexity.

B. Roll-Out Alternative and Comparison with [12]

A computationally cheaper alternative can be obtained as
follows: Once an optimization problem in (13) at time step
t = 0 is feasible for some horizon length N0 = N̄0 ∈
{1, 2, . . . , N}, the corresponding optimal policy sequence:
{u?0|0, u

?
1|0(·), . . . , u?

N̄0−1|0(·)} can be used to obtain a safe
open-loop policy for all time steps as:

Πsafe
ol (xt) =

{
u?t|0(xt), if t ≤ (N̄0 − 1),

Kxt, otherwise.
(18)

Policy (18) maintains the robust satisfaction of (5e) for all
time steps, without re-solving (13). From each of the previ-
ous 100 initial state samples, we now check the feasibility of
the constrained LQR synthesis problem in [12, Section 2.3].
We pick the FIR length (same as control horizon length)
as L = 15, with τ = 0.99 and τ∞ = 0.2. See [12,
Problem 2.8] for details on these parameters. The comparison
of the approximate N̄0-Step Robust Controllable Sets and
the approximate region of attraction of the algorithm of [12,
Section 2.3] is shown in Fig. 2. The volumes of the approx-
imate N̄0-Step Robust Controllable Sets are bigger than the
approximate ROA of the controller in [12, Section 2.3] for
all N̄0 ≤ 5, showing that the roll-out policy (18) yields up
to approximately 12x lower conservatism.

� Approx. N̄0-Step Robust Controllable Set
� Approx. ROA of Controller in [12]

(a) N̄0 = 2, 3, 4 (comparable sets) (b) N̄0 = 5

Fig. 2: A safe open-loop policy (18) is guaranteed to exist
at all times with initial states in the yellow regions.

VI. CONCLUSIONS

We proposed a computationally efficient approach to de-
sign a robust MPC for constrained uncertain linear systems.
The uncertainty considered included both mismatch in the
system dynamics matrices, and an additive disturbance. The
designed MPC is recursively feasible and the origin of the
closed-loop system is Input to State stable. With numerical
simulations, we demonstrated that the proposed approach
can be a simple and viable alternative to balance the trade-
off between computational complexity and conservatism in
robust MPC design under parametric model uncertainty.
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APPENDIX

A. Matrices in (11b)

As in [6], matrices Ā, C and G for a horizon N̄ are:
G = IdN̄ +

∑N̄−1
k=1 Lk

N̄
⊗ Āk, Ā = diag(Ā, Ā2, . . . , ĀN̄−1),



and C = G · (IN̄ ⊗ B̄), with L being the lower shift matrix.

B. Proof of Theorem 1

Assume that at time step t problem (13) is feasible, and
let N?

t be the optimal horizon. We then consider:
Case 1: (N?

t = 1) Consider the robust state constraints (11a):

max
wt∈W

∆A∈PA,∆B∈PB

Hx
N ((Ā+ ∆A)xt + (B̄ + ∆B)ū

(1)
t + wt) ≤ hxN .

(19)

We find hxN where the max is attained by using duality. Let
us denote the corresponding optimal input policy by

u?t|t(xt) = ū?t|t. (20)

Now, let policy (20) be applied to (1) in closed-loop, so that
the system reaches the terminal set XN . Consider solving
(19) at this step with a horizon length of Nt+1 = 1. As (11b)
uses the same representation of the uncertainty as done in
Section III-C, a candidate policy at time step (t+ 1) is

ut+1|t+1(xt+1) = Kxt+1, (21)

which is a feasible solution to (13) under constraint (19).
Case 2: (N?

t ≥ 2) Let us denote the sequence of optimal
input policies from t as {u?t|t, u

?
t+1|t(·), · · · , u

?
t+N?

t −1|t(·)}.
Consider a candidate policy sequence at the next time instant:

Ut+1(·) = {u?t+1|t(·), . . . , u
?
t+N?

t −1|t(·)}. (22)

Now using standard MPC shifting arguments [4]–[6], se-
quence (22) is a feasible policy sequence at time step (t+1)
for problem (13), with horizon length Nt+1 = N?

t − 1.

C. Proof of Theorem 2

From Assumption 3 we know that, α1(‖xt‖2) ≤ `(x, 0) ≤
J?(xt) for some α1(·) ∈ K∞ and for all x ∈ R. Moreover,
since (13) can be reformulated into a parametric QP for
each horizon length Nt, constraint set (5e) is compact, and
J?(0) = 0, from [6, Theorem 23], we know J?(xt) ≤
α2(‖xt‖2) for some α2(·) ∈ K∞ and for all xt ∈ R. We
complete the proof by considering the same two cases :
Case 1: (N?

t = 1) Consider the case of N?
t = 1. The optimal

nominal cost at time step t is written as

J?(xt) = `(x̄?t|t, ū
?
t|t) + (x̄?t+1|t)

>PN x̄
?
t+1|t

≥ `(x̄?t|t, ū
?
t|t) + `(x̄?t+1|t,Kx̄

?
t+1|t)+

+ ((Ā+ B̄K)x̄?t+1|t)
>PN ((Ā+ B̄K)x̄?t+1|t) (23a)

= `(x̄?t|t, ū
?
t|t) + q(x̄?t+1|t), (23b)

where in (23a) we have used Assumption 4, and at time step
(t + 1) the feasible input ūt+1|t = Kx̄?t+1|t as discussed
in (21). As (21) is a feasible policy at time step (t + 1)
with horizon length Nt+1 = 1, the optimal cost of the MPC
problem for any horizon length N?

t+1 = {1, 2, . . . , N} can
be bounded from above as:

J?(xt+1) ≤ `(x̄t+1|t+1, ūt+1|t(x̄t+1|t+1)) +Q(x̄t+2|t+1)

= q(x̄t+1|t+1), (24)

with x̄t+1|t+1 = x̄?t+1|t + w̃t, with w̃t = ∆tr
Axt + ∆tr

Bū
?
t|t +

wt. Combining (23b)–(24) we obtain:

J?(xt+1)− J?(xt)

≤ q(x̄?t+1|t + w̃t)− `(x̄?t|t, ū
?
t|t)− q(x̄

?
t+1|t)

≤ −α3(‖xt‖2) + Lq‖w̃i‖L∞ ,
(25)

where q(·) is Lq-Lipschitz as it is a sum of quadratics in X .

Case 2: (N?
t ≥ 2) Now consider

J?(xt) =

t+N?
t −1∑

k=t

`(x̄?k|t, ū
?
k|t) +Q(x̄?t+N?

t |t)

= `(x̄?t|t, ū
?
t|t) + q(x̄?t+1|t), (26)

where {x̄?t|t, x̄
?
t+1|t, . . . , x̄

?
t+N?

t |t
} is the optimal predicted

nominal trajectory under the optimal nominal input sequence
{ū?t|t, ū

?
t+1|t, . . . , ū

?
t+N?

t −1|t}, where ū?k|t = u?k|t(x̄
?
k|t) for

all k ∈ {t, t+ 1, . . . , t+ (N?
t − 1)}. The quantity q(x̄?t+1|t)

provides the total nominal cost from time step (t + 1) to
(t+N?

t ) under the following optimal control policy

{u?t+1|t(·), . . . , u
?
t+N∗t −1|t(·)}. (27)

We know that (22) is a feasible policy sequence for (13) at
time step (t+1) with horizon length Nt+1 = (N?

t −1). After
x̄t+1 = xt+1 is obtained with closed-loop system evolution
(17), with this feasible policy sequence (27), the optimal
nominal cost of (13) at time step (t + 1) for any N?

t+1 ∈
{1, 2, . . . , N} can be bounded as:

J?(xt+1) ≤
t+N?

t −1∑
k=t+1

`(x̄k|t+1, u
?
k|t(x̄k|t+1)) +Q(x̄t+N?

t |t+1)

= q(x̄t+1|t+1), (28)

where we have used the feasible nominal trajectory obtained
with the policy (27), given as

x̄k|t+1 = Āk−t−1(Āxt + B̄u?t|t(xt) + w̃t)+

+

k−1∑
i=t+1

Āk−1−iB̄u?i|t(x̄k|t+1),

for k = {t+ 2, t+ 3, . . . , t+N?
t }, Moreover, we know that

x̄t+1|t+1 = x̄?t+1|t + w̃t, (29)

with w̃t = ∆tr
Axt + ∆tr

Bū
?
t|t + wt. Combining (26)–(29):

J?(xt+1)− J?(xt)

= q(x̄?t+1|t + w̃t)− `(x̄?t|t, ū
?
t|t)− q(x̄

?
t+1|t)

≤ −`(x̄?t|t, ū
?
t|t) + Lq‖w̃t‖ ≤ −`(x̄?t|t, 0) + Lq‖w̃t‖

≤ −α3(‖xt‖2) + Lq‖w̃i‖L∞ .

(30)

Combining (25) and (30), the origin of (17) is ISS according
to Definition 3, as the optimal cost function J?(·) is an ISS
Lyapunov function. This completes the proof.
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