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Equalized Recovery State Estimators for Linear Systems with

Delayed and Missing Observations

Syed M. Hassaan, Qiang Shen and Sze Zheng Yong

Abstract—This paper presents a dynamic state observer de-
sign for discrete-time linear time-varying systems that robustly
achieves equalized recovery despite delayed or missing observa-
tions, where the set of all temporal patterns for the missing
or delayed data is modeled by a finite-length language. By
introducing a mapping of the language onto a reduced event-
based language, we design a state estimator that adapts based on
the history of available data at each step, and satisfies equalized
recovery for all patterns in the reduced language. In contrast
to existing equalized recovery estimators, the proposed design
considers the equalized recovery level as a decision variable,
which enables us to directly obtain the global minimum for
the intermediate recovery level, resulting in improved estimation
performance. Finally, we demonstrate the effectiveness of the
proposed observer when compared to existing approaches using
several illustrative examples.

Index Terms—Estimation; Delay systems; Observers for Linear
systems

I. INTRODUCTION

C
YBER-PHYSICAL systems (CPS) typically involve mul-

tiple sensors that send data packages to controllers

through a shared communication channel, and controllers

that compute and transmit control commands to actuators

that are connected to the physical system. For the safe and

efficient operation of these systems, state estimation plays an

essential role. However, time delays and missing data are often

inevitable due to sensor failures, package drops or adversaries.

Hence, there is a need for designing state estimators that are

robust to these delays and missing data.

Literature review: For the past few decades, active research

development has been undertaken in the area of state esti-

mation for systems that are susceptible to packet drops and

delayed communication, as highlighted in [1], [2] as typical

concerns in networked control systems. Significant amount

of research has been done to design state estimators when

only intermittent data is available [3], [4], [5], and when

observations are arriving as out-of-sequence measurements [6],

[7], [8], [9]. The authors in [6] used complete in-sequence

information approach to recompute all the estimations from

the step when data did not arrive until the point when it

finally arrived, while [7] proposed nonlinear filters utilizing a

Bayesian filtering framework to correct the previous estimation

as soon as the delayed observation arrives. On the other

hand, an optimal state estimation approach was proposed for

Markovian jump linear systems subject to delays in both the

output and mode observations in [8]. However, these works
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mainly modeled the missing and delayed observations as

stochastic variables with known probability distributions and

focused on obtaining the best average/expected estimates as

opposed to achieving best worst-case/robust estimation errors

considered in this paper.

Another relevant area that does consider the worst-

case/robust estimation performance is the synthesis of set-

valued estimators, which has seen some recent development,

e.g., [10], [11], [12]. The authors in [13] introduced the

property of equalized performance, which implies that the

estimation error always remains equal/invariant. For systems

with missing observations, [14] and [15] modeled the feasi-

ble missing data patterns with a finite-length language and

proposed finite-horizon affine estimators with an extended

property called equalized recovery, which implies that within

a finite time horizon, especially for times when observations

may go missing, the estimation error can have a more relaxed

upper bound, but by the end of the horizon should return to

the initial upper bound. In more recent work, [16], [17] devel-

oped a prefix-based method to predict the possible pattern of

missing data to improve the estimation performance. However,

this approach does not directly apply for delayed data patterns,

and thus, our goal in this paper is to design equalized recovery

estimators that can handle them.

Contribution: In this paper, we design a state observer

that achieves equalized recovery when the system data is

prone to misses and delays (including out-of-sequence obser-

vations). Instead of assuming probabilistic missing or delay

events, we model them using a fixed-length language that

represents the set of all possible temporal patterns of the

missing or delayed data and further construct a reduced event-

based language with unique event sequences. In contrast to

the worst-case language method in [14], [15], our proposed

design monitors the history of available data at run time and

adapts the estimator gain matrices. Furthermore, we extend

existing equalized recovery estimators to allow time-varying

intermediate levels and consider the equalized recovery level

as a decision variable, enabling us to directly find the global

minimum of the intermediate levels. These improvements are

shown in simulations to yield better estimation performance.

II. PROBLEM FORMULATION

A. System Dynamics and Delayed Data Language

System Dynamics: We consider a discrete-time linear time-

varying system subject to process noise and output noise. The

model of the system dynamics is described as follows:

xk+1 = Akxk +Bkuk +Wkwk,
zk = Ckxk + Vkvk,
Yk = {zk−τ(i)|i+ τ(i) = k, i ≤ k},

(1)
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where xk ∈ R
n is the system state at time k , uk ∈ R

m is the

input to the system, wk ∈ R
n is the process noise, vk ∈ R

p is

the measurement noise, zk ∈ R
p is the model output, Yk ⊂ R

p

is the set of all measurements/outputs that are received at time

step k and τ(i)≥ 0 is the unknown time delay of the data at

the time step i that satisfies τ(i) ≤ τ̄ , where τ is a known

upper bound on the number of time steps that a packet can

be delayed by. The discrete variable τ(i) = 0 denotes that

the measurement from time step i is received/available, while

τ(i) = δ implies that the data from time step i is delayed by δ
steps. We assume that wk and vk are bounded with ‖wk‖ ≤ ηw
and ‖vk‖ ≤ ηv for each k, where ‖ · ‖ denotes the ∞-norm.

The system matrices Ak, Bk, Ck, Wk , Vk, ηw and ηv are all

known. Without loss of generality, we assume that the initial

time is k = 0.

Delayed Data Language: Given a fixed length T , we

consider a delayed data model in which all delay patterns

are restricted to a set expressed by fixed-length language

specifications, e.g., ‘the i-th observation is delayed by at

most m time steps’ or ‘at most m available measurements

in a fixed interval’. Formally, our delayed data model is a

fixed-length language L of length T that specifies the set of

allowable delay mode sequences τ(0)τ(1)τ(2) . . . τ(T − 1)
with τ(i) ≤ τ̄ , ∀i ∈ N

T−1
0 , where the α-th possible sequence

is called a word Wα with α ∈ N
|L|
1 . Note that i + τ(i)≥T

means that the i-th data is delayed beyond the horizon T ,

which is similar to the situation where that data is missing. In

other words, the case considered in [14], [15], [16] is a special

case of the delayed data language in this paper.

Example 1. Consider a system where the observation is

delayed by at most 2 time steps in a fixed interval of length

2. This means that τ = 2 and T = 2, and hence we

have τ(i) ∈ {0, 1, 2} for all i ∈ N
1
0. Therefore, the fixed-

length language can be expressed as L = {W1, . . . ,W9} =
{00, 01, 02, 10, 11, 12, 20, 21, 22}.

B. Equalized Recovery

The focus of our paper is to design a bounded-error estima-

tor, where the estimation error is guaranteed to return/recover

to the same bound that it started with after a fixed number

of time steps, as an extension of the notion of equalized

performance in [13]. In terms of time horizon T , we enforce

that the estimation error bound at the end of the horizon is

guaranteed to be less than or equal to the bound at the start.

Formally, we consider equalized recovery, defined as follows,

which is a slight modification of the definition in [14] to allow

time-varying intermediate levels:

Definition 1 (Equalized Recovery). An estimator is said to

achieve an equalized recovery level µ1 at time 0 with recovery

time T and intermediate levels µ2,k ≥ µ1 if for any ‖x̃0‖ ≤
µ1, we must have ‖x̃k‖ ≤ µ2,k for all k ∈ [0, T ] and ‖x̃T ‖ ≤
µ1, where x̃k , xk − x̂k is the estimation error and x̂k is the

state estimate at time k.

C. Problem Statement

We aim to design a bounded-error estimator that satisfies

equalized recovery, which can be stated as follows:

Problem 1 (Estimator Design with Delayed Data). Given the

system dynamics (1), a delayed data model specified by a

language L and a recovery time T as a time horizon, design

an optimal equalized recovery state estimator with estimate

x̂k and estimation error x̃k = xk − x̂k, ∀k ∈ [0, T ] that

minimizes a cost J(µ1, {µ2,k}Tk=0) subject to µ2,k ≥ µ1,

‖x̃k‖ ≤ µ2,k, ∀k ∈ [0, T ] and ‖x̃T ‖ ≤ µ1 for all ‖x̃0‖ ≤ µ1.

In contrast to [14], [15], [16], [17], the above problem

formulation allows time-varying intermediate levels and more

importantly, the equalized recovery level µ1 does not need to

be specified a priori. As a result, we can directly optimize

over J(µ1, {µ2,k}Tk=0) and overcome the challenge with the

formulation in [14], [15], [16], [17] that the optimal cost is not

monotonic in µ1. Furthermore, if the recovery time T is not

given and can be chosen, we can perform a line search over T
using the above formulation. Moreover, simple modifications

will allow us to consider affine dynamics, similar to [14], [15],

[16], [17], and the case when the initial estimation error is

greater than µ1 (cf. Section III-B3).

III. DESIGN APPROACH

In this section, we propose an observer design approach to

solve Problem 1, which involves constructing an event-based

language LE from the fixed-length delayed data language L
and designing an estimator that adapts to the information from

the observed data pattern seen so far.

A. Event-Based Language

Given a language set L of a system, containing all possible

words for different allowable delay mode sequences, an event-

based language LE is constructed to capture the set of indis-

tinguishable event sequences that correspond to the different

delay mode sequences in L. To build the event-based language,

the following definitions are introduced first:

Definition 2 (Event). An event ei,j = d0d1d2 . . . di at time

step i ∈ N
T−1
0 is a finite sequence of binary variables dl ∈

{0, 1} for all l ∈ N
i
0, where j ∈ N

2i+1−1
0 is an index denoting

the j-th potential event at time step i. The binary variable

dl = 1 denotes that the data of time step l is available at

current time step i (i.e., all received data up until the current

step i), while dl = 0 signifies that the data of time step l is

not available at current time step i. Moreover, an event can

be defined using ei,j = binary(j, i+1) at time step i, where

the function binary returns a binary representation of the

number j ∈ N
2i+1−1
0 with i + 1 digits.

Definition 3 (Event Set). An event set ei = {ei,j}
2i+1−1
j=0 is a

set of all potential events at time step i ∈ N
T−1
0 .

Intuitively, an event at time step i represents the information

that is available up until time i. Since any data from previous

or current steps only has two possibilities, i.e., measured or

not measured at the current time i ∈ N
T−1
0 , there is a total of

2i+1 different cases. Thus, the index j of ei,j varies from 0
to 2i+1 − 1, as exemplified in the following.

Example 2. Consider a system with a horizon T = 2.

Based on above definitions of event and event set, we have



e0 = {e0,j}
21−1
j=0 = {e0,0, e0,1} = {0, 1} for time step i = 0,

e1 = {e1,j}
22−1
j=0 = {e1,0, e1,1, e1,2, e1,3} = {00, 01, 10, 11}

for time step i = 1. For instance, the event e0,0 = 0 means

that the data of time 0 is not available at the time 0, and the

event e1,1 = 01 means that at the time 1, the data of time 0
is not available but the data of time 1 is available.

Definition 4 (Event Sequence). An event sequence Eα =
e0,j0e1,j1e2,j2 . . . eT−1,jT−1

is a sequence of events corre-

sponding to a word Wα = {τ(i)}T−1
i=0 from the fixed-length

language L, where the subscripts ji for all i ∈ N
T−1
0 are

determined by the word Wα.

In other words, an event sequence represents the available

information at each step. For each delay mode sequence

in a language L, we can find its corresponding event se-

quence, and thus, the language L = {Wj}
|L|
j=1 contain-

ing all allowable delay mode sequences can be mapped

onto an event-based language LE = {Eα}
|L|
α=1 contain-

ing all potential event sequences. Specifically, for a word

Wα = τ(0)τ(1)τ(2) . . . τ(T − 1), the subscript jk, k ∈
N

T−1
0 , in the corresponding event sequence Eα = e0,j0e1,j1

e2,j2 . . . eT−1,jT−1
(cf. Definition 4) can be constructed as

jk =
∑k

ℓ=0 2
ℓ
1τ(k−ℓ)≤ℓ, ∀k ∈ N

T−1
0 , (2)

where 1τ(k−ℓ) denotes an indicator defined as

1τ(k−ℓ)≤ℓ =

{

1, τ(k − ℓ) ≤ ℓ,

0, τ(k − ℓ) > ℓ.
(3)

Note that the resulting event-based language LE =

{Eα}
|L|
α=1 could have repeated event sequences (i.e., the map-

ping is surjective). Thus, we will eliminate repeated event

sequences in LE to obtain a reduced event-based language

LE′

= {E ′
α}

|LE
′

|
α=1 ⊆ LE with unique event sequences E ′

α

for α ∈ N
|LE

′

|
1 . The next example demonstrates how to

map/transform the fixed-length language L in the Example

1 to a reduced event-based language LE′

.

Example 3. Consider the delayed data language in Example

1. The word W2 = 01 denoting that the data of time 0 has

no delay while the data of time 1 is delayed by 1 time step,

can be represented by the event trajectory E2 = e0,1e1,2
using (2), where e0,1 = 1 means that the data of time 0
is available at the time 0, e1,2 = 10 means that the data

of time 0 is also available at the time 1 (since the data of

time 0 is previously received at the time 0) and the data of

time 1 is not available at the time 1 (since the data of time

1 is delayed by 1 time step). Using this procedure, we can

transform all words in the language L = {W1, . . . ,W9} =
{00, 01, 02, 10, 11, 12, 20, 21, 22} to an event-based

language LE = {E1, . . . , E9} = {e0,1e1,3, e0,1e1,2, e0,1e1,2,
e0,0e1,3, e0,0e1,2, e0,0e1,2, e0,0e1,1, e0,0e1,0, e0,0e1,0}. Then,

we can eliminate repeated event sequences in LE and obtain

a reduced event-based language LE′

= {E ′
1, . . . , E

′
6} =

{e0,1e1,3, e0,1e1,2, e0,0e1,3, e0,0e1,2, e0,0e1,1, e0,0e1,0}.

B. Equalized Recovery State Estimator Design

For the estimator design, we will make use of the following

definitions and notation, inspired by [16]:

Definition 5 (Principal Block Minor). The i-th leading prin-

cipal block minor of a matrix M ∈ R
an×bp is the n× p block

matrix, BMi(M) = M1:in,1:ip, for all i ∈ [1,min(a, b)].

Definition 6 (Prefix of an Event Sequence). For an event

sequence E ′
α ∈ LE′

and i ≤ |E ′
α|, the length i prefix of E ′

α

is defined as E
′,[1:i]
α = e0,j0e1,j1e2,j2 . . . ei−1,ji−1

, where |E ′
α|

denotes the number of events in E ′
α. The set of all non-empty

prefixes of E ′
α is denoted as Pref(E ′

α).

Example 4. Consider event E ′
1 of the reduced event-based

language LE′

in Example 3. As E ′
1 = e0,1e1,3, we have |E ′

1| =
2 and i = {1, 2}. The length 1 prefix of E ′

1 is e0,1, while its

length 2 prefix is e0,1e1,3. Thus, the set of non-empty prefixes

of E ′
1 is Pref(E ′

1) = {e0,1, e0,1e1,3}.

Next, to solve Problem 1, we consider a finite horizon

dynamic state estimator, inspired by [15], with augmented

states x̄k ,
[

x̂⊤
k s⊤k

]⊤
, where x̂k ∈ R

n is the estimate of the

system state and sk ∈ R
n an auxiliary state which estimates

x̃k= xk − x̂k. The estimator design is as follows:

x̂k+1 = Akx̂k +Bkuk − ue,k,

sk+1 = Aksk + ue,k + L
E′

α

k z̃k,
(4)

with
z̃k=

{

ỹk−Cksk=zk−Ck(x̂k+sk), if zk∈
⋃k

j=0 Yj ,

0, otherwise,

where ỹk , zk−Ckx̂k, L
E′

α

k ∈ R
n×p is the Luenberger gain at

step k as a function of the observed prefix E ′
α and ue,k ∈ R

n

is the causal output error injection term given by:

ue,k = ν
E′

α

k +
∑k

i=0 M
E′

α

(k,i)z̃i, (5)

where M
E′

α

(k,i) ∈ R
n×p and ν

E′

α

k ∈ R
n are gain matrices at

time k as a function of the observed prefix E ′
α, which will be

designed to satisfy the objectives of Problem 1.

In [15], the estimator design was formulated with essentially

one worst-case word in the worst-case language L∗, which was

obtained by combining all the words in the given language,

resulting in a triplet of stacked (M,L, ν) matrices for the

whole time horizon T which would satisfy the conditions

in Problem 1 for both the worst-case word in L∗ as well

as individual words in L. Since the worst-case language L∗

is used for achieving the equalized recovery, the achievable

performance level is conservative. On the other hand, solving

Problem 1 for multiple triplets of (Mα, Lα, να) for each

word Wα in L may result in implementation conflicts due

to causality. This limitation was discussed in detail in [16].

To remedy this, we need to design the individual

(Mα, Lα, να) for each word Wα of L such that if two

different words are not distinguishable until time k̄, then

(Mα
(k), L

α
(k), ν

α
(k)) for both words should be constrained to be

the same for all k ∈ N
k̄−1
0 , where Mα

(k) denotes the k-th

row of Mα. Instead of associating a triplet (Mα, Lα, να) to

each word Wα in the language L, we only consider triplets

(Mα, Lα, να) for each event sequence E ′
α of the reduced

event-based language LE′

. Since all event sequences in LE′

are not repeated and LE′

⊆ LE , we can reduce the number of

triplets needed and thus the size of the optimization problem.

Using the above, we impose the following constraint due to

indistinguishability of unique event trajectories in LE′

:



C(LE′

)=























{(Mα, Lα,

να)}
|LE

′

|
α=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(e ∈ Pref(E ′
α) ∧ e ∈ Pref(E ′

β))

=⇒ ∀E ′
α, E

′
β ∈ LE′

:
(BM|e|(M

α) = BM|e|(M
β))∧

(BM|e|(L
α) = BM|e|(L

β))∧
((να)(1:|e|n) = (νβ)(1:|e|n))























. (6)

Intuitively, if any pair of event sequences share the same

prefix of a particular length, then they are indistinguishable at

the corresponding time step based on the received information.

Since they are indistinguishable (and future information is

inaccessible in a causal system), their associated submatrices

and subvectors need to be constrained to be the same to avoid

conflicts during implementation. Note that while the prefix

notation is similar to [16], our estimator uses a different state

estimator structure that enables us to consider more general

data patterns, including delayed data patterns.

Moreover, for each event sequence E ′
α ∈ LE′

, due to

delayed data and causality, all the entries in Mα and Lα

corresponding to no available data should also be set to zero.

To construct this constraint on Mα and Lα, we first define an

event matrix associated with the event sequence E ′
α ∈ LE′

:

Eα =























e
(0)
0,j0

0 0 . . . 0

e
(0)
1,j1

e
(1)
1,j1

0 . . .
.
..

e
(0)
2,j2

e
(1)
2,j2

e
(2)
2,j2

. . .
...

..

.
..
.

. . . 0

e
(0)
T−1,jT−1

e
(1)
T−1,jT−1

e
(2)
T−1,jT−1

. . . e
(T−1)
1,jT−1























,

where e
(l)
i,ji

specifies the (l+1)-th digit of event ei,ji , i.e., dl (cf.

Definition 2). Using this definition, we impose the following

constraint due to delayed data:

D(LE′

)=



















{(Mα,

Lα)}
|LE

′

|
α=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀i, j ∈ N
T
1 :

Mα
((i−1)n:(i−Eα(i,j))n−1,
(j−1)p:(j−Eα(i,j))p−1)

=0,

Lα
((i−1)n:(i−Eα(i,j))n−1,
(j−1)p:(j−Eα(i,j))p−1)

=0



















. (7)

Next, we provide examples of C(LE′

) and D(LE′

).

Example 5. Consider two event sequences E ′
1 = {e0,1e1,3}

and E ′
2 = {e0,1e1,2} of LE′

in Example 3. The sets of all non-

empty prefixes of E ′
1 and E ′

2 are Pref(E ′
1) = {e0,1, e0,1e1,3}

and Pref(E ′
2) = {e0,1, e0,1e1,2}, respectively. It is clear that

E ′
1 and E ′

2 have the same length 1 prefix, so we need to

impose the following constraints in C(LE′

): BM1(M
1) =

BM1(M
2), BM1(L

1) = BM1(L
2) and ν11:n = ν21:n. More-

over, to formulate the constraints D(LE′

), we first construct

event matrices associated with E ′
1 and E ′

2:

E1 =

[

e
(1)
0,1 0

e
(1)
1,3 e

(2)
1,3

]

=

[

1 0
1 1

]

, E2 =

[

e
(1)
0,1 0

e
(1)
1,2 e

(2)
1,2

]

=

[

1 0
1 0

]

,

where a zero element located at the i-th row and j-th column

of matrices E1 (or E2) indicates that the data of time step j is

not available at the time i due to the delay in E ′
1 (or E ′

2) and

causality. This is captured in D(LE′

) by M1
(0:n−1,p:2p−1) = 0

for i = 1 and j = 2 in E1, M2
(0:n−1,p:2p−1) = 0 for i = 1

and j = 2 in E2, and M2
(n:2n−1,p:2p−1) = 0 for i = 2 and

j = 2 in E2, which results in M1 and M2 with the following

block structures: M1 =

[

∗ 0
∗ ∗

]

, M2 =

[

∗ 0
∗ 0

]

, where ∗

denotes non-zero submatrices. Similar constraints also need

to be imposed on L1 and L2 in D(LE′

).

1) Estimator Gains Design: Next, we present an approach

to obtain the estimator gains (Mα, Lα, να) associated with

each unique event sequence E ′
α in LE′

for the estimator in

(4). Moreover, we also allow the time-varying intermediate

levels to be prefix-dependent, i.e., with µα
2,k, which can lead

to improved estimation error bound when the prefix, i.e., the

history of available data, is observed at run time.

Theorem 1 (Equalized Recovery Estimator Design with De-

lays). For a system with measurement delays and missing data

patterns defined by a fixed-length language L given in (1),

the finite-horizon affine estimator given in (4) can fulfill the

objectives in Problem 1 if the following is feasible:

min
Mα,να,µα

2
,s0,Lα,µ1

J(µ1, {µα
2 }

|LE
′

|
α=1 )

subject to ∀(‖w‖≤ηw, ‖v‖≤ηv, ‖x̃0‖≤µ1, α∈N
|LE

′

|
1 :

‖x̃α‖ ≤ µα
2 , ‖RT x̃

α‖ ≤ µ1, µ
α
2 ≥ µ1, µ1 ≥ 0,

x̃α = Θαw +Ψαv + Ξαx̃0 +Υαs0 +Hνα,

(Mα, Lα, να) ∈ C(LE′

) ∧ D(LE′

),

(8)

where

RT =
[

0n×nT In
]

, µα
2=

[

µα
2,0, µ

α
2,1, . . . , µ

α
2,T

]⊤
,

Θα = (I +H(Mα + Lα)C)ΓαW,
Ψα = (H(Mα + Lα)(I − CΓαLα)− ΓαLα)V,
Ξα = (I +H(Mα + Lα)C)Φα, Υα = A− Ξα.

(9)

The matrices H , Mα, Lα, C, Γα, W , V , Φα and A, all of

which are stacked matrices for the whole time horizon T , are

derived after stacking the system in (1), estimator in (4) and

the output error injection term in (5). The definitions of these

matrices can be found in the Appendix.

Proof. The estimator design follows similar steps to the design

in [15]. It is straightforward to observe that the estimator

solves Problem 1 by construction with the additional con-

straints on the estimator gains in Section III-B. �

When compared to our prior work [15], we consider a

prefix-based design that enables adaptation of the gain matri-

ces and improved estimation error bounds based on observed

prefix, i.e., the history of available data, at run time. It is also

noteworthy that in contrast to existing equalized recovery esti-

mators [14], [15], [16], [17], the proposed estimator considers

µ1 as a decision variable, instead of a given parameter. This

seemingly small change has an important implication that the

difficulty in finding the global minimum for µ2 with previous

designs (due to their non-monotonicity in µ1) can now be

overcome with the new design.

2) Robustification: Next, since the problem in Theorem 1

involves semi-infinite constraints (i.e., for all constraints), as

in [15], we leverage robust optimization tools, e.g., [18], to

obtain a problem with a finite number of constraints:

Proposition 1 (Robustified Equalized Recovery Estimator

Design with Delays). The equalized estimator design that

solves Problem 1 via Theorem 1 is equivalent to:



min
Mα,να,µα

2 ,µ1,s0,L
α,Πα

1 ,Πα

2

J(µ1, {µ
α
2 }

|LE
′

|
α=1 )

subject to Πα
1 ≥ 0,Πα

2 ≥ 0,Πα
3 ≥ 0, µα

2 ≥ µ1, µ1 ≥ 0,

[

Πα
1 Πα

2 Πα
3

]





ηw1
ηv1
1



≤





µα
2

µα
2

µ11



−







I 0
−I 0
0 I
0 −I







[

Hνα+Υαs0
RT (Hνα+Υαs0)

]

,

[

Πα
1 Πα

2 Πα
3

]















I 0 0
−I 0 0
0 I 0
0 −I 0
0 0 I
0 0 −I















=







I 0
−I 0
0 I
0 −I







[

Gα

RTG
α

]





I 0 0
0 I 0
0 0 µ11



,

(Mα, Lα, να) ∈ C(LE′

) ∧ D(LE′

), (10)

where Gα ,
[

Θα Ψα Ξα
]

with Θα, Ψα, Ξα, ∀α ∈ N
|LE

′

|
1

defined in (9), while Πα
1 , Πα

2 , Πα
3 are dual matrix variables.

Proof. By replacing the semi-infinite constraints in (8) with

their robust counterparts based on [18], we obtain a similar

problem as in [15, Eq. (11)]. However, since µ1 is a decision

variable in our problem (instead of a parameter as in [15]), we

have a bilinear term in the first equality that is a product of

dual variables Π̃α
3 with µ1. To overcome this issue, we post-

multiply the second equation on both sides with





I 0 0
0 I 0
0 0 µ11



,

which results in the appearance of the same bilinear term.

Then, since the original Π̃α
3 no longer appears independently, a

common trick is to replace µ1Π̃
α
3 with a new decision variable

Πα
3 that is positive since µ1 ≥ 0. �

The above optimization problem has bilinear terms but is

relatively sparse, so off-the-shelf solvers, e.g., [19], can find

optimal solutions quickly. Further, if desired, we can fix Lα

and s0 to perform a line search over µ1 using a linear program

without loss of optimality, as discussed in [15, Section IV-C].

3) Implementation Strategy: The proposed equalized recov-

ery estimator in this paper could be implemented in multiple

different ways. First, in the case that the delayed/missing data

pattern is periodic with a period of T time steps, we can

use the same gains for each period because the estimation

error bound at the end of the period is enforced to be the

same at the beginning of the period by the proposed estimator.

Moreover, if there is no missing/delayed data, we could use an

equalized performance estimator, i.e., an equalized recovery

estimator with a period of 1 time step (cf. [13]) until a

missing/delayed data is encountered, at which point we can

switch to an equalized recovery estimator with a T -length

language in which the first data is missing/delayed. Then, after

the recovery time T , we revert to the equalized performance

estimator again until the next time a delayed data is detected.

Further, if the initial estimation error does not satisfy the

equalized recovery/performance level, the proposed estimator

can also be combined with any asymptotic estimator, where

the latter is used until the desired equalized level is achieved.

Alternatively, we can modify our estimator by replacing µ1 in

the second constraint in (10) with the initial estimation error

and repeating the process, as needed, to achieve this.

IV. EXAMPLES AND COMPARISONS

In this section, the performance of the proposed estimator

is validated and compared with the approaches in [9] and

(a) Proposed Estimator. (b) Estimator from [9].

Fig. 1: Estimator comparison for Wsim = 21210.

[16]. The examples using our proposed estimator are all run

using MATLAB 2017a. As the robustified problem in (10)

involves many sparse matrices, the IPOPT solver [19] is used.

Moreover, in [15], it was established that the value of s0 in

(10) does not affect the performance of the estimator. So,

to simplify the problem of the estimator design, all of the

parameters of s0 are set to zero in all the presented examples.

A. Batch Reactor Process (Comparison with [9])

To demonstrate the capability of the proposed estimator

proposed in this paper in comparison with [9] when output

delays are involved, we utilize an example of a continuous-

time batch reactor process from [20]. This system is first

discretized with a sampling time of Ts = 0.05 seconds using

MATLAB c2d command (with zero-order hold) to obtain a

discrete-time state-space system with the following matrices:

A=







1.0795 −0.0045 0.2896 −0.2367
−0.0272 0.8101 −0.0032 0.0323
0.0447 0.1886 0.7317 0.2354
0.0010 0.1888 0.0545 0.9115






, B=







0.0006−0.0239
0.2567 0.0002
0.0837−0.1346
0.0837−0.0046






,

C=

[

1 0 1 −1
0 1 0 0

]

, V = Ip,W = ∅.

The time horizon is taken to be T = 5 with maximum possi-

ble delay of 2 steps. This results in the delayed data model that

can be expressed as the fixed-length language containing 35

words, i.e. L = {W1, . . . ,W243}. For the proposed estimator,

according to Definitions 2–4, we can find the corresponding

event-based language LE as well as the reduced language

LE′

. The measurement noise bound ηv = 0.05 is chosen

to cover 5 standard deviations of v ∼ N (0, 0.012), and by

solving the robustified problem (10) with the cost function

J(·) = µ1 +
∑T

k=0

∑|LE
′

|
α=1 µα

2,k, we obtain recovery levels of

µ1 = 0.33 and maxk,α(µ
α
2,k) = 0.6912.

To compare the performance of our proposed design with

the Kalman filter based estimator design for systems with

delayed data in [9], we let x(0) = [1, 1, 1, 1]⊤ and the true

delay pattern be Wsim = 21210. For the simulation, we ran-

domly generated the initial state error and noise signals from

truncated normal distributions with zero means and covariance

matrices P0 = (µ1/5)
2I4, Q = ∅ and R = (ηv/5)

2I2, where

the initial error and noise bounds, µ1, ηv , represent 5 times

their standard deviations. Figure 1 shows the results of 50 runs,

where the estimation errors using the proposed estimator stay

within the guaranteed bounds, as desired, and are much less

than the estimation errors from [9], which are not within the

bounds, as one may expect.

B. Adaptive Cruise Control (Comparison with [16])

In the previous example, we showcased the capability of

the proposed observer in the case of delay scenarios. Since



(a) Proposed estimator. (b) Estimator in [16].

Fig. 2: Estimator comparison for missing data at k = 1.

missing data is basically a special case of delays beyond the

finite time horizon, we also compare the proposed observer

for the missing data scenario with another missing data (only)

estimator in [16]. We use the same example presented in [16]

of an adaptive cruise control, with the time horizon of T = 6
and for the sake of comparison, the equalized recovery level

µ1 = 1 is specified instead of letting it be a decision variable1.

The equivalent language to the one in [16] is used, i.e.,

L = {060000, 006000, 000600, 000060}. After running the

optimization problem, the maximum value of the intermediate

upper bound obtained is µ2 , maxk,α µα
2,k = 1.1498, which

is the same value obtained in [16]. Contrary to [16], the value

of µ2, being time-varying in our approach, is not always at

its maximum, hence guaranteeing less error even during the

intermediate phase. In our simulation, the true missing data

pattern is Wsim = {060000} that corresponds to missing data

at k = 1, and we compared the result with those in [16]. A

comparison of both the estimators is depicted in Figure 2 that

shows that the proposed estimator performs better than the

estimator in [16] for the missing data scenario.

V. CONCLUSIONS

In this paper, we focused on the problem of synthesizing

a dynamic state observer that has the ability to achieve

equalized recovery when a discrete-time linear time-varying

system is subjected to delayed or missing data in a finite time

horizon. To achieve this, we constructed a reduced event-based

language capable of capturing the set of indistinguishable

event sequences that different delay mode sequences in the de-

layed data language correspond to, and augmented associated

constraints to a novel equalized recovery estimator constructed

with time-varying intermediate levels and the recovery level as

a decision variable. When compared to existing designs, our

proposed estimator can adapt the estimator gains at run time

based on observed prefix of the language and can directly

optimize the recovery and intermediate levels, leading to

improved estimation performance.
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APPENDIX

Matrices and vectors in Theorem 1 are defined as follows:

W=





W0 · · · 0
..
.

. . .
..
.

0 · · · WT−1



 , V =





V0 · · · 0
..
.

. . .
..
.

0 · · · VT−1



 ,

A=









In
A1

0...

AT
0









, C=









C0 0 · · · 0 0

0 C1

. . .
...

...
..
.

. . .
. . . 0 0

0 · · · 0 CT−1 0









,H=













0 0 0 · · · 0
A1

1 0 0 · · · 0

A2
1 A2

2 0 · · ·
.
..

...
...

. . .
. . . 0

AT
1 AT

2 AT
3 · · · AT

T













,

M
α=









Mα
(0,0) 0 · · · 0

Mα
(1,0) Mα

(1,1)

. . .
...

...
...

. . . 0
Mα

(T−1,0) M
α
(T−1,1) · · · M

α
(T−1,T−1)









,Φα=









In
Φα,1

0...

Φα,T
0









,

L
α=









Lα
0 0 · · · 0

0 Lα
1

. . .
...

..

.
. . .

. . . 0
0 · · · 0 Lα

T−1









,Γα=













0 0 0 · · · 0
Φα,1

1 0 0 · · · 0

Φα,2
1 Φα,2

2 0 · · ·
.
..

...
...

. . .
. . . 0

Φα,T
1 Φα,T

2 Φα,T
3 · · · Φα,T

T













,

for all α ∈ N
|LE

′

|
1 , where Ak

i = Ak−1Ak−2...Ai, Φα,k
i =

Φα
k−1Φ

α
k−2...Φ

α
i and Φα

k = Ak − Lα
kCk.
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