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Herding an Adversarial Swarm in Three-dimensional Spaces

Weifan Zhang, Vishnu S. Chipade and Dimitra Panagou

Abstract— This paper presents a defense approach
to safeguard a protected area against an attack by
a swarm of adversarial agents in three-dimensional
(3D) space. We extend our 2D ‘StringNet Herding’
approach, in which a closed formation of string-
barriers is established around the adversarial swarm
to confine their motion and herd them to a safe
area, to 3D spaces by introducing 3D-StringNet. 3D-
StringNet is a closed 3D formation of triangular net-
like barriers. We provide a systematic approach to
generate three types of 3D formations that are used
in the 3D herding process and modifications to the
finite-time convergent control laws developed in our
earlier work. Furthermore, for given initial positions
of the defenders, we provide conditions on the initial
positions of the attackers for which the defenders
are guaranteed to gather as a specified formation at
a position on the shortest path of the attackers to
the protected area before attackers reach there. The
approach is investigated in simulations.

I. Introduction

A swarm of multiple robots can in principle perform
certain tasks more effectively than one individual robot
[1]. However, the fast advancement of swarm technology
raises concerns with respect to safety. For instance,
autonomous robots in the proximity of protected area
(e.g., safety-critical infrastructure) may in some cases be
considered as a threat (e.g., aerial robots close to airports
or stadiums). In our prior work [2], [3], we developed
a method called ’StringNet Herding’ in which a group
of defending agents (defenders) herds the adversarial
swarm away from the protected area by enclosing it in a
closed formation of string-like barriers, called StringNet.
We assumed that the agents of the adversarial swarm
(attackers) are risk-averse and tend to move away from
the 2D StringNet formation formed by defending agents,
and that the motion of all the agents is constrained to
a plane of a fixed altitude. However, in practice, the
motion of an attacking aerial swarm does not have to be
restricted to a plane. Therefore, in this paper, we extend
the StringNet approach to 3D environments.

1) Related work: Earlier methods in the literature,
namely: n-wavefront herding [4], potential field approach
[5], potential cage approach [6], switched system ap-
proach [7] that are cited in [3] also provide extensions to
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3D environments or some hint to extend the presented
2D laws to 3D environments. However, the 3D extensions
are limiting due to: 1) dependence on knowing the model
of the attackers’ motion, 2) lack of modeling of the
attackers’ intent to reach or attack a certain protected
area, 3) simplified motion and environment models.

In [8], a group of aerial robots tows a capture net to
herd a maneuvering UAV in a 3D environment. It is
proved that the 3D team is able to capture its target
in a finite time. However, the capture net is an open
surface in 3D space, so the target UAV still has a chance
to escape during the herding process.

2) Overview: In this paper, we build on the 2D
StringNet herding approach [3] under the similar as-
sumption of risk-averse adversarial attackers, i.e., at-
tackers that adjust their course to avoid obstacles. We
propose an approach for 3D-StringNet herding, where
3D-StringNet is a formation of expandable, triangular
net-like barriers formed by a group of defenders (Fig. 1).
Similar to 2D-Stringnet herding, 3D-StringNet herding
also consists of four phases: 1) gathering, 2) seeking,
3) enclosing and 4) herding. We design three 3D for-
mations of the defenders namely planar, hemispherical
and spherical that are required to be achieved in the
phases discussed above in order to effectively enclose the
attackers and herd them to a safe area. The control laws
designed in [3] are extended to 3D spaces by considering
3D rigid body dynamics. The ‘3D-StringNet Herding’
thus addresses the aforementioned issues similar to its
2D equivalent. We also provide conditions on the initial
positions of the attackers for which the defenders are
able to achieve a specified formation at a point on the
expected path (shortest path to the protected area) of
the attackers before the attackers could reach that point.
We provide a convex optimization formulation to quickly
find these conditions for a given direction from which the
attackers are approaching.

In summary, the design of three 3D formations, appro-
priate modifications to the 2D herding control laws [3],
and the conditions on the initial positions of the attackers
for defenders’ guaranteed gathering are the main contri-
butions of this paper compared to our previous work.

3) Structure of the paper: Section II describes the
mathematical modeling and the problems studied. The
details of the 3D herding formations are discussed in
Section III, while the modifications to the 2D herding
approach are provided in Section IV. Conditions on the
attackers’ initial positions for guaranteed gathering are
provided in Section V. Simulation results and conclusions
are reported in Section VI and VII.
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II. Modeling and Problem Statement

Notation: Euclidean norm is denoted by ‖·‖. Absolute
value is denoted by |·|. Bρ(rc) = {r ∈ R3| ‖r− rc‖ ≤ ρ}
denotes a ball of radius ρ > 0 centered at the point
rc ∈ R3. A saturation function Ωū : R2 → R2 is defined
as: Ωū(g) = min(‖g‖ , ū) g

‖g‖ . We use characters g, s,
e, h as subscripts or superscripts to denote gathering,
seeking, enclosing and herding phase, respectively. Char-
acters sb, sn used as subscripts denote string barrier and
StringNet, respectively. Characters op, cl used as super-
script denote open and closed, respectively. Similarly,
characters sp, hs, pl used as subscript or superscript
denote spherical, hemispherical and planar, respectively.

There are Na attackers denoted as Ai, i ∈ Ia =
{1, 2, ..., Na} and Nd defenders denoted as Dj , j ∈ Id =
{1, 2, ..., Nd}. The protected area P ⊂ R

3 is defined as
P = {r ∈ R3 | ‖r− rp‖ ≤ ρp}, and the safe area S ⊂ R3

is defined as S = {r ∈ R3 | ‖r− rs‖ ≤ ρs}, where (rp, ρp)
and (rs, ρs) are the centers and radii of the corresponding
areas, respectively. The agents Ai and Dj are modeled as
spheres of radii ρa and ρd ≤ ρa, respectively and move
under double integrator (DI) dynamics with quadratic
drag:

ṙai = vai, v̇ai = uai − CD ‖vai‖vai; (1a)

ṙdj = vdj, v̇dj = udj − CD ‖vdj‖vdj ; (1b)

‖uai‖ ≤ ūa, ‖udj‖ ≤ ūd; (1c)

where CD > 0 is the known, constant drag coefficient;
rai = [xai yai zai]

T ∈ R
3 and rdj = [xdj ydj, zdj]T ∈

R3 are the position vectors of Ai and Dj , respectively;
vai = [vxai

vyai
vzai

]T ∈ R3, vdj = [vxdj
vydj

vzdj
]T ∈

R
3 are the velocity vectors, respectively, and uai =

[uxai
uyai

uzai
]T ∈ R3, udj = [uxdj

uydj
uzdj

]T ∈ R3

are the accelerations (the control inputs), respectively.
This model poses an inherent speed bound on each agent
with limited acceleration control, i.e., vai = ‖vai‖ < v̄a =
√

ūa

Cd
and vdj = ‖vdj‖ < v̄d =

√

ūd

Cd
. The defenders are

assumed to be faster than the attackers, i.e., ūa < ūd

(equivalently v̄a < v̄d). We also assume the following
about the information available to the agents.

Assumption 1: The defenders have access to the po-
sition rai and velocity vai of the attacker Ai that lies
inside a circular sensing zone Zd = {r ∈ R3| ‖r− rpa‖ ≤
̺d} for all i ∈ Ia, where ̺d > 0 is the radius of the
defenders’ sensing zone. Every attacker Ai has a local
sensing zone Zai = {r ∈ R3 | ‖r− rai‖ ≤ ̺ai}, where
̺ai > 0 is the radius of the attacker Ai’s sensing zone.

Attackers aim to reach the protected area P while the
defenders aim to herd the attackers to the safe area S
before the attackers reach the protected area. Attackers
are assumed to stay within a circular connectivity re-
gion of radius ρac around the attackers’ center of mass.
To demonstrate the proposed 3D herding approach, we
model the motion of the attackers using a leader-follower
control strategy [9] that uses potential functions, which
however is not known to the defenders. We consider the
following problems in this paper.

Problem 1: Design 3D formations of the defenders
with minimum number of defenders to enclose the at-
tackers and to herd them to S.

Problem 2: Given the initial positions of the defend-
ers rdj(0), for all j ∈ Id, provide conditions on the initial
positions rai(0), for all i ∈ Ia, of the attackers for which
the defenders are able to gather as a specified formation
centered at a point on the expected path of the attackers
before any attacker reaches the center of the formation.

III. 3D-StringNet and 3D Formations

In this section, we formally define 3D-StringNet and
provide a systematic approach to obtain formations of
the defenders to generate 3D-StringNets.

Definition 1 (3D-StringNet): The StringNet Gsn =
(Vsn, Esn,Fsn) is a graph consisting of: 1) the de-
fenders as the vertices, Vsn = {D1,D2, ...,DNd

}; 2) a
set of edges, Esn = {(Dj ,Dj′) ∈ Vsn × Vsn|Dj

s←→
Dj′}, where

s←→ denotes an impenetrable and ex-
tendable string-barrier between the defenders; 3) a
set of triangular, expandable, net-like barrier faces,
Fsn = {(Dj ,Dj′ ,Dj′′ )|Dj ,Dj′ ,Dj′′ ∈ Vsn, (Dj ,Dj′) ∈
Esn, (Dj ,Dj′′) ∈ Esn, (Dj′ ,Dj′′ ) ∈ Esn}. The union of
the set of faces is a single component, orientable triangle
mesh with zero genus, i.e., no holes (Fig. 1).

A 3D-StringNet is called closed-3D-StringNet when
the union of the face set is a closed manifold and we
denote the underlying graph as Gcl

sn = (Vcl
sn, Ecl

sn,Fcl
sn)

otherwise it is called as open-3D-StringNet and the graph
is denoted as Gop

sn = (Vop
sn, Eop

sn,Fop
sn). For example, these

Fig. 1: 3D StringNet Formation

triangular net-like barriers can look similar to the ones
found in [10]. We assume that the effect of the triangu-
lar net-like barriers on the dynamics of the vehicles is
negligible. In practice these triangular net-like barriers
can only have finite size. So, we consider the following
practical constraints on the edges and the faces in a 3D-
StringNet.

Condition 1 (Practical Constraint on 3D-StringNet):
A 3D-StringNet Gsn should satisfy: ∀(Dj ,Dk) ∈
Esn, Rjk = ||rdj − rdk|| < R̄sb, where R̄sb is the
maximum length any edge in Esn can have.
Condition 1 implies that ∀(Dj ,Dk,Dl) ∈ Fsn, As

jkl ≤√
3

4 (R̄sb)2, where As
jkl represents the area of triangular

barrier face that is formed by defenders Dj , Dk, and



Dl. In the next two subsections, we design three 3D
formations for the 3D-StringNet that satisfy Condition 1
with the minimum number of defenders required to herd
a given a swarm of attackers.

Fig. 2: Spherical, hemispherical, and planar formation

A. Optimal 3D formation for 3D-StringNet Herding

We want to design a closed 3D-StringNet formation
that encloses the connectivity region of the attackers.
Since a triangular mesh generated by connecting uni-
formly distributed points on a sphere contains the largest
spatial volume with a given number of points, we choose
the locations of the defenders by uniformly distributing
them on a sphere.

The uniform distribution of the defenders on a spher-
ical surface is generated as a solution to the problem
of finding the minimum electrostatic potential energy
configuration of N electrons constrained on the surface
of the unit sphere [11] (Thompson problem). Let pi =
[θi, φi]

T denote the spherical coordinates of ith-electron
on the sphere of radius ρsn. The electrostatic potential
energy ΦC of Nd electrons is expressed as:

ΦC =
∑Nd

i=1

∑Nd

j 6=i
1

ρsn

√
2(1−Λ(φij ,θi,θj))

, (2)

where Λ(φij , θi, θj) = C(∆φij)S(θi)S(θj) + C(θi)C(θj),
S(θ) = sin(θ), C(θ) = cos(θ), and ∆φij = φi − φj .
ρsn is the radius of the sphere on which the defenders
are distributed. Denote p = [p1, p2, ..., pNd

]T . Then, the
problem of finding an uniform distribution of electrons is
formulated as an unconstrained optimization problem:

p∗ = arg minp ΦC (3)

We use gradient flow to find p∗. Starting with some
initial locations, the motion of the electrons under gra-
dient flow is governed by: ṗ = −∇ΦC . We choose
the optimal locations of the electrons in the uniform
distribution from (3) as the desired locations ξs0

l =
ρsn[sin(θ∗

l ) cos(φ∗
l ), sin(θ∗

l ) sin(φ∗
l ), cos(θ∗

l )]T ∈ R3, for
l ∈ Id, for the defenders to obtain a closed-3D-StringNet
Gcl

sn. Let F rel
sp (ρsn, Nd) denote the formation of Nd de-

fenders uniformly distributed on the sphere of radius ρsn

centered at the origin and characterized by ξ
sp0

l , for all
l ∈ Id (see for example F rel

sp (60, 20) shown in Fig. 2).
We choose ρsn such that even if all the triangular

net-like barriers have sides with length R̄sb, the vol-
ume enclosed by the formation F rel

sp (ρsn, Nd) contains a

sphere of radius ρac. This requires ρsn ≥
√

ρ2
ac + (R̄sb)2

3 .

Additionally, we require ρsn ≥ ρac + bd where bd is the
tracking error [3]. Due to practical limit of R̄sb on the
edge length, to obtain a formation with minimal number
of defenders, ρsn should be equal to its minimal value so

we choose ρsn = ρ
sn

= max{
√

ρ2
ac + (R̄sb)2

3 , ρac + bd}.
Given the radius of formation ρsn = ρ

sn
, we want

to find the minimum number of defenders on the for-
mation F rel

sp (ρsn, Nd) that satisfy the practical con-
straints on the maximum edge length on the under-
lying closed-3D-StringNet (Condition 1). This requires
maximum edge length Rmax

sb = max(j,k)∈Ecl
sn

∥

∥ξs0

j − ξs0

k

∥

∥

on F rel
sp (ρsn, Nd) be smaller than R̄sb. In Fig. 3, the

black curve shows the values of Rmax
sb for different values

of Nd by numerically evaluating uniform formations
F rel

sp (ρsn, Nd) for the given values of Nd. As observed,
finding an explicit function that maps Nd to Rmax

sb on
F rel

sp (ρsn, Nd) is extremely difficult. The reason is that
unlike circular formation, the symmetry is relatively rare
in three-dimensional spherical formation. To remedy this,
we compute the minimum Nd by numerically enumer-
ating the formations by using the steps Algorithm 1.

Algorithm 1: Minimum number of defenders Nd

1 Initialize Nd = Nd0

2 Find the distribution F rel
sp (ρsn, Nd) and Rmax

sb

3 if Rmax
sb does not satisfy Condition 1 then

4 Set Nd = Nd + 1 and repeat step 2 to 3

5 return Nd

Given the uncertain dependence of maximum edge length
on Nd, one may be tempted to use minimum choice of
Nd0 = 4 as an initial guess. However, this may require
longer time to determine the best Nd for larger ρsn. In
Fig. 3, the red curve shows the average edge length Rav

sb

on F rel
sp . We notice that the average length of edges Rav

sb

can be well fitted by a function fN (Nd):

fN(Nd) =

√

2(1−2 cos(
πNd

3Nd−6
))

(1−cos(
πNd

3Nd−6
))

, (4)

shown as the blue curve in Fig. 3. We have that the
maximum length Rmax

sb satisfies: fN (Nd) < Rrel =

Rmax
sb ρsn. So we can safely choose Nd0 = f−1

N ( R̄sb

ρsn
) as

the initial guess to the iterative scheme mentioned earlier
to find minimum Nd satisfying Condition 1. By doing
so, we start closer to the desired minimum value of
Nd and the computational time to find this Nd can be
greatly reduced, as shown in Fig. 4, where ∆N represents
number iterations required to find minimum Nd.

Fig. 3: Relative edge lengths in the spherical formation



Fig. 4: Number of iterations comparison

In practice, since the number of defenders is finite, the
data of Rrel =

Rmax
sb

ρsn
for different values of Nd can be pre-

calculated. Then the problem of finding the minimum
Nd simply reduces to a linear search over the stored
information which can be significantly faster compared
to Algorithm 1.

B. Intermediate 3D-StringNet Formations

Following the similar idea as in our 2D herding ap-
proach [3], the defenders enclose the attackers via the
closed-3D-StringNet, which is realized through a se-
quence of intermediate 3D-StringNet formations. We de-
sign two open-3D-StringNet formations for this purpose:
1) open-3D-StringNet Gop

sn with hemispherical formation
F rel

hs , and 2) open-3D-StringNet Gop
sn with planar for-

mation F rel
pl . These formations are obtained by trans-

forming the uniform spherical formation F rel
sp by using

mappings that satisfy the Condition 1. These mappings
are discussed in the following subsections.

1) Mapping between hemispherical and spherical for-
mation: Let r

sp
l = [ρsn, θ

sp
l , φ

sp
l ]T = [ρsn, p∗

l ]T ∈
Ss , [0,∞) × [0, π] × [−π, π] denote the lth desired
position in F rel

sp in the spherical coordinates and rhs
l =

[ρsn, θhs
l , φhs

l ]T ∈ Sh , [0,∞)×[0, π]×[−π
2 , π

2 ] denote the
lth desired position in F rel

hs in the spherical coordinates.
We consider the mapping mhs

sp : Ssp → Shs given by:

rhs
l = mhs

sp(rsp
l ) = [ρsn, θ

sp
l , 0.5φ

sp
l ]

T
. (5)

By mapping mhs
sp , the spherical formation is cut by the

half plane φ = ±π and then two sides of the cut rotate
towards the plane φ = ±π

2 yielding a hemispherical shell
like formation (Fig. 2).

We claim that all the edges in Gop
sn on the hemi-

spherical formation F rel
hs obtained through the map-

ping mhs
sp satisfy the Condition 1. To see why, con-

sider the length of the edge (rhs
i , rhs

j ) ∈ Eop
sn:

Lhs
ij = ρsn

√

2− 2Λ(∆φhs
ij , θhs

i , θhs
j ). Similarly, the

length of the edge (rsp
i , r

sp
j ) ∈ Ecl

sn: L
sp
ij =

ρsn

√

2− 2Λ(∆φ
sp
ij , θ

sp
i , θ

sp
j ). The only difference between

L
sp
ij and Lhs

ij is that ∆φhs
ij = 1

2 ∆φ
sp
ij and it is easy

to see that Lhs
ij ≤ L

sp
ij . These desired positions rhs

l

are represented in Cartesian coordinates by ξhs0

l =
ρsn[sin(θhs

l ) cos(φhs
l ), sin(θhs

l ) sin(φhs
l ), cos(θhs

l )]T ∈ R3,
for all l ∈ Id.

2) Mapping between planar and hemispherical forma-
tion: For a given constraint on the edge length, a planar

formation will create a larger blockage in the path of the
attackers as compared to the hemispherical one. There-
fore, an open-3D-StringNet Gop

sn with planar formation
F rel

pl is chosen as the desired formation to be achieved
at the end of the gathering phase.

The planar formation F rel
pl is obtained from F rel

hs . To

ease out the mathematics, F rel
hs is first rotated about

the cartesian y-axis by 90◦ to obtain a rotated formation
F rel

hs′ (Fig. 2). Let rhs′

l = [ρsn, θhs′

l , φhs′

l ]T ∈ Shs′ =
[0,∞)×[0, π

2 ]×[0, 2π) be the position corresponding to rh
l

after the aforementioned rotation. Let r
pl
l = [ρpl

l , φ
pl
l ]T ∈

Cpl , [0,∞) × [0, 2π) be the lth desired position in the

planar formation F rel
pl . We consider a mapping m

pl
hs′ :

Shs′ → Cpl given by

r
pl
l = m

pl
hs′(r

hs′

l ) = [kplρsn sin(θhs′

j ), φhs′

j ]T , (6)

where kpl is a constant scaling factor. The lengths of the
edges in Gop

sn corresponding to the formations F rel
hs′ and

F rel
pl denoted as Lhs′

ij and L
pl
ij , respectively, are given by

Lhs′

ij = ρsn

√

2− 2Λ(∆φhs′

ij , θhs′

i , θhs′

j ),

L
pl
ij =

√

(ρpl
i )2 + (ρpl

j )2 − 2(ρpl
i )(ρpl

j )C(∆φij)

≤ kplρsn

√

2− 2Λ(∆φhs′

ij , θhs′

i , θhs′

j ) = kplL
hs′

ij .

(7)

We have the following result.
Lemma 1: If 0 < kpl ≤ R̄sb

Rmax
hs

, then Gop
sn with planar

formation F rel
pl satisfies Condition 1, where Rmax

hs =

max(j,k)∈Eop
sn

∥

∥

∥
rhs′

j − rhs′

k

∥

∥

∥
is the length of the longest

edge on the hemispherical formation. Furthermore, we
have R̄sb

Rmax
hs

= R̄sb

Rmax
sb

Rmax
sb

Rmax
hs

> 1.

Lemma 1 implies that, by choosing kpl > 1, the mapping

m
pl
hs′ is able to generate a circular planar formation

F rel
pl with radius ρsn,pl > ρsn that satisfies Condition 1.

These desired positions r
pl
l are represented in Cartesian

coordinate system by ξ
pl0

l = ρ
pl
l [cos(φpl

l ), sin(φpl
l ), 0]T ∈

R3, for all l ∈ Id. We call the local body-fixed z-axis as
the orientation vector of the formation F rel

pl .

IV. Modifications to 2D StringNet Herding

The defenders follow the same overall structure of
the 2D-StringNet herding [3], while utilizing the 3D-
StringNet formations generated in the previous section
and with appropriate modifications to the corresponding
parts from the 2D approach. Thus, the 3D StringNet
herding consists of four phases [3]: 1) Gathering and
forming a planar formation. 2) Seeking the attackers
while maintaining the planar formation. 3) Enclosing the
attackers by forming a spherical formation around them.
4) Herding the enclosed attackers to S. These phases are
discussed in the following subsections.

1) Gathering: In the gathering phase, the defenders
first converge to the planar formation F

g
pl centered at

the gathering center rdfg on the expected path of the
attackers (shortest path to the protected area). Let us
define a mathematical object T R to define formations
obtained by translating and rotating a given formation



F . We obtain F
g
pl by translating the formation F rel

pl

to rdfg and rotating by R(qac), where R(qac) is the
rotation matrix corresponding to the orientation rep-
resented by the quaternion qac, where qac denotes the
orientation when body z-axis points toward the attack-
ers’ center rac. We denote this transformation by F

g
pl =

T R(rdfg , qac)F rel
pl . In particular, the formation F

g
pl,

with underlying graph Gop
sn, is characterized by positions

ξ
g

a(j) = rdfg + R(qac)ξp0

a(j) for all j ∈ Id. The gathering

center rdfg of the gathering formation F
g
pl is obtained

by solving a mixed integer quadratic program (MIQP)
iteratively [3]. The defender Dj converges to its assigned
desired (goal) position ξ

g

a(j) on F
g
pl, where a : Id → Id is

the defender-goal assignment obtained from the MIQP
[3]. After the defenders arrive at their desired positions,
they establish nets with the neighboring defenders as per
Fop

sn . Then, the defending swarm enters the seeking phase
which is discussed next.

2) Seeking: In practice, the attackers may deviate
from their optimal trajectories computed during the
gathering phase, which requires defenders to come closer
to the attackers in order to enclose them. In the seek-
ing phase, we consider the desired formation F s

pl =

T R(rdfs , qdfs)F rel
pl of the defenders as a virtual rigid

body with center of mass at rdfs , where qdfs =
[q1, q2, q3, q4]T = [q̃T

dfs , q4]T is the quaternion that rep-
resents the orientation of the formation F s

pl. The virtual
body’s translational motion is governed by the same
dynamics as in (1b) and the rotational dynamics are
governed by Euler equations and quaternion kinematics:

˙̃qdfs = 0.5(ωdfsq̃dfs + q4ωdfs), q̇4 = 0.5ωT
dfsq̃dfs ;

ω̇dfs = urot
dfs ,

(8)
where ωdfs = [ωx, ωy, ωz]T is the angular velocity of the
rigid body resolved in body-fixed frame. To ensure that
the desired formation gets closer to the attackers and
the orientation of the formation faces the attackers, we
apply the following translational and rotational feedback
accelerations to the virtual rigid body [12]:

utrans
dfs = Ωūtrans

dfs
(−k1(rdfs − rac)) , (9a)

urot
dfs = Ωūrot

dfs
(−Dωdfs −Kqe) (9b)

where ūtrans
dfs and ūrot

dfs are saturation limits; k1, K and
D are gain matrix which are diagonal matrices with non-
negative scalars [12]. The quaternion qdes represents the
desired orientation where the local z-axis points toward
the center of attackers rac. qe = Q(qdes)qdfs is the
attitude error between the current quaternion and qdes.
The initial quaternion is qdfs(0) = qac and the initial
angular velocity is ω = [0, 0, 0]T .

The desired position ξs
l = rdfs +R(qdfs )ξpl0

l , for l ∈ Id,
on the desired formation F s

pl satisfies:

ξ̇s
l =ηs

l = ṙdfs + ωdfs × ξ
pl0

l ,

η̇s
l =utrans

dfs − Cd ‖vdfs‖vdfs + ω̇dfs × ξ
pl0

l

+ ωdfs × (ωdfs × ξ
pl0

l ).

The defenders Dj track their assigned desired position

ξs
a(j) using the 3D extension of the 2D finite-time con-

vergent controllers as in [3]. Seeking is completed when
‖rdfs − rac‖ < ǫ1 and qe < ǫ2, where ǫ1 > 0 and ǫ2 > 0
are user defined small thresholds.

3) Enclosing: After the defenders come close to the
attackers as an open-3D-StringNet with F s

pl at the
end of seeking, the enclosing phase is initiated. In the
enclosing phase, defenders aim to enclose the attack-
ers in the closed-3D-StringNet with formation F e

sp =
T R(rac, qdfe )F rel

sp , where qdfe is the quaternion at the
end of the seeking phase. Starting from the planar for-
mation Fs

p , the defenders first achieve an open-StringNet
with hemispherical formation F e

hs = T R(rac, qdfe)F rel
hs ,

and then the closed-3D-StringNet with formation F e
sp.

The reason to choose an intermediate open-3D-StringNet
formation F e

hs is to avoid that the defenders unneces-
sarily come close to each other while converging to F e

sp

allowing the attackers to disperse. The control actions
for the defenders to track their desired positions on the
respective formations during this phase can be obtained
from [3]. The desired formation F e

hs is switched to F e
sp

when the defenders come within a distance of bd from
their desired positions on F e

hs. The closed-3D-StringNet
is achieved when all defenders converge to their desired

locations, i.e.,
∥

∥

∥
rdj − ξe

a(j)

∥

∥

∥
< bd for all j ∈ Id, where bd

is the tracking error incurred due to the unknown but
bounded acceleration terms ξ̈a(j) [3].

4) Herding: Once the defenders form the closed-3D-
StringNet around the attackers, they move towards the
safe area while tracking a rigid spherical formation Fh

sp =
T R(rdfh , qdfh)F rel

sp centered at a virtual agent rdfh ,
where qdfh is equal to qdfe at the start of the herding
phase. The virtual agent moves towards the safe area S
as discussed in [3] and the defenders use the finite-time,
bounded tracking controllers similar to that in [3] to
track their desired positions on Fh

sp. The herding phase
ends when every enclosed attacker is successfully herded
into the safe area.

V. Dominance Region for the Defenders

The success of the defenders depends on whether they
are able to achieve the open-3D-StringNet with planar
formation F

g
pl in the expected path of the attackers,

well before the attackers reach the gathering center.
For given initial conditions of all the agents, the de-
fenders require to solve the problem of finding the best
gathering center rdfg and the corresponding defender-
goal assignment a using the iterative MIQP formulation
[3], which becomes computationally demanding as the
number of agents becomes larger. In this section, we
characterize the conditions on the initial positions of the
attackers for which the defenders are able to achieve
the formation F

g
pl(rdfg , qac) at a location rdfg on the

shortest path of the attackers to the protected area,
before the attackers can reach there. We call this set
of initial conditions of the attackers as the dominance
region for the given initial positions of the defenders.



Let Ta(ra, r, ρa) be the minimum time required by an
attacker at ra to reach within ρa distance from the point
r. Let Rd = [rd1, rd2, ..., rdNd

] denote the positions of
the defenders Dj for all j ∈ Id. Let Td(Rd, F

g
pl(r, q))

be the maximum time required by all the defenders to
achieve the gathering formation F

g
pl(r, q)) centered at r.

The dominance region is then formally defined as:
Definition 2 (Defenders’ Dominance Region):

Dom(Rd, ρ̄ac, ∆T
g
d ) = {r ∈ R

3|∃υ ∈ (
ρp

‖r‖ , 1 − ρ̄ac

‖r‖ ) such

that Ta(r, rdfg , ρ̄ac) − Td(Rd, F
g
pl(rdfg , qac)))) ≥ ∆T

g
d

where rdfg = υr}, where ∆T
g
d is a user-defined time to

account for the size of the attackers’ swarm and the time
required by the defenders to get connected by triangular
net-like barriers once arrived at the desired formation.

We provide the following formulation that is based
on approximation functions, and is computationally less
intensive, to find an estimate Domest of the dominance
region Dom that is completely contained inside Dom.

Consider Nd defenders and Na attackers located at
given positions as shown in Fig.5. Let the largest radius
of the attackers’ formation be ρ̄ac. Consider the protected
area located at the origin (rp = [0, 0, 0]T ). Let the
center of mass of the attackers have spherical coordinates
(Rac, φac, θac). Consider the gathering center rdfg at
(R, φac, θac). The distance of the defender Dj from the
center of the gathering formation (Fig. 5) is:

̺j =
√

R2 + R2
j − 2RRjΛ(φac − φdj , θac, θdj), (11)

where (Rj , φdj , θdj) are spherical coordinates of the de-
fender Dj ’s position for all j ∈ Id. We have the following
proposition using the approximation of maximum func-
tion as in [13].

Proposition 1: The maximum value among ̺j , j ∈ Id,

satisfies: ¯̺ = max
j∈Id

̺j ≤ ˜̺δ = δ

√

∑

j∈Id
̺δ

j and lim
δ→∞

˜̺δ = ¯̺.

Fig. 5: Abstraction for estimate of dominance region

The maximum distance any defender would have to
travel in the best defender-goal assignment can be upper
bounded by ¯̺d = ˜̺δ + ρsn,p, where ρsn,p is the radius of
the planar gathering formation F

g
pl. The maximum time

for any defender to reach the gathering location assigned

to it as per the best defender-goal assignment under time-
optimal control [14] can be upper bounded by:

T̄d(¯̺d) = 1
λ0

(

tanh−1
(

vsw

v̄d

)

+ tan−1
(

vsw

v̄d

))

, (12)

where λ0 =
√

ūdCD, vsw =
√

(λ−1)ūd

(λ+1)CD
, λ = e2CD ¯̺d .

Similarly, the minimum time that the attackers require to
reach the gathering location is when the attackers move
towards the protected with the maximum possible speed.
The difference between the time needed by the attackers
to reach the gathering center and the time required by
the defenders to reach there can be bounded from below
by:

∆T = Rac−ρ̄ac−R
v̄a

− T̄d(R) (13)

Defenders want ∆T ≥ ∆T
g
d to be able to gather well

before the attackers reach the gathering center. We are
interested in the limiting condition when ∆T = ∆T

g
d , for

which we have:

Rac = f(R) = ρ̄ac + R + v̄a(T̄d(R) + ∆T
g
d ). (14)

We want to find the smallest value Rac(> ρp) of Rac for
which ∆T = ∆T

g
d , i.e.,

Rac = minR>ρp
f(R). (15)

Lemma 2: Given that no two defenders are co-
located, i.e., ‖rdj − rdj′‖ > 0 for all j 6= j′ ∈ Id, f(R)
as given in Eq. (14) is a locally convex function of R.

Proof: Sum of two convex functions is always a
convex function [15], so it is sufficient to show that T̄d(R)
is a locally convex function to show that f(R) is a locally
convex function. Let g(R) = T̄d(¯̺d(R)). The double
derivative of g is:

∂2g
∂R2 = ∂2T̄d

∂ ¯̺2

d

(

∂ ¯̺d

∂R

)2

+ ∂T̄d

∂ ¯̺d

∂2 ¯̺d

∂R2 . (16)

We have

∂T̄d

∂ ¯̺d
=Cd

λ0

√

λ+1
λ−1 ≥ 0; (17a)

∂2T̄d

∂ ¯̺2

d

= 1
λ0

(

(2Cd)2λ

1−λ2

√

λ+1
λ−1

)

≤ 0; (17b)

∂ ¯̺d

∂R
=

∑Nd

j=1 ̺δ−2
j (˜̺δ)

1

δ
−1

(R −RΛj); (17c)

∂2 ¯̺d

∂R2 =
∑Nd

j=1 (˜̺δ)
1

δ
−1

̺δ−2
j

{

(1
δ
− 1)

(R−RΛj)
(˜̺δ)

∂ ¯̺d

∂R

1 + (δ − 2)̺−2
j (R −RΛj)2

}

, (17d)

where RΛj = RjΛ(φac − φdj , θac, θdj). Let R∗ be such
that ∂ ¯̺d

∂R
|R=R∗ = 0. We have that ̺j is a convex function

of R which implies that its ℓδ-norm, ˜̺δ, is also a convex
function [15]. This means ˜̺δ(R∗) is the minimum value
of ˜̺δ, i.e., ˜̺δ ≥ ˜̺δ(R∗). Since not all defenders are co-
located ˜̺δ(R∗) > 0 implying ˜̺δ > 0 and λ > 1. From

Eq. (17d), we have ∂2 ¯̺d

∂R2 |R=R∗ > 0. Then from Eq. (16),

we get ∂2g
∂R2 |R=R∗ > 0. We know that ̺j is a twice

continuously differentiable function of R for R > 0 and if

we choose δ ≥ 2 then we can show that both ∂ ¯̺d

∂R
and ∂2 ¯̺d

∂R2

are continuous functions of R. From Eq. (17a) and (17b),



we have that ∂T̄d

∂ ¯̺d
and ∂2T̄d

∂ ¯̺2

d

are continuous functions of

R. This implies that ∂2g
∂R2 is continuous at R = R∗.

Combining the two results that ∂2g
∂R2 is continuous and

greater than 0 at R = R∗ implies that there exists ǫ > 0

such that ∂2g
∂R2 > 0 for all R satisfying |R−R∗| < ǫ, i.e.,

g(R) is locally convex in the neighborhood of R = R∗

and so is f(R).
One can find Rac by solving the convex optimization (15)
with R = R∗, the minimizer of ˜̺δ(R), as an initial guess
to a gradient descent algorithm with sufficiently small
step size.

Given the direction from which the attackers are ap-
proaching the protected area, one can solve the problem
in (15) to assess, at least conservatively, whether the
defenders can gather in the attackers’ path before the
attackers, without solving the actual, computationally
heavy iterative MIQP formulation [3]. Figure 6 shows
the boundaries ∂Domest and ∂Dom of the estimate
Domest and the dominance region Dom, respectively.
Here ∂Domest is obtained by solving a simple quadratic
program (15) while ∂Dom is obtained by numerically
evaluating the iterative MIQP for each direction. The
regions outside of the closed boundaries ∂Domest and
∂Dom are, respectively, Domest and Dom, computed for
the case where the defenders are at given locations (blue
circles). On the other hand, the set inside the boundaries
∂Domest and ∂Dom are the complement sets Domc

est =
R3\Domest and Domc = R3\Dom, respectively. The
set Domc is essentially the dominance region of the
attackers, i.e., the attackers can reach the protected
area before the defenders can gather on their path if
the attackers start inside Domc. Note that the estimate
Domest is completely contained in the dominance region
Dom. The region Dom is larger on the side where the
density of the defenders is larger. This is intuitive because
many defenders have to travel less when the attackers
approach from this side and hence allow defenders to
gather on the expected path of the attackers in time even
if the attackers start more closer to the protected area
on this side. We have the following result.

Theorem 3: Consider a group of defenders D =
{D1,D2, ...DNdc

} starting at given locations Rd =
[rd1, rd2, ..., rdNd

] and a swarm of Attackers A with max-
imum connectivity radius ρ̄ac. The defenders in D are
guaranteed to achieve a planar formation F

g
pl, located at

a position on the shortest path from the center of mass
of the attackers in A to the protected area P , ∆T

g
d s

before the attackers reach that position, if the attackers
start inside Domest(Rd, ρ̄ac, ∆T

g
d )

Proof: By construction, Domest(Rd, ρ̄ac, ∆T
g
d ) ⊆

Dom(Rd, ρ̄ac, ∆T
g
d ). The proof follows from the defini-

tion of the dominance region Dom(Rd, ρ̄ac, ∆T
g
d ).

In other words, Theorem 3 states that for the attackers
starting in Domest(Rd, ρ̄ac, ∆T

g
d ) the defenders are guar-

anteed to gather in their shortest path to the protected
area in time. However, if the attackers do not start in
Domest(Rd, ρ̄ac, ∆T

g
d ) nothing can be concretely said

about the gathering of the defenders based on the above
approximate analysis.

VI. Simulations

In this section, 20 defending agents are deployed in
a three-dimensional obstacle-free environment and they
aim to protect the area P by herding an adversarial
swarm of 6 attackers to S. Bρac

(rac) represents the
connectivity region of attackers with radius ρac. Fig. 7a
shows that a circular planar formation is formed at the
desired position facing towards the adversarial swarm.
As observed in Fig. 7b, the planar formation gradually
transforms into the hemispherical StringNet while tuning
its attitude so that the hemispherical formation can
be formed in a good position. After the hemispheri-
cal formation is constructed, the closed-3D-StringNet
formation is quickly established and thus all of the
attackers are contained, as shown in Fig. 7c. In Fig. 7d,
the closed-3D-StringNet herds all the enclosed attackers
directly towards the safe area. All the enclosed attack-
ers are taken inside the safe area and the herding is
completed. Video of the simulation can be found at
https://tinyurl.com/yyoonbd8

VII. Conclusions

We extended our 2D StringNet herding approach to 3D
environments by defining the concept of 3D-StringNet.
We designed three types of 3D-StringNet formations
to capture and herd the attackers with the minimum
number of defenders. The closed formation is a uni-
formly distributed spherical formation that can restrict
the attackers’ motion and herd them to the safe area.
The other two formations: planar and hemispherical
formation are generated from the spherical formation
by using two carefully chosen mapping functions that
respect the conditions on the edges in the formations.
Appropriate modifications to the 2D herding control laws
are provided for it to be applicable to 3D. The simulation
shows the effectiveness of the proposed 3D-StringNet
herding approach.

Furthermore, we also provide a convex optimization
formulation to quickly determine if a group of defenders
starting at given positions can gather at a specified
formation centered at a location on the shortest path of
the attackers to the protected area before any attacker
reaches the center of the formation.

References

[1] L. Bayındır, “A review of swarm robotics tasks,” Neurocom-
puting, vol. 172, pp. 292–321, 2016.

[2] V. S. Chipade and D. Panagou, “Herding an adversarial swarm
in an obstacle environment,” in 2019 IEEE 58th Conference
on Decision and Control (CDC). IEEE, 2019, pp. 3685–3690.

[3] ——, “Multi-agent planning and control for swarm
herding in 2d obstacle environments under bounded
inputs,” (Accepted in IEEE Transactions on Robotics)
https://tinyurl.com/yy5k6943, 2020. [Online]. Available:
https://tinyurl.com/yy5k6943

[4] A. A. Paranjape, S.-J. Chung, K. Kim, and D. H. Shim,
“Robotic herding of a flock of birds using an unmanned aerial
vehicle,” IEEE Transactions on Robotics, vol. 34, no. 4, pp.
901–915, 2018.

https://drive.google.com/drive/folders/1zxMXK5tpotrSKiTkH5yUyKU7dPL1ilnF?usp=sharing
https://tinyurl.com/yy5k6943


Fig. 6: Dominance regions of the players (right: actual dominance region, left: estimate of the dominance region)

(a) Gathering phase: Planar StringNet (b) Seeking Phase: Hemispherical StringNet

(c) Enclosing Phase: Spherical StringNet (d) Complete Herding

Fig. 7: Snapshots of the paths of the agents during 3D-StringNet Herding

[5] A. Pierson and M. Schwager, “Bio-inspired non-cooperative
multi-robot herding,” in IEEE International Conference on
Robotics and Automation, 2015, pp. 1843–1849.

[6] A. Varava, K. Hang, D. Kragic, and F. T. Pokorny, “Herding
by caging: a topological approach towards guiding moving
agents via mobile robots,” in Robotics: Science and Systems,
2017.

[7] R. A. Licitra, Z. D. Hutcheson, E. A. Doucette, and W. E.
Dixon, “Single agent herding of n-agents: A switched systems
approach,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 14 374–
14 379, 2017.

[8] J. Kim, “Three-dimensional discrete-time controller to inter-
cept a targeted uav using a capture net towed by multiple
aerial robots,” IET Radar, Sonar & Navigation, vol. 13, no. 5,
pp. 682–688, 2018.

[9] Y. Jia, Q. Li, and S. Qiu, “Distributed leader-follower flight

control for large-scale clusters of small unmanned aerial vehi-
cles,” IEEE Access, vol. 6, pp. 32 790–32 799, 2018.

[10] R. Ritz, M. W. Müller, M. Hehn, and R. D’Andrea, “Co-
operative quadrocopter ball throwing and catching,” in 2012
IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 2012, pp. 4972–4978.

[11] C. G. Koay, “Distributing points uniformly on the unit sphere
under a mirror reflection symmetry constraint,” Journal of
Computational Science, vol. 5, no. 5, pp. 696–700, 2014.

[12] B. Wie, H. Weiss, and A. Arapostathis, “Quaternion feedback
regulator for spacecraft eigenaxis rotations,” Journal of Guid-
ance, Control, and Dynamics, vol. 12, no. 3, pp. 375–380, 1989.

[13] D. M. Stipanović, C. J. Tomlin, and G. Leitmann, “Monotone
approximations of minimum and maximum functions and
multi-objective problems,” Applied Mathematics & Optimiza-
tion, vol. 66, no. 3, pp. 455–473, 2012.



[14] V. S. Chipade and D. Panagou, “Approximate time-optimal
trajectories for damped double integrator in 2d obsta-
cle environments under bounded inputs,” arXiv preprint
arXiv:2007.05155, 2020.

[15] S. Boyd and L. Vandenberghe, Convex optimization. Cam-
bridge university press, 2004.


	I Introduction
	I-.1 Related work
	I-.2 Overview
	I-.3 Structure of the paper


	II Modeling and Problem Statement
	III 3D-StringNet and 3D Formations
	III-A Optimal 3D formation for 3D-StringNet Herding
	III-B Intermediate 3D-StringNet Formations
	III-B.1 Mapping between hemispherical and spherical formation
	III-B.2 Mapping between planar and hemispherical formation


	IV Modifications to 2D StringNet Herding
	IV-.1 Gathering
	IV-.2 Seeking
	IV-.3 Enclosing
	IV-.4 Herding


	V Dominance Region for the Defenders
	VI Simulations
	VII Conclusions
	References

