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GPS-denied Navigation: Attitude, Position, Linear
Velocity, and Gravity Estimation with Nonlinear

Stochastic Observer
Hashim A. Hashim

Abstract—Successful navigation of a rigid-body traveling with
six degrees of freedom (6 DoF) requires accurate estimation of at-
titude, position, and linear velocity. The true navigation dynamics
are highly nonlinear and are modeled on the matrix Lie group of
SE2(3). This paper presents novel geometric nonlinear continu-
ous stochastic navigation observers on SE2(3) capturing the true
nonlinearity of the problem. The proposed observers combines
IMU and landmark measurements. It efficiently handles the IMU
measurement noise. The proposed observers are guaranteed to
be almost semi-globally uniformly ultimately bounded in the
mean square. Quaternion representation is provided. A real-
world quadrotor measurement dataset is used to validate the
effectiveness of the proposed observers in its discrete form.

Index Terms—Inertial navigation, stochastic system, Brownian
motion process, stochastic filter algorithm, stochastic differential
equation, Lie group, SE(3), SO(3), pose estimator, position,
attitude, feature measurement, inertial measurement unit, IMU.

I. INTRODUCTION

AUTONOMOUS navigation would be infeasible without
robust algorithms that enable accurate pose (i.e. attitude

and position) and velocity estimation of a rigid-body. The chal-
lenge of attitude estimation, an essential component of pose,
has been explored extensively over the past three decades [1]–
[5]. Attitude can be defined given at least two observations in
the inertial-frame and their measurements in the body-frame.
For instance, a typical low-cost inertial measurement unit
(IMU) module includes a magnetometer and an accelerometer
which supply the two necessary body-frame measurements
and a gyroscope which provides measurements of angular
velocity. The main shortcoming of low-cost sensors is the high
level of noise. Multiple solutions tackle attitude measurement
uncertainty in attitude estimation, namely Gaussian filters [2],
nonlinear deterministic filters on the Special Orthogonal Group
SO(3) [3], [5], and nonlinear stochastic filters on SO(3)
[1], [4]. In contrast, pose estimation requires a vision unit
in addition to an IMU. Initially, Gaussian filters dominated
the area of pose estimation. In the last few years, nonlinear
deterministic filters on the Special Euclidean Group SE(3) [6],
[7] and nonlinear stochastic filters on SE(3) [8]–[10] have
been shown to be more effective. Pose estimation algorithms
rely on measurements of angular and linear velocity [8]. In
practice, linear velocity information is not attainable in case
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of 1) a GPS-denied environment and 2) a vehicle equipped
with low-cost sensors.

The true six degrees of freedom (6 DoF) navigation dynam-
ics are a combination of attitude, position, and linear velocity
dynamics. The dynamics are highly nonlinear, are modeled on
the Lie group of SE2(3), are neither right nor left invariant,
and rely on angular velocity and acceleration. The naviga-
tion problem has been approached using Gaussian filters, for
instance, [11]. Other solutions that attempted mimicking the
true navigation dynamics include a Riccati observer [12] and
an invariant extended Kalman filter (IEKF) on SE2(3) [13].

Considering the true nature of the navigation dynamics, this
paper proposes novel nonlinear stochastic navigation observers
on SE2(3) that 1) mimics the true navigation dynamics; 2)
estimates rigid-body’s attitude, position, linear velocity, and
unknown gravity; and 3) relies on measurements of angular
velocity and acceleration. The noise associated with IMU
measurements is successfully handled. The closed loop signals
are guaranteed to be almost semi-globally uniformly ultimately
bounded (SGUUB) in the mean square. The novel solutions
is shown to be cost-effective at a low sampling rate using a
real-world dataset.

The rest of the paper is organized as follows: Section
II introduces important math notation and the preliminaries,
and formulates the navigation problem in a stochastic sense.
Section III presents a novel nonlinear stochastic navigation
observer. Section IV presents the obtained results. Finally,
Section V summarizes the work.

II. PROBLEM FORMULATION

A. Preliminaries
In this paper, sets of real numbers, nonnegative real num-

bers, and a real n-by-m dimensional space are defined by
R, R+, and Rn×m, respectively. For x ∈ Rn and M ∈
Rn×m, ||x|| =

√
x>x is the Euclidean norm of x and

||M ||F =
√

Tr{MM∗} is the Frobenius norm of M with
∗ being a conjugate transpose. In denotes an n-by-n identity
matrix, while 0n×m and 1n×m denote n-by-m dimensional
matrices of zeros and ones, respectively. A set of eigenvalues
of M ∈ Rn×n is described by λ(M) = {λ1, λ2, . . . , λn} with
λM = λ(M) being the maximum value and λM = λ(M)
being the minimum value of λ(M). P{·} represents probability
and E[·] denotes an expected value. {I} represents fixed
inertial-frame and {B} denotes fixed body-frame. Rigid-body’s
attitude is defined by R ∈ SO (3) where SO(3) = {R ∈
R3×3|RR> = R>R = I3, det(R) = +1} with det(·) being
a determinant. so(3) defines the Lie algebra of SO(3) with
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so (3) = {[x]× ∈ R3×3|[x]>× = −[x]×, x ∈ R3}. Note that
[x]× is a skew symmetric matrix such that

[x]× =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 ∈ so (3) , x =

 x1

x2

x3


The inverse mapping of [·]× follows the map vex : so (3)→
R3 with vex([x]×) = x, ∀x ∈ R3. The anti-symmetric
projection on so (3) is represented by Pa(A) = 1

2 (A−A>) ∈
so (3) ,∀A ∈ R3×3. Υ = vex ◦ Pa describes a composition
mapping where Υ(A) = vex(Pa(A)) ∈ R3,∀A ∈ R3×3.
The Euclidean distance of R ∈ SO (3) is described by

||R||I = Tr{I3 −R}/4 ∈ [0, 1] (1)

where −1 ≤ Tr{R} ≤ 3 and ||R||I = 1
8 ||I3 − R||2F , see [1],

[4]. Consider a rigid-body navigating in 3D space where its
attitude, position, and velocity are termed R ∈ SO (3), P ∈
R3, and V ∈ R3, respectively, with R ∈ {B} and P, V ∈ {I}.
Let SE2 (3) = SO (3)×R3×R3 ⊂ R5×5 be the extended form
of SE (3) = SO (3)× R3 ⊂ R4×4 with

SE2 (3) = {X ∈ R5×5
∣∣R ∈ SO (3) , P, V ∈ R3} (2)

X = Ψ(R,P, V ) =

 R P V
01×3 1 0
01×3 0 1

 ∈ SE2 (3) (3)

X ∈ SE2 (3) denotes a homogeneous navigation matrix which
is assumed to be bounded. The tangent space of SE2 (3) at
point X is TXSE2 (3) ∈ R5×5. Define a submanifold UM =
so (3)× R3 × R3 × R ⊂ R5×5 such that

UM =
{
u([Ω]×, V, a, κ)| [Ω]× ∈ so(3), V, a ∈ R3, κ ∈ R

}
u([Ω]×, V, a, κ) =

 [Ω]× V a
01×3 0 0
01×3 κ 0

 ∈ UM ⊂ R5×5 (4)

with Ω ∈ R3, V ∈ R3, and a ∈ R3 being the rigid-body’s
true angular velocity, linear velocity, and apparent acceleration
composed of all non-gravitational forces affecting the rigid-
body, respectively, where Ω, a ∈ {B}.

B. Measurements and Dynamics
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Fig. 1. Navigation estimation problem.

The true dynamics of the homogeneous navigation matrix
in (3) are as follow:

Ṙ = R [Ω]×
Ṗ = V

V̇ = Ra+−→g
≡ Ẋ = XU − GX︸ ︷︷ ︸

Compact form

(5)

with −→g denoting a gravity vector. The left portion
of (5) represents the detailed navigation dynamics,
while the right portion is its equivalent compact

form with X =

 R P V
01×3 1 0
01×3 0 1

 ∈ SE2 (3),

U = u([Ω]×, 03×1, a, 1) =

 [Ω]× 03×1 a
01×3 0 0
01×3 1 0

 ∈ UM, and

G = u(03×3, 03×1,−−→g , 1) =

 03×3 03×1 −−→g
01×3 0 0
01×3 1 0

 ∈
UM, visit (4). Note that Ẋ : SE2 (3) × UM → TXSE2 (3).
The components of the navigation matrix X , namely R, P ,
and V , become completely unknown when the vehicle is
equipped with low-cost sensors in a GPS-denied environment.
Fig. 1 depicts the navigation problem. Availability of a set of
sensor measurements enables the estimation of X . Consider
a group of n landmarks observed in {I} and measured in
{B} [8]–[10]:

yi = X−1pi + [(nyi )>, 0, 0]> ∈ R5

yi = R>(pi − P ) + nyi ∈ R3 (6)

where X−1 = Ψ(R>,−R>P,−R>V ), pi ∈ {I} denotes the
ith landmark observation, yi ∈ {B} denotes the ith landmark
measurement, and nyi ∈ {B} denotes the noise associated with
yi, yi = [y>i , 1, 0]>, and pi = [p>i , 1, 0]>. Note that in this
analysis, nyi is assumed to be zero.

Assumption 1. The number of non-collinear landmarks avail-
able for observation and measurement is greater or equal to
three.

Measurements of Ω and a are easily obtainable by a low-
cost IMU module:{

Ωm = Ω + nΩ ∈ R3

am = a+ na ∈ R3
(7)

with nΩ and na being unknown bounded zero-mean noise.
A derivative of a Gaussian process is a Gaussian process.
Therefore, one can express nΩ = QdβΩ/dt and na =
Qdβa/dt as Brownian motion process vectors [14], [15] with
Q = diag(Q1,1,Q2,2,Q3,3) ∈ R3×3 being an unknown
positive time-variant diagonal matrix. Q2 = QQ> denotes
the covariance of nΩ and na. For more details on the Brow-
nian motion properties with regard to the attitude and pose
estimation problems visit [1], [4], [8]. Hence, the attitude
dynamics in (5) can be represented in an incremental form
as dR = R[Ωm]×dt−R[QdβΩ]×. From (1), the dynamics in
(5) may be rewritten as a stochastic differential equation:

d||R||I = (1/2)vex(Pa(R))>(Ωmdt−QdβΩ)

dP = V dt

dV = (Ram +−→g )dt−RQdβa
(8)

where Tr{R[Ωm]×} = Tr{Pa(R)[Ωm]×} =
−2vex(Pa(R))>Ωm, visit [1], [8], [16]. In other words, (8)
can be described as

dx = fdt+ hQdβ (9)
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where x = [||R||I, P>, V >]> ∈ R7, f =
[(1/2)vex(Pa(R))>Ωm, V

>, (Ram + −→g )>]> ∈ R7,
h ∈ R7×9, Qdβ = [dβ>ΩQ, 0>3×1, dβ

>
a Q]> ∈ R9,

Q = diag(Q,Q,Q) ∈ R9×9, and β = [β>Ω , 0
>
3×1, β

>
a ]> ∈ R9.

Note that diag denotes a diagonal matrix. With the aim of
achieving adaptive stabilization, define

σ = [sup
t≥0
Q1,1, sup

t≥0
Q2,2, sup

t≥0
Q3,3]> ∈ R3 (10)

Definition 1. [4], [8], [16], [17] For the stochastic dynamics
in (9), x(t) is almost SGUUB if for a known set ∆ ∈ R7 and
x(t0) there is a constant c > 0 and a time constant τc =
τc(κ, x(t0)) with E[||x(t0)||] < c,∀t > t0 + c.

Lemma 1. [14] Consider the stochastic system in (9) and
suppose that V(x) is a twice differentiable cost function with
V : R7 → R+ such that

LV(x) = V>x f +
1

2
Tr{hQ2

h>Vxx} (11)

where LV(x) denotes a differential operator, Vx = ∂V/∂x
and Vxx = ∂2V/∂x2. Define $1(·) and $2(·) as class K∞
functions and let constants η1 > 0 and η2 ≥ 0 such that

$1(x) ≤ V(x) ≤ $2(x) (12)

LV(x) =V>x f +
1

2
Tr{hQ2

h>Vxx} ≤ −η1V(x) + η2 (13)

Thus, the stochastic differential system in (8) has almost a
unique strong solution on [0,∞). Additionally, the solution x
is bounded in probability satisfying

E[V(x)] ≤ V(x(0))exp(−η1t) + η2/η1 (14)

Furthermore, the inequality in (14) shows that x is SGUUB
in the mean square.

C. Estimates, Error, and Measurements Setup

Consider σ̂ to be the estimate of σ described in (10). Let
the covariance error be

σ̃ = σ − σ̂ ∈ R3

Let the estimate of X ∈ SE2 (3) in (3) be

X̂ = Ψ(R̂, P̂ , V̂ ) =

 R̂ P̂ V̂
01×3 1 0
01×3 0 1

 ∈ SE2 (3) (15)

where R̂ ∈ SO (3), P̂ ∈ R3, and V̂ ∈ R3 refer to the estimates
of R, P , and V , respectively. Define the error between X and
X̂ as

X̃ = XX̂−1 =

 R̃ P̃ Ṽ
01×3 1 0
01×3 0 1

 ∈ SE2 (3)

such that X̂−1 = Ψ(R̂>,−R̂>P̂ ,−R̂>V̂ ), R̃ = RR̂>, P̃ =
P − R̃P̂ , and Ṽ = V − R̃V̂ . The overarching objective of
driving X → X̂ means that X̃ → I5, R̃ → I3, P̃ → 03×1,
and Ṽ → 03×1. Let us define the error as
◦
ỹi = pi − X̃−1pi = pi − X̂yi = [(pi − R̂yi − P̂ )>, 0, 0]>

where
◦
ỹi = [ỹ>i , 0, 0]>, pi−R̂yi− P̂ = p̃i− P̃ , p̃i = p̂i−R̃pi,

and P̃ = P̂ − R̃P . Let si > 0 be the sensor confidence level
of the ith measurement. Define the following elements in the
context of available vector measurements:

pc = 1
sT

∑n
i=1 sipi, sT =

∑n
i=1 si

M =
∑n
i=1 si(pi − pc)(pi − pc)

>

=
∑n
i=1 sipip

>
i − sT pcp>c

R̃>P̃ε =
∑n
i=1 siỹi = 1

sT

∑n
i=1 si(pi − R̂yi − P̂ )

MR̃ =
∑n
i=1 si(pi − pc)(pi − P )>R̃

=
∑n
i=1 si(pi − pc)y

>
i R̂
>

(16)

It can be deduced that R̃→ I3 indicates that P̃ε → P̃ .

Lemma 2. Let R̃ ∈ SO (3) and M = M> ∈ R3×3 as
in (16). Consider M = Tr{M}I3 − M where λM and
λM denote the minimum and the maximum eigenvalues of
M, respectively. Since ||MR̃||I = 1

4Tr{M(I3 − R̃)} and
Υ(MR̃) = vex(Pa(MR̃)), then

λM

2
(1 + Tr{R̃})||MR̃||I ≤ ||Υ(MR̃)||2 ≤ 2λM||MR̃||I (17)

Proof. See ( [6], Lemma 1).

In view of Lemma 2, let λ(M) = {λ1, λ2, λ3} with λ3 ≥
λ2 ≥ λ1. According to Assumption 1, all the eigenvalues of
λ(M) are nonnegative, and at least λ2 and λ3 are greater than
zero. As such, ( [18] page. 553): 1) M is positive-definite,
and 2) λ(M) = {λ3 + λ2, λ3 + λ1, λ2 + λ1} such that λM =
λ2 + λ1 > 0.

Definition 2. Define an unstable set Us ⊂ SO (3) as

Us =
{
R̃(0) ∈ SO (3)

∣∣∣Tr{R̃(0)} = −1
}

(18)

where R̃(0) ∈ Us if one of the following conditions is met:
R̃(0) = diag(1,−1,−1), R̃(0) = diag(−1, 1,−1), or R̃(0) =
diag(−1,−1, 1) which indicates that ||R̃(0)||I = +1.

III. NONLINEAR STOCHASTIC NAVIGATION OBSERVER

In view of the vector measurements in (16), and the true
compact dynamics defined in (5), we propose the following
nonlinear stochastic navigation observer with known gravity
developed on the matrix Lie Group of SE2 (3) and compactly
expressed as:

˙̂
X = X̂Um −WX̂ (19)

with Um = u([Ωm]×, 03×1, am, 1) = [Ωm]× 03×1 am
01×3 0 0
01×3 1 0

 ∈ UM, X̂ ∈ SE2 (3) being

the estimate of X , and W = u([wΩ]×, wV , wa, 1) = [wΩ]× wV wa
01×3 0 0
01×3 1 0

 ∈ UM being a matrix composed

of correction factors. It becomes apparent that
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˙̂
X : SE2 (3) × UM → TX̂SE2 (3) ⊂ R5×5. The observer in
(19) can be detailed as follows:

˙̂
R = R̂[Ωm]× − [wΩ]×R̂
˙̂
P = V̂ − [wΩ]×P̂ − wV
˙̂
V = R̂am − [wΩ]×V̂ − wa
wΩ = −kw(||MR̃||I + 1)Υ(MR̃)

− 1
4
||MR̃||I+2

||MR̃||I+1
R̂diag(R̂>Υ(MR̃))σ̂

wV = [pc]×wΩ − kvR̃>P̃ε
wa = −−→g − kaR̃>P̃ε
kR = γσ

||MR̃||I+2
8 exp(||MR̃||I)

˙̂σΩ = kRdiag(R̂>Υ(MR̃))R̂>Υ(MR̃)− kσγσσ̂

(20)

with kw, kv , ka, γσ , and kσ being positive constants. Quater-
nion representation of (20) is presented in the Appendix.

Theorem 1. Consider the stochastic system in (8). Let As-
sumption 1 hold true. Let the nonlinear navigation stochastic
observer in (19) be combined with the set of measurements in
(16) along with yi = X−1pi, Ωm = Ω+nΩ, and am = a+na.
Hence, for R̃(0) /∈ Us defined in (18), all the signals in
the closed-loop are almost semi-globally uniformly ultimately
bounded in the mean square.

Proof. Considering (8) and (20), one obtains


dR̃ = R̃[wΩ]×dt− R̃[R̂QdβΩ]×

dP̃ = (Ṽ + R̃wV )dt+ R̃[P̂ ]×R̂QdβΩ

dṼ = ((I3 − R̃)g + R̃wa)dt− R̃R̂Qdβa
−R̃[V̂ ]×R̂Qdβ

(21)

Thus, it is straightforward to show that

d||MR̃||I =
1

2
Υ(MR̃)>wΩ︸ ︷︷ ︸

fR

dt+−1

2
Υ(MR̃)>R̂︸ ︷︷ ︸

hR

QdβΩ

dR̃>P̃ε = (R̃>Ṽ − [pc − R̃>P̃ε]×wΩ + wV )︸ ︷︷ ︸
fP

dt

+−[P̂ − pc + R̃>P̃ε]×R̂︸ ︷︷ ︸
hP

QdβΩ

dR̃>Ṽ = (−[wΩ]×R̃
>Ṽ + (R̃− I3)>−→g + wa)︸ ︷︷ ︸

fV

dt

+−[ [R̃>V ]×R̂ R̂ ]︸ ︷︷ ︸
hV

[ QdβΩ Qdβa ]>

(22)
Let V = V(||MR̃||I, R̃>P̃ε, R̃>Ṽ , σ̃) be a Lyapunov function
candidate given by

V = Va + Vb (23)

The real-valued function Va has the map Va : SO (3)×R3 →
R+ defined by

Va = exp(||MR̃||I)||MR̃||I +
1

2γσ
||σ̃||2 (24)

In view of (11), one easily finds that Va||MR̃||I
= (||MR̃||I +

1) exp(ER) and Va||MR̃||I||MR̃||I
= (||MR̃||I + 2) exp(ER).

From (13) and (22), one obtains

LVa =Va
>

||MR̃||IfR +
1

2
Tr{hRQ2h>RVa||MR̃||I||MR̃||I} −

1

γσ
σ̃> ˙̂σ

≤1

2
exp(||MR̃||I)(||MR̃||I + 1)Υ(MR̃)>wΩ

+ kRΥ(MR̃)>R̂diag(σ)R̂>Υ(MR̃)− 1

γσ
σ̃> ˙̂σ (25)

where Q2 ≤ diag(σ) as in (10). Replacing wΩ and ˙̂σ with
their definitions in (20) and considering (17) in Lemma 2,
one finds

LVa ≤ −(1 + Tr{R̃})kwλM

4
exp(||MR̃||I)||MR̃||I + kσσ̃

>σ̂

≤ −kwcR exp(||MR̃||I)||MR̃||I −
kσ
2
||σ̃||2 +

kσ
2
||σ||2 (26)

where kσσ̃
>σ ≤ (kσ/2)||σ||2 + (kσ/2)||σ̃||2 as to Young’s

inequality and cR = 1
4λM(1+Tr{R̃}). Bringing our attention

to the second part of (23), the real-valued function Vb has the
map Vb : SO (3)× R3 × R3 → R+ defined by

Vb =
||R̃>P̃ε||4

4
+
||R̃>Ṽ ||4

4ka
− ||R̃

>Ṽ ||2Ṽ >R̃R̃>P̃ε
µ

(27)

where ka and µ are positive constants. From (11), one has

Vb
R̃>P̃ε

= ||R̃>P̃ε||2R̃>P̃ε −
1

µ
||R̃>Ṽ ||2R̃>Ṽ

Vb
R̃>P̃εR̃>P̃ε

= ||R̃>P̃ε||2I3 + 2R̃>P̃εP̃
>
ε R̃

Vb
R̃>Ṽ

=
1

kd
||R̃>Ṽ ||2R̃>Ṽ − 1

µ
||R̃>Ṽ ||2R̃>P̃ε

Vb
R̃>Ṽ R̃>Ṽ

=
1

kd
||R̃>Ṽ ||2I3 −

2

µ
R̃>P̃εṼ

>R̃ (28)

Therefore, from (13), (22), (27), and (28), one obtains

LVb = Vb
>

R̃>P̃ε
fP +

1

2
Tr{hPQ2h>PVbR̃>P̃εR̃>P̃ε

}

+ Vb
>

R̃>Ṽ
fV +

1

2
Tr{hVQ2h>V VbR̃>Ṽ R̃>Ṽ

}

≤ −(kv − c1)||R̃>P̃ε||4 − (1/µ− c2)||R̃>Ṽ ||4

+ (kdkv/µ
2 + c3)||R̃>Ṽ ||2||R̃>P̃ε||2

+ cg||R̃>Ṽ ||2||I3 − R̃||F + (
3cP
2

+
cV
4kd

)||σ||2 (29)

where c1 = 3cP
4 + 1

2 , c2 = ||−→g ||
2kd

+ 1
4kd

, c3 = ||−→g ||
2µ + 1

4kd
,

cg = ||−→g ||
2kd

+ ||−→g ||
2µ , cV = supt≥0(1 + ||V ||2), and cP =

supt≥0 ||P − pc||2. Also, one finds Tr{R̂Q2R̂>} = Tr{Q2},
Ṽ >R̃ [wΩ]× R̃

>Ṽ = 0, and ||I3 − R̃||F = 2
√

2
√
||R̃||I ≤

4λM

√
||MR̃||I. Hence, the inequality in (29) becomes

LVb ≤ −e>1
[

kv − c1 1
2 (kdkv/µ

2 + c3)
1
2 (kdkv/µ

2 + c3) 1
µ − c2

]
︸ ︷︷ ︸

A1

e1

+ cg||R̃>Ṽ ||2||I3 − R̃||F + (
3cP
2

+
cV
4kd

)||σ||2 (30)

where e1 = [||R̃>P̃ε||2, ||R̃>Ṽ ||2]>. It can be deduced that A1

can be made positive by selecting kv > 3/4, kv > µcx/c1, and
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kv > cxµ
2/(µc1 − cx). Considering the parameter selection

above, define λ1 = λ(A1). In view of (23), (26), and (30), the
differential operator LV can be expressed as

LV ≤− kwcR exp(||MR̃||I)||MR̃||I − (kσ/2)||σ̃||2

+ (kσ/2)||σ||2 − λ1||R̃>P̃ε||4 − λ1||R̃>Ṽ ||4

+ cg||R̃>Ṽ ||2||I3 − R̃||F + (
3cP
2

+
cV
4kd

)||σ||2

≤− e>2
[

kwcR
cg
2 11×2

cg
2 12×1 λ1I2

]
︸ ︷︷ ︸

A2

e2 − (kσ/2)||σ̃||2

+ η2||σ||2 (31)

where e2 = [
√

exp(||MR̃||I)||MR̃||I, ||R̃>P̃ε||2, ||R̃>Ṽ ||2]>

and η2 = 3cP
2 + cV

4kd
. To make A2 positive,

consider selecting kwcRλ1 > c2g/4. Define
eT = [

√
exp(||MR̃||I)||MR̃||I, ||R̃>P̃ε||2, ||R̃>Ṽ ||2, ||σ̃||]> and

η1 = min{λ(A2), kσ/2}. Hence, one has

LV ≤− η1||eT ||2 + η2||σ||2 (32)

such that

dE[V]/dt = E[LV] ≤ −η1E[V] + η2 (33)

In accordance with Lemma 1, it becomes apparent that

0 ≤ E[V(t)] ≤ V(0)exp(−η1t) + η2/η1, ∀t ≥ 0

Thus, it can be seen that the vector eT is almost SGUUB
which completes the proof.

A. Nonlinear Stochastic Observer with Unknown Gravity

Consider an unknown gravity vector −→g and let ĝ denote
the estimate of −→g . Define the error between ĝ and −→g as g̃ =
−→g − R̃ĝ. Modify wa in the observer design in (20) to include
˙̂g as follows:

wa = −ĝ− kaR̃>P̃ε
˙̂g = −[wΩ]×ĝ + µγgR̃

>P̃ε (34)

where γg > 0 is an adaptation gain. Let V =
V(||MR̃||I, R̃>P̃ε, R̃>Ṽ , R̃>g̃, σ̃) be a Lyapunov function
candidate given by V = Va+Vb where Va is as in (24) while
Vb = ||R̃>P̃ε||4

4 + ||R̃>Ṽ ||4
4ka

+ ||R̃>g̃||2
2γg

− ||R̃
>Ṽ ||2Ṽ >R̃R̃>P̃ε

µ −
||R̃>Ṽ ||2Ṽ >R̃R̃>g̃

µ . Following the analogous proving steps of
Theorem 1 the obtained result is similar to (33).

The detailed implementation steps of the observer in its
discrete form can be found in Algorithm 1, where ∆t denotes
a small sample time.

IV. EXPERIMENTAL RESULTS

This section experimentally evaluates the performance of
the proposed nonlinear stochastic navigation observers on the
Lie group of SE2 (3). The discrete forms of the proposed
observers (known gravity and unknown gravity) outlined in
Algorithm 1 have been examined using real-word data (EuRoc
dataset) [19]. The dataset contains the ground truth, IMU mea-
surements obtained by ADIS16448 at a sampling rate of 200

Algorithm 1 Discrete nonlinear stochastic observer
Initialization:

1: Set R̂0|0 ∈ SO (3), and P̂0|0, V̂0|0, σ̂0|0, ĝ0 ∈ R3

2: Start with k = 0 and select the design parameters
while (1) do

3: X̂k|k =

 R̂k|k P̂k|k V̂k|k
01×3 1 0
01×3 0 1

 and

Ûk =

 [Ωm[k]]× 03×1 am[k]
01×3 0 0
01×3 1 0


/* Prediction */

4: X̂k+1|k = X̂k|k exp(Ûk∆t)
/* Update step */

5:


pc = 1

sT

∑n
i=1 sipi[k], sT =

∑n
i=1 si

Mk =
∑n
i=1 sipi[k]p>i [k]− sT pcp>c

MR̃k =
∑n
i=1 si (pi[k]− pc) y>i [k]R̂>k+1|k

R̃>P̃ε[k] = 1
sT

∑n
i=1 si(pi[k]− R̂k+1|kyi[k]− P̂k+1|k)

6:



wΩ[k] = −kw(||MR̃k||I + 1)Υ(MR̃k)

− 1
4
||MR̃k||I+2

||MR̃k||I+1
R̂kdiag(R̂>k Υ(MR̃k))σ̂k

wV [k] = [pc[k]]×wΩ[k]− kvR̃>P̃ε[k]

/* If gravity is known, ĝk+1 = −→g */
ĝk+1 = ĝk∆t(−[wΩ[k]]×ĝk + µγgR̃

>P̃ε[k])

wa[k] = −ĝk+1 − kaR̃>P̃ε[k]

7: Wk =

 [wΩ[k]]× wV [k] wa[k]
01×3 0 0
01×3 1 0


8: kR = γσ

||MR̃k||I+2
8 exp(||MR̃k||I)

9: σ̂k+1 = σ̂k + ∆tkRdiag(R̂>k+1|kΥ(MR̃k))R̂>k+1|kΥ(MR̃k)

−∆tkσγσσ̂k
10: X̂k+1|k+1 = exp(−Wk∆t)X̂k+1|k
11: k = k + 1

end while

Hz, and stereo images obtained by MT9V034 at a sampling
rate of 20 Hz. Owing to the fact that landmark positions are
not included in the dataset, landmarks are placed arbitrarily.
To increase the rigor of the experiment, IMU measurements
were supplemented with additional normally distributed noise
nΩ = N (0, 0.12) (rad/sec) and na = N (0, 0.11) (m/sec2)
with a zero mean and a standard deviation 0.12 and 0.11,
respectively. The design parameters are selected as follows:
kw = 3, kv = 10, ka = 10, γσ = 3, γg = 2, and
kσ = 0.1, while the initial covariance estimate is σ̂ (0) =
ĝ (0) = [0, 0, 0]>.

Fig. 2 shows strong tracking capabilities in view of uncer-
tain measurements and large initialization error in attitude and
position. Fig. 4 demonstrates fast convergence of the error
components ||RR̂>||I, ||P − P̂ ||, ||V − V̂ ||, and ||g− ĝ|| from
large values to the close neighborhood of the origin. It can
be noticed that impressive results have been achieved at low
sampling rates demonstrating the computational inexpensive-
ness of the proposed algorithm.
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Fig. 2. Vicon Room 2 01 experimental validation using a dataset. The true
trajectories (green solid-line) and three axes true attitude (black solid-line) is
plotted against the trajectory estimated by the proposed nonlinear stochastic
discrete navigation observers (Algorithm 1; red dashed-line and blue center-
line). The landmarks are plotted as black circles.

Fig. 3. Position: true (black solid-line) vs estimated observers (red dashed-line
and blue center-line).

V. CONCLUSION

This paper addresses the problem of attitude, position, linear
velocity, and gravity estimation of a vehicle traveling with
6 DoF. Nonlinear stochastic navigation observers on SE2(3)
has been proposed. The proposed observers are guaranteed to
be almost SGUUB in the mean square. Experimental results
revealed robustness and fast adaptability of the proposed
approach for identification of unknown pose, linear velocity
and gravity.
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Appendix

Quaternion of the Proposed Observers

Let Q = [q0, q
>]> ∈ S3 denote a unit-quaternion vec-

tor where q0 ∈ R and q ∈ R3 such that S3 =
{Q ∈ R4

∣∣ ||Q|| =
√
q2
0 + q>q = 1}. The inverse of Q

Fig. 4. Error of proposed observers: Known Gravity vs Unknown Gravity.

is Q−1 = [ q0 −q> ]> ∈ S3. Let � be a quaternion
product such that the quaternion multiplication of Q1 =
[ q01 q>1 ]> ∈ S3 and Q2 = [ q02 q>2 ]> ∈ S3 is
Q1 � Q2 = [q01q02 − q>1 q2, q01q2 + q02q1 + [q1]×q2]>. The
mapping from unit-quaternion to SO (3) is RQ : S3 → SO (3)

RQ = (q2
0 − ||q||2)I3 + 2qq> + 2q0 [q]× ∈ SO (3) (35)

The quaternion identity is QI = [±1, 0, 0, 0]> where RQI =
I3, see (35). For more details, visit [20]. Q̂ = [q̂0, q̂

>]> ∈ S3

is the estimate of Q = [q0, q
>]> ∈ S3 such that RQ̂ =

(q̂2
0 − ||q̂||2)I3 + 2q̂q̂> + 2q̂0 [q̂]× ∈ SO (3). Considering

gravity estimation, the equivalent quaternion representation of
the observer in (20) and (34) is as follows:

ỹi = pi −RQ̂yi − P̂
Φq = MR̃ =

∑n
i=1 si (pi − pc) y>i R>Q̂

Υ(Φq) = vex(Pa(Φq))

vq = R̃>P̃ε = 1
sT

∑n
i=1 siỹi

||MR̃||I = 1
4Tr{M − Φq}

Θm =

[
0 −Ω>m

Ωm −[Ωm]×

]
, Ψ =

[
0 −w>Ω
wΩ [wΩ]×

]
˙̂
Q = 1

2ΘmQ̂− 1
2ΨQ̂

˙̂
P = V̂ − [wΩ]×P̂ − wV
˙̂
V = RQ̂am − [wΩ]×V̂ − wa
wΩ = −kw(||MR̃||I + 1)Υ(Φq)

− 1
4
||MR̃||I+2

||MR̃||I+1
RQ̂diag(R>

Q̂
Υ(Φq))σ̂

wV = [pc]×wΩ − kvvq
wa = −ĝ− kavq
˙̂g = −[wΩ]×ĝ + µγgvq

kR = (γσ/8)(||MR̃||I + 2) exp(||MR̃||I)
˙̂σΩ = kRdiag(R>

Q̂
Υ(Φq))R>Q̂Υ(Φq)− kσγσσ̂
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