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Abstract—The increasing penetration of distributed energy
resources (DERs) in the distribution networks has turned the
conventionally passive load buses into active buses that can pro-
vide grid services for the transmission system. To take advantage
of the DERs in the distribution networks, this letter formulates
a transmission-and-distribution (T&D) systems co-optimization
problem that achieves economic dispatch at the transmission
level and optimal voltage regulation at the distribution level by
leveraging large generators and DERs. A primal-dual gradient
algorithm is proposed to solve this optimization problem jointly
for T&D systems, and a distributed market-based equivalent of
the gradient algorithm is used for practical implementation. The
results are corroborated by numerical examples with the IEEE
39-Bus system connected with 7 different distribution networks.

Index Terms—Optimization, distributed control, power sys-
tems.

I. INTRODUCTION

The rising electricity demand and the shortage of power
supply have caused surging electricity prices and even black-
outs in peak hours; a few unfortunate events have occurred
in recent years with or without market manipulation [1].
Meanwhile, the penetration of distributed energy resources
(DERs) has been deepening in distribution systems, with
residential photovoltaic (PV) devices, energy storage devices,
and electric vehicles (EVs) becoming increasingly popular.
Such DERs can potentially meet (part of) the demand from
the distribution networks, and provide grid services such as
voltage regulation. Involving residential DERs for energy sup-
ply without disturbing distribution system operation becomes
operationally desired and economically sensible for the overall
transmission-and-distribution (T&D) systems.

In the literature, joint generator-side and load-side control
has been proposed to assist power balancing and frequency
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regulation in the transmission systems [2]–[6]. These works
usually focus on dynamics in the transmission system by
treating load buses as controllable nodes without detailing the
distribution system structure at the load buses.

Optimizing DERs in distribution systems has been exten-
sively studied in the past decade. Various problem formula-
tions and solution methods have been proposed to optimally
coordinate DERs for voltage regulation, loss minimization,
dispatching signal tracking [7]–[9], etc. Works such as [10],
[11] propose a concept of virtual power plant that enables the
distribution network to provide a certain amount of aggregate
power output by coordinating the DERs within the network.
Most of these works usually focus on distribution system
analysis and do not model any transmission structure.

There are a few works on T&D co-optimization. In [12],
concrete models for the transmission network, the distribution
networks, and DERs are formulated, and a multi-level solution
method to solve the subproblems for each layer in sequence is
proposed. In [13], a T&D coordination scheme is proposed by
solving respective subproblems for the two levels. However,
there is no well-formulated joint T&D optimization problem
proposed in existing works, so it is difficult to characterize
the global performance of their solutions. Moreover, solving
subproblems for transmission and distribution networks in se-
quence might be suboptimal compared to the solution obtained
from solving the joint T&D co-optimization problem because
the latter usually has a larger feasible set to find solutions.

In this letter, we first formulate a convex optimization
problem featuring economic dispatch at the transmission level
while ensuring optimal voltage regulation at the distribution
level with linearized power flow equations. The outputs of
the large generators in the transmission network and those of
the DERs in the distribution networks are jointly optimized.
Next, we propose a primal-dual gradient algorithm to solve the
optimization problem with provable convergence. A market-
based distributed implementation of the gradient algorithm
is then designed to provide practical application. Finally, we
illustrate the performance of the proposed scheme on the IEEE
39-bus system connected with 7 different distribution feeders.

The rest of this letter is structured as follows. Section II
models the T&D networks. Section III formulates the T&D
system co-optimization problem and proposes a gradient al-
gorithm for solving it. Section IV designs a market-based dis-
tributed implementation of the gradient algorithm. Section V
presents numerical results and Section VI concludes this letter.

Notation: We use bold uppercase letters to represent ma-
trices, e.g., A; italic bold letters to represent vectors, e.g, A
and a; and non-bold letters to represent scalars, e.g., A and a.
Superscript J performs vector or matrix transpose. r¨sΩ makes
projection upon set Ω. Operator

Ś

represents the Cartesian
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product of sets.

II. SYSTEM MODEL

In this section, we provide the model for both transmission
and distribution systems, where the term “bus” or “control
area” is used for the former, and “node” is used for the latter.

Consider a power transmission network, denoted by a graph
pK, Eq, where K “ t1, . . . ,Ku is a set of buses or control
areas; and the set E Ă KˆK collects undirected transmission
lines connecting the buses.

Without loss of generality, for each bus k P K, we assume
there to be a dispatchable generator k with mechanical power
input PMk and a distribution feeder indexed with k with a total
real power load PLk injected at its substation. Define PM :“
rPMk s

J
kPK and PL :“ rPLk s

J
kPK. Denote by P 0

k the remaining
uncontrollable power injection at bus k. We assume that the
transmission system is lossless to have the following power
balance equation:

ÿ

kPK

´

PMk ´ PLk ppk, qkq ` P
0
k

¯

“ 0. (1)

Distribution feeder k has a radial topology pNk, Ekq with a
set Nk collecting all its Nk nodes and a set Ek collecting their
connecting distribution lines. Let vk :“ rvk,1, . . . , vk,Nk

sJ P

RNk denote the voltage magnitudes vector in the distribu-
tion system, and pk :“ rpk,1, . . . , pk,Nk

sJ P RNk and
qk :“ rqk,1, . . . , qk,Nk

sJ P RNk the real and reactive power
injections from all its nodes. For the purpose of algorithms
design, we leverage a linear power flow model1:

vk “ Akpk `Bkqk ` ck, (2)
PLk “ MJ

k pk `N
J
k qk ` dk. (3)

where Ak,Bk P RNkˆNk , ck,Mk,Nk P RNk , and dk P R
are system parameters that can be computed using methods
such as [14], [15]. In the following, we use vkppk, qkq and
PLk ppk, qkq to represent (2) and (3), respectively. We refer to
Fig. 2 for an illustrative system setup.

III. PROBLEM FORMULATION AND GRADIENT
ALGORITHM

A. Controllable Devices

We assume that generator k has a cost function CMk pP
M
k q

and a feasible set featuring its operational limits ΩMk . Mean-
while, distribution feeder k controls its total injected power
PLk indirectly through pk and qk from DERs while ensuring
its voltage constraints modeled as gkpvkppk, qkqq ď 0mk

.
Similar to the generators, each DER i has a cost function
denoted by Ck,ippk,i, qk,iq and a feasible set Ωk,i. Define
ΩM :“

Ś

kPK ΩMk and Ω :“
Ś

kPK
Ś

iPNk
Ωk,i. We have the

following assumption on the cost and constraints functions.
Assumption 1: ΩMk is convex for all k P K. Ωk,i is convex

for all i P Nk, k P K. Functions Ck,ippk,i, qk,iq for all
i P Nk, k P K and CMk pP

M
k q for all k P K are continuously

differentiable and strongly convex in ppk,i, qk,iq and PMk ,

1The linear model is used only to formulate the optimization problem
and devise an efficient solution algorithm. The simulation experiments in
Section V are performed using the exact (AC) power flow model.

respectively, with bounded first-order derivatives. Functions
gkpvkq are convex and differentiable functions of vk for all
k P K.

B. T&D Co-Optimization Problem

In this part, we formulate a T&D co-optimization problem
that achieves economic dispatch over all generators and DERs
while maintaining voltage constraints by DERs in the distri-
bution feeders.

Let N “
ř

kPKNk be the total number of nodes in all
distribution networks. Denote by p “ rpJ1 , . . . ,p

J
Ks
J, q “

rqJ1 , . . . , q
J
Ks
J P RN . Consider the following optimization

problem subject to power flow and operational constraints:

min
ÿ

kPK

´

ÿ

iPNk

Ck,ippk,i, qk,iq ` C
M
k pP

M
k q

¯

, (4a)

over pp, qq P Ω,PM P ΩM

s.t.
ÿ

kPK

´

PMk ´ PLk ppk, qkq ` P
0
k

¯

“ 0, (4b)

gkpvkppk, qkqq ď 0mk
, @k P K, (4c)

where the cost function (4a) adds up the generation costs of all
large generators and small DERs in the distribution feeders,
the equality constraint (4b) ensures that power demand and
supply are balanced, and the inequality constraint (4c) confines
voltage magnitudes to within acceptable ranges.

Let m “
ř

kPKmk be the dimension of distribution network
constraints. Introduce dual variables λ P R for the equality
constraint (4b) and nonnegative vector µ “ rµJk s

J
kPK P Rm`

for the inequality constraints (4c) to have the following regu-
larized Lagrangian of (4) with a small constant η ą 0:

Lpp, q,PM ;λ,µq

“
ÿ

kPK

ˆ

ÿ

iPNk

Ck,ippk,i, qk,iq ` C
M
k

`

PMk
˘

`

µJk gk
`

vkppk, qkq
˘

¯

` λ
`

ÿ

kPK
PMk ´ PLk ppk, qkq ` P

0
k

˘

´
ηpλ2 ` }µ}22q

2
. (5)

Introducing the regularization term ´ηpλ2 ` }µ}22q{2 en-
sures strong concavity of Lpp, q,PM ;λ,µq with respect to the
dual variables, as well as provable convergence of gradient-
based algorithms with a constant stepsize. However, a dis-
crepancy proportional to η is also brought in, which can be
negligible if η is small. We refer to Proposition 3.1 of [16] for
detailed analytical characterization of the discrepancy. Note
that η “ 0 is used in Section V, and the numerical results
converge well.

C. Gradient-Based Algorithm Design

We next design a primal-dual gradient algorithm to solve
for the unique saddle point of (5). For notational simplicity,
we let x “ rpJ, qJ, pPM qJsJ collect all the primal variables
and y “ rλ,µJsJ collect all the dual variables. Then, the



iterative primal-dual gradient algorithm for finding the unique
saddle point of the regularized Lagrangian (5) is given by:

xpt` 1q “

„

xptq ´ ε
BLpxptq;yptqq

Bxptq



ΩˆΩM

, (6a)

ypt` 1q “

„

yptq ` ε
BLpxptq;yptqq

Byptq



RˆRm
`

, (6b)

where ε is a constant stepsize and t is the iteration index. The
partial gradient of L with respect to the decision variables are
calculated as follows:

BL
Bpk

“ ∇pk

ÿ

iPNk

Ck,ippk,i, qk,iq

´λMk `AJ
k∇vkgkpvkqJµk, (7a)

BL
Bqk

“ ∇qk
ÿ

iPNk

Ck,ippk,i, qk,iq

´λNk `BJk∇vkgkpvkqJµk, (7b)
BL
BPM

k

“ dCMk pP
M
k q{dP

M
k ` λ, (7c)

BL
Bµk

“ gk
`

vkppk, qkq
˘

´ ηµk, (7d)
BL
Bλ “

ÿ

kPK

`

PMk ´ PLk ppk, qkq ` P
0
k

˘

´ ηλ, (7e)

where ∇vkgkpvkq is the Jacobian matrix of gk with respect
to vk, and Eqs. (7a)–(7d) are for all k P K.

D. Convergence Analysis

Define a gradient operator T px;yq “

„

BLpx;yq{Bx
´BLpx;yq{By



.

Based on Assumption 1 and the regularization terms we have
added for the dual variables to the Lagrangian, the next lemma
follows by definition.

Lemma 1: Based on Assumption 1, T px;yq is an s-strongly
monotone operator with some constant s ą 0 and is l-Lipschitz
continuous with some constant l ą 0 for any feasible x P
ΩˆΩM and y P Rˆ Rm` .

Theorem 1: Based on Assumption 1, given a constant
stepsize ε such that 0 ă ε ď ε̄ ă 2s{l2, the primal-dual
gradient dynamics (6) asymptotically converge to the unique
saddle point of the regularized Lagrangian (5).
We omit the detailed proof of Theorem 1 here because of the
space limit. It can be found in numerous literature, e.g., [17],
[18]. Moreover, asynchronous implementation of the proposed
algorithm caused by communication delay or loss can be
shown to converge to the same solutions under reasonable
assumptions; we refer to [17] for more details.

IV. DISTRIBUTED MARKET-BASED IMPLEMENTATION

A. Economic Model
Unlike most utility-owned power plants, the user-owned

DERs in the distribution feeders are usually not obliged
to follow the gradient steps specified in (7a)–(7b). On the
contrary, users are naturally driven to minimize their own
overall cost (or maximize their overall utility) featuring a
trade-off between their DERs generation cost and electricity
bills, which is formulated as follows:

min fk,ippk,i, qk,iq
over ppk,i,qk,iqPΩk,i

“ Ck,ippk,i, qk,iq ` αk,ipk,i ` βk,iqk,i. (8)

Fig. 1. Market-based distributed implementation of the primal-dual gradient
algorithm for solving the T&D system co-optimization problem.

Here, αk,i, βk,i P R are the incentive signals/electricity
prices for real and reactive power, respectively, set by the
network operator for user i in distribution feeder k. When αk,i
and βk,i are positive (resp. negative), users are incentivized
to reduce (resp. increase) the values of their pk,i and qk,i.
Moreover, once the problem formulation—specifically, Ck,i
and Ωk,i—is revealed, αk,i and βk,i can be used to induce
certain values of pk,i and qk,i by solving (8).

However, private information of users is usually inaccessible
to the network operator. We next present an iterative method
to find the optimal signals to incentivize the users to react in
a certain way that concurrently solves the T&D optimization
problem (4) [19]. As we will see, the resultant design can
be seen as a market-based equivalent implementation of the
primal-dual gradient algorithm (6).

B. Market-Based Distributed Implementation
To incentivize the users to act according to (6) so that

problem (4) can be solved, network operator needs to carefully
design the incentive signals. Note that when user k, i solves
its cost minimization problem (8), the gradient he/she takes is
in the form of:

Bfk,i{Bpk,i “ BCk,i{Bpk,i ` αk,i, (9a)
Bfk,i{Bqk,i “ BCk,i{Bqk,i ` βk,i. (9b)

Denote the signals vector of distribution feeder k as αk “
rαk,1, . . . , αk,Nk

sJ and βk “ rβk,1, . . . , βk,Nk
sJ. By compar-

ing (9) with (7a)–(7b), we design the incentive signals as:

αk “ ´λMk `AJ
k∇vkgkpvkqJµk, (10a)

βk “ ´λNk `BJk∇vkgkpvkqJµk, (10b)

which relies on network information without any private
information from the users. Using (10), we propose a market-
based iterative distributed algorithm presented as Algorithm 1.
We illustrate the algorithm in Fig. 1 which also indicates the
possibility of parallel execution of Algorithm 1 for indepen-
dent steps. By design, we have the following formal statement.

Proposition 1: Algorithm 1 is equivalent to the primal-dual
gradient algorithm for solving the saddle point of (5).
Because Algorithm 1 and the primal-dual gradient dynam-
ics (6) are equivalent, they share the same convergence prop-
erties.



Remark 1: For ease of presentation, we assume that all
DERs update with gradient steps. In reality, however, non-
cooperative DERs may update their setpoints by directly
solving (8) given the current incentive signals. This constitutes
a dual ascend algorithm that is consistent with the market-
based design (10). We refer to [20] for more details.

Algorithm 1 Distributed Market-Based T&D Co-Optimization
while stopping criterion not met do

[S1] Given incentive signals αk,iptq and βk,iptq, user i P
Nk, k P K takes a gradient step toward solving his/her
own optimization problem (8) by:

pk,ipt` 1q“
”

pk,iptq ´ ε
`

BCk,ippk,iptq, qk,iptqq{Bpk,i

`αk,iptq
˘

ı

Ωk,i

,

qk,ipt` 1q“
”

qk,iptq ´ ε
`

BCk,ippk,iptq, qk,iptqq{Bqk,i

`βk,iptq
˘

ı

Ωk,i

.

[S2] Dispatchable generator k P K updates its power
setpoints by:

PMk pt` 1q “
”

PMk ptq ´ ε
`dCMk pP

M
k ptqq

dPMk
` λptq

˘

ı

ΩM
k

.

[S3] Network operator updates the power flow by:

PLk pt` 1q“MJ
k pkpt` 1q `NJ

k qkpt` 1q ` dk,

vkpt` 1q“Akpkpt` 1q `Bkqkpt` 1q ` ck.

[S4] Network operator updates the dual variables as:

λpt` 1q“λptq ` ε
´

ÿ

kPK

`

PMk pt` 1q ´ sPLk pt` 1q ` P 0
k

˘

´ηλptq
¯

,

µkpt` 1q“
“

µkptq ` ε
`

gk
`

vkpt` 1q
˘

´ ηµkptq
˘‰

RNk
`

,

and the incentive signals as:

αkpt` 1q“´λpt` 1qMk `AJ
k∇gkpvkpt` 1qqJµkpt` 1q,

βkpt` 1q“´λpt` 1qNk `BJk∇gkpvkpt` 1qqJµkpt` 1q,

and sends the updated signals to the users.
end while

C. Nonlinear (AC) Power Flow Feedback
In the primal-dual gradient update (6), as well as in Al-

gorithm 1, while the Jacobian matrices BLpx;yq{By and
BLpx;yq{Bx are calculated based on the linearized relation-
ships (2)–(3) to simplify the computation, they lose accuracy.
To improve this, a feedback mechanism can be applied to
reduce such modeling discrepancies and guarantee that the key
system states such as vk and PLk are accurate. Specifically,
when performing Algorithm 1, instead of using linearized
power flow model in [S3], nonlinear power flow is used
to calculate vk and PLk , which are further fed into [S4] to
update the dual variables. Stability analysis with the feedback
mechanism can be found in [19]. We also use nonlinear (AC)
power flow for the numerical results in Section V next.

Fig. 2. IEEE 39-Bus transmission system is used with 7 distribution networks
connected to its load buses marked by red letters and 9 controllable generators
connected to Buses 30–38. Bus 39 is the slack bus. Zoomed-in figures show
the coupling between the transmission and distribution systems.

V. NUMERICAL RESULTS

A. System Setup

1) T&D Systems: We use the New England IEEE 39-
Bus system as the transmission network with 9 controllable
generators located at buses 30–38, and bus 39 (the slack
bus) connected to the rest of US/Canada grid. We connect
7 different distribution networks—case18, case22, case33bw,
case69, case85, case141 [21], and SCE 42-bus system [22]—
to load buses indexed 3, 7, 12, 18, 26, 28, and 31, respectively.
The total power injected into the distribution feeders will
be used as the demand of the corresponding load bus of
the transmission system. See Fig. 2 for the locations of the
generators and distribution networks.

2) Parameters: We assign quadratic cost functions ckPMk
2,

with ck set to 1, 1.5, 1.3, 1.7, 1.8, 1, 2, 0.8, and 1.2, respec-
tively, for the generators 1–9. We assign homogeneous cost
functions p2

k,i`0.1q2
k,i for DERs in distribution feeders.2 The

inequality constraints gkpvkq ď 0 are set to 0.95 p.u. ď vk ď
1.05 p.u. for all k. Linearization parameters are based on
LinDistFlow model to generate parameters Ak,Bk, ck and
Mk,Nk, dk in Eqs. (2)–(3) for the distribution networks.
Nonlinear power flow is solved to update both the transmission
and the distribution systems every iteration with MATPOWER
7.0 [21]. We set η “ 0 and ε « 5 ˆ 10´4, which is further
slightly tuned for different feeders to improve convergence.

3) Simulation Process: The system is initialized at a non-
optimal point with voltage constraints violated in some distri-
bution network. The system then approaches the optimal with
primal-dual gradient dynamics before generator 7 is set to go
down at iteration 10,000. At this point, we enlarge the feasible
set of DERs by two times to allow them to contribute more
to the grids without loss of generality.3 The system will then
approach a new optimal point with all constraints satisfied.

4) Handling the Slack Bus: In MATPOWER and other
power system analysis tools, slack buses are essential to
compensate loss and balance power; however, this automatic
balancing functionality causes problems when we intend
to manually balance Eq. (4b) with generators and DERs

2Here, the reactive power cost can be interpreted as an opportunity cost
because part of the DER’s capacity is occupied.

3Otherwise, DERs have already reached their previous limits because they
are set to contribute cheaper power than the large generators.



Fig. 3. Convergence of total power demands at the substation of all 7
distribution networks.

Fig. 4. Convergence of power outputs of all 9 generators. Generator 7 goes
down after iteration 20,000.

from load buses. Specifically, in MATPOWER,
ř

kPK
`

PMk ´

PLk ppk, qkq ` P 0
k

˘

is always zero thanks to the slack bus,
making updating λ with gradient (7e) impossible. To address
this issue, we apply the following techniques to fix the
output of the slack bus. We record the initial real power
of the slack bus as P 0

slack. Afterwards, the output of the
slack bus changes according to all the other generation and
load buses, denoted by PslackpP

M ,PLpp, qqq. Then, instead
of enforcing the constraint Eq. (4b), we use the constraint
P 0

slack “ PslackpP
M ,PLpp, qqq to achieve power balance using

the generation and load buses while prohibiting the slack bus
from participation.

B. Convergence

As shown in Fig. 3 and Fig. 4, the power outputs of
the generators and distribution substations gradually stabilize
before Generator 7 goes down at iteration 20,000, disturbing
the imminent convergence. After Generator 7 goes down, the
value of λ increases to reflect a higher price for balancing the
power demand and supply, as Fig. 7 shows. The larger λ then
leads to more power outputs from the remaining generators
and DERs in the distribution network; see Fig. 4 for increasing

Fig. 5. Convergence of total power output from generators and from all
distribution networks. The unchanged slack bus output indicates that power
demand and supply have been balanced.

Fig. 6. Convergence of voltage magnitudes of sampled nodes from 7
distribution networks. The voltage magnitudes approach the upper bound of
1.05 p.u. to allow for maximal real power generation from DERs.

generator outputs and Fig. 3 for reducing load bus demand.
As a result, we see from Fig. 5 that the total outputs from the
distribution feeders compensate for the lost generator, with the
slack bus maintaining constant output as expected.

Fig. 6 plots the voltage convergence at sampled nodes in all
7 distribution feeders. It is worth noticing that most voltage
magnitudes are pushed towards the 1.05 p.u. upper limits
because DERs are incentivized to generate more real power to
support the transmission system, increasing the voltage levels.
Here, negative reactive power is injected to allow for more
real power generation without violating the voltage bounds.

In Fig. 7, we record and plot the convergence of signal
λ, which is identical for all nodes, along with signals α
and β of arbitrarily sampled nodes from the 7 distribution
feeders without losing generality. Note that the value of λ
increases after Generator 7 goes down to incentivize more
real power input from other generators and DERs. α is smaller
than λ because AJ

k∇vkgkpvkqJµk in Eq. (10a) is negative to
discourage real power generation resulting from overvoltages;
β is even smaller because we have λNk “ 0 here and
Bk ą Ak element-wise for distribution networks in Eq. (10b),



Fig. 7. Convergence of λ, in addition to α and β of sampled nodes from all
7 distribution networks.

Fig. 8. Total cost reduced by replacing some of the high-marginal-cost power
from generators with low-marginal-cost power from DERs.

driving more negative reactive power to lower the voltages.

C. Cost Analysis
We plot the convergence of the values of the total cost

function in Fig. 8. For comparison, we conduct another set
of simulations without involving distribution systems in the
economic dispatch, i.e., set λ “ 0 in the signals sent to
DERs in (10). A higher total cost is recorded without DERs’
participation. Such results are expected because even though
DERs and generators share similar cost functions, the marginal
costs are significantly different: to provide the same amount
of power, it would be more economic and more optimal to
replace some of the high-marginal-cost generator outputs with
low-marginal-cost DERs outputs.

VI. CONCLUSION

This letter formulated a co-optimization problem for eco-
nomic dispatch in the transmission system and voltage regu-
lation in the distribution networks that are connected to the
load buses of the transmission system. Large generators in the
transmission system and DERs in the distributed systems are
jointly leveraged to achieve the optimal points of the T&D

system. We proposed a primal-dual gradient algorithm, as
well as its distributed market-based equivalence, to solve this
problem. Numerical results validated that DERs could provide
economic grid services to the transmission system while
helping to maintain operational constraints in the distribution
networks.
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