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A data-driven method for computing polyhedral invariant sets of

black-box switched linear systems

Zheming Wang and Raphaël M. Jungers

Abstract— In this paper, we consider the problem of invariant
set computation for black-box switched linear systems using
merely a finite set of observations of system trajectories. In
particular, this paper focuses on polyhedral invariant sets.
We propose a data-driven method based on the one step
forward reachable set. For formal verification of the proposed
method, we introduce the concepts of λ-contractive sets and
almost-invariant sets for switched linear systems. The convexity-
preserving property of switched linear systems allows us to
conduct contraction analysis on the computed set and derive a
probabilistic contraction property. In the spirit of non-convex

scenario optimization, we also establish a chance-constrained
guarantee on set invariance. The performance of our method
is then illustrated by numerical examples.

I. INTRODUCTION

Switched linear systems consist of a finite set of linear

dynamics (called modes) and a switching rule that indicates

the current active mode of the system. They constitute an

important family of hybrid systems. While the system is

governed by linear dynamics dwelling in the same mode, the

jump from one mode to another causes interesting hybrid

phenomena distinct from the behaviors of the individual

linear dynamics. For instance, despite the simplicity of the

dynamics, stability analysis for a switched linear system is

still complicated due to the switching signal, see [1] and the

references therein.

Invariant set theory is widely used in system analysis and

has been successfully generalized to study the properties

of switched systems, see, e.g., [2]. One typical technique

for invariant set characterization is to construct Lyapunov

functions of the switched system, see, e.g., [1], [3], [4]. In

the presence of state constraints, more complications arise

because invariant sets have to be constraint admissible, see

[5] for the case of polyhedral constraints. While handling

general nonlinear constraints is still an open problem, there

exist algorithms for computing invariant sets for certain

classes of nonlinear constraints, see, e.g., [6], [7]. In [8],

combinatorial methods have been introduced for switched

systems where the switching signals are restricted by a

labeled directed graph or an automaton.

The aforementioned algorithms are all based on the knowl-

edge of a hybrid model of the switched system, which is usu-

The authors are with the ICTEAM Institute, UCLouvain, Louvain-
la-Neuve,1348, Belgium. Email addresses: zheming.wang@uclouvain.be
(Zheming Wang), raphael.jungers@uclouvain.be (Raphaël M. Jungers)
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ally obtained by hybrid system identification [9]. However,

except for simple systems with very low dimensions, hybrid

system identification is often computationally demanding.

In fact, identifying a switched linear system is known to

be NP-hard [10]. Data-driven analysis under the framework

of black-box systems has been an active area of research

in recent years, see [11]–[13]. For instance, probabilis-

tic stability guarantees are provided in [12] for black-box

switched linear systems, based merely on a finite number of

observations of trajectories. Data-driven analysis also allows

us to study set invariance for black-box systems. Recently,

a scenario-based set invariance verification method has been

proposed in [13] for black-box discrete-time nonlinear sys-

tems. However, this method does not apply to switched

systems with arbitrarily switching. In this paper, we consider

the computation of invariant sets of black-box switched linear

systems under arbitrary switching. The data-driven stability

analysis technique in [12] essentially attempts to compute

an invariant ellipsoid. However, ellipsoidal invariant sets are

often conservative for switched linear systems, because they

rely on a common quadratic Lyapunov function, which may

not exist even if the system is stable, see [1]. Hence, we

focus on polyhedral invariant sets of switched linear systems.

More specifically, our goal is to develop a data-driven method

for computing polyhedral invariant sets in the spirit of the

scenario optimization approach [14]. The contributions of

this paper are threefold. First, inspired by [15], we propose

a geometric algorithm based on a finite set of snapshot pairs

of the states. Second, we introduce the concept of almost-

invariant sets for switched linear systems and show their con-

nections to λ-contractive sets via contraction analysis. Third,

we derive probabilistic guarantees for the set computed from

the geometric algorithm.

The rest of the paper is organized as follows. This section

ends with the notation, followed by the next section on the

review of preliminary results on invariant sets and switched

linear systems. Section III presents the proposed data-driven

method. In Section IV, probabilistic guarantees of the pro-

posed method are discussed. Numerical results are provided

in Section V.

Notation. The non-negative integer set is indicated by Z
+.

For a square matrix Q, Q ≻ (�) 0 means Q is positive

definite (semi-definite). Sn−1 and Bn are the unit sphere and

unit ball respectively in R
n. Let µ(·) denote the uniform

spherical measure on Sn−1 with µ(Sn−1) = 1. For any

symmetric matrix P ≻ 0, we define ‖x‖P :=
√
xTPx.

Given any set S ⊆ R
n, conv(S) is the convex hull of S and

let ‖x‖S denote min{λ ≥ 0 : x ∈ λS} for any x ∈ R
n. A

http://arxiv.org/abs/2009.10984v2


(bounded) polytope S is called a C-polytope if it is convex

and contains the origin in its interior. For any C-polytope

S, let V(S) denote the set of vertices and F(S) denote

the set of facets. Given any u ∈ R
n and θ ∈ [0, π/2], let

Cap(u, θ) := {v ∈ Sn−1 : uT v ≥ ‖u‖ cos(θ)} denote the

spherical cap with the direction u and the angle θ.

II. PRELIMINARIES AND PROBLEM STATEMENT

Switched linear systems are described below:

x(t+ 1) = Aσ(t)x(t), t ∈ Z
+ (1)

where σ(t) : Z
+ → M := {1, 2, · · · ,M} a time-

dependent switching signal that indicates the current active

mode of the system among M possible modes in A :=
{A1, A2, · · · , AM}. For any given switching sequence σ, let

AAAσσσ(k) := Aσ(k−1) · · ·Aσ(1)Aσ(0), k ∈ Z
+ (2)

with σσσ(k) := {σ(k − 1), · · · , σ(1), σ(0)}, σσσ(0) = ∅, and

AAAσσσ(0) = In. The stability of System (1) can be described by

the joint spectral radius (JSR) of the matrix set A defined

by [16]

ρ(A) := lim
k→∞

max
σσσ(k)∈Mk

‖AAAσσσ(k)‖1/k (3)

Throughout the paper, we assume that ρ(A) < 1. We focus

on the computation of invariant sets of System (1) under

arbitrary switching, which are formally defined below.

Definition 1: A nonempty set Z ⊆ R
n is an invariant set

for System (1) if x ∈ Z implies that Ax ∈ Z for any A ∈ A.

From the definition above, invariant sets are inherently

related with the stability of System (1). For instance, the level

set of a common quadratic Lyapunov function, which can be

efficiently computed via semidefinite programming when it

exists and the dynamics matrices A are known, see, e.g.,

[1], is an ellipsoidal invariant set. In this paper, we focus on

polyhedral invariant sets. Under the assumption that ρ(A) <
1, the existence of a polyhedral invariant set is guaranteed,

while an ellipsoidal invariant set may not exist because a

common quadratic Lyapunov function does not necessarily

exist. This is one of the reasons why polyhedral invariant

sets are often more appealing for switched linear systems,

even though the computation may be more expensive.

A necessary and sufficient condition for set invariance in

the polyhedral case is given below.

Proposition 1: A C-polytope S ⊆ R
n is an invariant set

for System (1) if and only if

‖Aσx‖S ≤ ‖x‖S , ∀x ∈ Sn−1, ∀σ ∈M. (4)

Proof: This proposition is a direct consequence of the homo-

geneity property, i.e., for any γ > 0, ‖γx‖S = γ‖x‖S and

‖Aσγx‖S = γ‖Aσx‖S . �

When the dynamics matrices A are known, classical algo-

rithms based on iterative linear programming exist, see, e.g.,

[5], [15], allowing to compute such a set efficiently. However,

as we have mentioned above, in many cases, approximating

the model of a switched system is computationally demand-

ing, let alone identifying it exactly. This paper considers the

case where the dynamics matrices A are unknown. We call

such systems black-box switched linear systems.

In the black-box case, we sample a finite set of the initial

states and the switching modes. More precisely, we randomly

and uniformly generate N initial states on Sn−1 and N
modes in M, which are denoted by ωN := {(xi, σi) ∈
Sn−1 ×M : i = 1, 2, · · · , N}. From this random sampling,

we observe the data set {(xi, Aσi
xi) : i = 1, 2, · · · , N},

where Aσi
xi is the successor of the initial state xi. Note

that the switching signal does not have to be observable.

For the given data set ωN (or {(xi, Aσi
xi)}Ni=1), we define

the following sampled problem:

find S s.t. ‖Aσx‖S ≤ ‖x‖S , ∀(x, σ) ∈ ωN (5)

where S is a C-polytope. As we assume asymptotic stability

under arbitrary switching, we are interested in invariant sets

that contain the origin in their interiors. For this reason, S
in (5) is restricted to be a C-polytope. In this paper, we

attempt to solve this sampled problem (5) using a geometric

algorithm by scaling the sampled points and computing the

convex hull of the scaled points iteratively. We will show

that convergence of this algorithm is guaranteed under the

assumption that ρ(A) < 1.

III. DATA-DRIVEN COMPUTATION OF POLYHEDRAL

INVARIANT SETS

This section presents the proposed data-driven method for

computing polyhedral invariant sets of black-box switched

linear systems.

A. A geometric algorithm

We first present a geometric algorithm for computing

invariant sets for the case where the matrices A are known.

This geometric algorithm is based on the one step forward

reachable set [2], [15]. Given an initial C-polytope X , let us

define:

Rk+1 = conv(Rk

⋃

σ∈M

AσRk), R0 = X, k ∈ Z
+. (6)

The properties of the algorithm above are stated in the

following proposition.

Proposition 2 ( [15]): Suppose ρ(A) < 1, let us define

Rk as in (6) for all k ∈ Z
+ with an initial C-polytope X .

Then, the following results hold. (i) There exists a finite k
such that Rk+1 = Rk = R∞. (ii) The set R∞ is the smallest

invariant set that contains X .

Proof: A sketch of the proof is given here. We refer the

readers to [15] for the detailed proof. From (1), ∀k ∈ Z
+,

Rk = conv(X
⋃

σ∈M AσX
⋃ · · ·⋃σσσ∈Mk AAAσσσX) where AAAσσσ

is defined in (2). Since ρ(A) < 1 and X is a C-polytope,

there always exists a k such that AAAσσσX ⊆ X for all σσσ ∈
Mk+1, which implies that Rk+1 = Rk = R∞. �

B. The proposed data-driven method

With the sample ωN and an initial C-polytope X , we now

present a data-driven version of the geometric algorithm (6):

R̃k+1(ωN ) = conv(R̃k(ωN ) ∪Ωk(ωN )), ∀k ∈ Z
+ (7)



where R̃0(ωN ) = X and

Ωk(ωN ) :={ Aσx

‖x‖R̃k(ωN )

: (x, σ) ∈ ωN}

∪ { −Aσx

‖ − x‖R̃k(ωN )

: (x, σ) ∈ ωN}. (8)

The convergence of the data-driven geometric algorithm is

stated in the following lemma.

Theorem 1: Suppose ρ(A) < 1. Given a sample of N
points in Sn−1 ×M, denoted by ωN , let Rk and R̃k(ωN )
be defined as in (6) and (7) respectively for all k ∈ Z

+ with

the same initial C-polytope X . Then, the following results

hold. (i) For any k ∈ Z
+, R̃k(ωN ) ⊆ Rk. (ii) The sequence

{R̃k(ωN )}k∈Z+ is convergent. (iii) R̃∞(ωN ) is a feasible

solution to Problem (5).

Proof: (i) The proof goes by induction. Suppose R̃k(ωN ) ⊆
Rk for some k ∈ Z

+. From the definition in (8), it holds that

Ωk(ωN ) ⊆ ⋃

σ∈M AσRk. Hence, R̃k+1(ωN ) ⊆ Rk+1. Thus,

the statement is true as R̃0(ωN ) ⊆ R0. (ii) The convergence

of {R̃k(ωN )}k∈Z+ is a direct consequence of (i). (iii) From

(7), when {R̃k(ωN )}k∈Z+ converges, Ω∞(ωN ) ⊆ R̃∞(ωN ),
which implies that Aσx

‖x‖
R̃∞(ωN )

∈ R̃∞(ωN ) for any (x, σ) ∈
ωN . Hence, ‖Aσx‖R̃∞(ωN ) ≤ ‖x‖R̃∞(ωN ) for any (x, σ) ∈
ωN . �

The theorem above shows that {R̃k(ωN)}k∈Z+ eventually

converges to a feasible solution of the sampled problem (5).

However, finite-time convergence of (6) may not be pre-

served. For the practical implementation, we use a stopping

criterion as shown in Algorithm 1.

Algorithm 1 Data-driven computation of polyhedral invari-

ant sets

Input: X , ωN and some tolerance ǫ > 0
Output: R̃k(ωN )

Initialization: Let k ← 0 and R̃k(ωN )← X ;

1: Obtain Ωk(ωN ) from (8);

2: if Ωk(ωN ) ⊆ (1 + ǫ)R̃k(ωN ) then

3: Terminate;

4: else

5: Compute R̃k+1(ωN ) from (7);

6: Let k ← k + 1 and go to Step 1.

7: end if

IV. PROBABILISTIC SET INVARIANCE GUARANTEES

In this section, we formally discuss probabilistic guaran-

tees on the data-driven method proposed in Section III.

A. λ-contractive sets and almost-invariant sets

While the polyhedral set obtained from Algorithm 1 may

not be an exact invariant set because we only use a finite

number of samples, it does enjoy some properties in the

probabilistic sense. To state these properties, we need to

bring in two concepts for switched linear systems. Let us

first recall the concept of λ-contractive sets.

Definition 2: Given λ ≥ 0, a set S ⊆ R
n is a λ-

contractive set for System (1) if x ∈ S implies that Ax ∈ λS
for any A ∈ A. When λ > 1, the set can be in fact expansive,

but we still call it a λ-contractive set to be consistent.

We also generalize the definition of invariant sets for

black-box switched linear systems. Here, we consider

almost-invariant sets, which refer to sets that are invariant

almost everywhere except in an small subset, see the defini-

tion below.

Definition 3 (adapted from [13], [17]): Given ǫ ∈ (0, 1],
a set S ⊆ R

n is an ǫ almost-invariant set for System (1) if

µ({x ∈ Sn−1 : ‖Ax‖S ≤ ‖x‖S, ∀A ∈ A}) ≥ 1 − ǫ, where

µ(·) denotes the uniform spherical measure.

We then show that an ǫ almost-invariant set for System

(1) is also a λ-contractive set for some λ > 0. To obtain a

tight contraction rate, we introduce additional definitions as

follows. For any ǫ ∈ (0, 1/2), let

δ(ǫ) :=

√

1− I−1(2ǫ;
n− 1

2
,
1

2
), (9)

θ(ǫ) := cos−1(δ(ǫ)), (10)

where I(x; a, b) is the regularized incomplete beta function

(see, e.g., [12]) defined as

I(x; a, b) :=
∫ x

0 ta−1(1− t)b−1dt
∫ 1

0
ta−1(1− t)b−1dt

. (11)

For any given C-polytope S ⊆ R
n and u ∈ V(S), let

γ(u, S, ǫ) := max
α≥0
{α : αu ∈ conv(S

⋂

C(u, θ(ǫ)))} (12)

where ǫ ∈ (0, 1/2) and C(u, θ) is given by

C(u, θ) := {x ∈ R
n : uTx ≤ ‖x‖‖u‖ cos(θ)}, (13)

which is the closure of the complement of the cone C(u, θ)
with the direction u and the angle θ:

C(u, θ) := {x ∈ R
n : uTx ≥ ‖x‖‖u‖ cos(θ)}. (14)

A geometric illustration of the definition in (12) is illustrated

in Figure 1. Let us define:

γmin(S, ǫ) := min
u∈V(S)

γ(u, S, ǫ). (15)

With these definitions, we state the contraction property

of almost-invariant sets in the following proposition.

Proposition 3: Given ǫ ∈ (0, 1/2), suppose a C-polytope

S ⊆ R
n is an ǫ almost-invariant set of System (1). Let

γmin(S, ǫ) be defined as in (15). Then, S is a λ-contractive

set of System (1) with λ = 1/γmin(S, ǫ).
The proof of Proposition 3 is given in the appendix.

From the definition in (15), to obtain γmin(S, ǫ), we need

to compute γ(u, S, ǫ), which requires the computation of

conv({x ∈ S : uTx ≤ ‖x‖‖u‖ cos(θ)}) for all u ∈ V(S). In

general, computing the convex hull of a nonlinear constraint

set is a difficult problem, see [18]. For this reason, we

formulate a relaxation of (15), which yields a computational

tractable lower bound which can be computed by solving



θ(ǫ)

ǫ

S

conv(S
⋂ C(u, θ(ǫ))))

u

γ(u, S, ǫ)S

θ(ǫ)

ǫ

δ(ǫ)

Fig. 1: Geometric illustration of the definition γ(u, S, ǫ): the

red curve denotes the subset of measure ǫ on the unit sphere,

the gray area denotes conv(S
⋂ C(u, θ(ǫ)))) and the blue

area denotes γ(u, S, ǫ)S.

convex problems. Given a C-polytope S and ǫ ∈ (0, 1/2),
we define:

γ(S, ǫ) := min
u∈V(S)

δ(ǫ)dmin(u, S, ǫ)/‖u‖ (16)

where δ(ǫ) is defined in (9), and

dmin(u, S, ǫ) := min
x∈∂S
{‖x‖ : x ∈ C(u, θ(ǫ))}. (17)

The properties of γ(S, ǫ) are given in the following lemma.

Lemma 1: Given any C-polytope S ⊆ R
n and any ǫ ∈

(0, 1/2), let us define γmin(S, ǫ) and γ(S, ǫ) in (15) and (16)

respectively. Then, γmin(S, ǫ) ≥ γ(S, ǫ).

The proof of Lemma 1 is given in the appendix. We then

show that γ(S, ǫ) can be computed by solving a set of convex

optimization problems. Given any C-polytope, let us define

the following problem, for any u ∈ V(S) and f ∈ F(S) that

satisfy f ∩ C(u, θ(ǫ)) 6= ∅,

dfmin(u, S, ǫ) := min
x∈f
{‖x‖ : uTx ≥ δ(ǫ)‖x‖‖u‖} (18)

This is a convex problem and can be efficiently solved by

classic solvers, see [19]. The following lemma shows that

γ(S, ǫ) defined in (17) can be computed by solving (18).

Lemma 2: Given any ǫ ∈ (0, 1/2), C-polytope S ⊆ R
n,

and u ∈ V(S), one has:

dmin(u, S, ǫ) = min
f∈F(S)

dfmin(u, S, ǫ), (19)

where dmin(u, S, ǫ) and dfmin(u, S, ǫ) are defined in (17) and

(18) respectively.

Proof: To compute dmin(u, S, ǫ), we need to check all the

points on ∂S ∩C(u, θ(ǫ)). This can be equivalently done by

checking all the facets of S and solving Problem (18). �

Remark 1: Suppose S̃ = {x ∈ Sn−1 : ‖Ax‖S ≤
‖x‖S , ∀A ∈ A}. From the proof of Proposition 3, the

results above also hold for the case where the violating subset

Sn−1 \ S̃ is the union of a group of disjoint sets whose

measures are bounded by ǫ.

B. Contraction analysis

With the discussion above, we are now in a position

to derive a probabilistic contraction property of the set

computed from Algorithm 1. Let us recall the notions of

covering and packing numbers, see, e.g., Chapter 27 of [20].

Definition 4: Given ǫ ∈ (0, 1/2), a set U ⊂ Sn−1 is called

an ǫ-covering of Sn−1 if, for any x ∈ Sn−1, there exists

u ∈ U such that uTx ≥ δ(ǫ). The covering number Nc(ǫ)
is the minimal cardinality of an ǫ-covering of Sn−1.

Definition 5: Given ǫ ∈ (0, 1/2), a set U ⊂ Sn−1 is called

an ǫ-packing of Sn−1 if, for any u, v ∈ U , uT v > δ(ǫ). The

packing number Np(ǫ) is the maximal cardinality of an ǫ-
packing of Sn−1.

With these two notions, the following lemma is obtained.

Lemma 3: For any ǫ ∈ (0, 1/2), let δ(ǫ) and θ(ǫ) be

defined in (9) and (10) respectively. Then,

Nc(ǫ) ≤ Np(ǫ) ≤
2

I(sin2( θ(ǫ)2 ); n−1
2 , 1

2 )
. (20)

Proof: Suppose U is the ǫ-packing with the maximal

cardinality. The first inequality follows from the fact

that U is also a ǫ-covering. For any direction u ∈
Sn−1 and any angle θ ∈ [0, π/2], the spherical cap

Cap(u, θ) has a measure of 1
2I(sin2(θ); n−1

2 , 1
2 ) (see [12]

for details). From the definition of an ǫ-packing, the

spherical caps {Cap(u, θ(ǫ)/2)}u∈U are disjoint. Hence,
∑

u∈U µ (Cap(u, θ(ǫ)/2)) ≤ 1, which leads to the second

inequality. �

The probabilistic guarantee on contraction is then stated

in the following theorem. Recall that M is the number of

modes in M (or A).

Theorem 2: Suppose ρ(A) < 1. Given N ∈ Z
+, let

ωN be i.i.d. with respect to the uniform distribution P over

Sn−1 ×M. With an initial C-polytope X , the set R̃∞(ωN )
is defined as in (7). For any ǫ ∈ (0, 1/2), let

B(ǫ;N) =
2M(1− ǫ

M )N

I(sin2( θ(ǫ)2 ); n−1
2 , 1

2 )
. (21)

where θ(ǫ) is defined in (10). Then, given any ǫ ∈
(0, 1/2), with probability no smaller than 1 − B(ǫ;N),
R̃∞(ωN ) is a λ-contractive set of System (1) with λ =
1/γ(R̃∞(ωN ), I(sin2(2θ(ǫ)); n−1

2 , 1
2 )/2), where γ(·, ·) is

defined in (16).

Proof: Consider the maximal ǫ-packing U with the cardinal-

ity Np. From Lemma 3, {Cap(u, θ(ǫ))}u∈U covers Sn−1.

Suppose ωN is sampled randomly according to the uniform

distribution, then the probability that each spherical cap in

{Cap(u, θ(ǫ))}u∈U contains M points with M different

modes is no smaller than 1 − NpM(1 − ǫ
M )N ≥ B(ǫ;N).

Hence, the angle of the largest spherical cap that violates the

condition ‖Ax‖R̃∞(ωN ) ≤ ‖x‖R̃∞(ωN ), ∀A ∈ A, is bounded

by 2θ(ǫ). Thus, the measure of the largest violating spherical

cap is bounded by I(sin2(2θ(ǫ)); n−1
2 , 1

2 )/2. From Proposi-

tion 3, and Lemmas 1 & 2, R̃∞(ωN ) is a λ-contractive set

with the rate of 1/γ(R̃∞(ωN ), I(sin2(2θ(ǫ)); n−1
2 , 1

2 )/2). �
Remark 2: As the dimension increases, the number

of vertices of R̃∞(ωN ) increases. The computation of



γ(R̃∞(ωN ),Mε(s(ωN ))) constitutes the main computa-

tional burden of our method.

C. Chance-constrained set invariance guarantee

In the rest of this section, we show that the so-called

chance-constrained theorem [14] is applicable to the problem

of invariant set computation of switched linear systems with

the definition of ǫ almost-invariant sets in Definition 3. To

formally state the probabilistic guarantee on set invariance,

we recall the definition of supporting points in [14].

Definition 6 ( [14]): Consider a sample of N points in

Sn−1 ×M, denoted by ωN , and the iteration (7) with an

initial C-polytope X , (x, σ) ∈ ωN is called a supporting

point, if R̃∞(ωN \ {(x, σ)}) 6= R̃∞(ωN ). Let s(ωN ) denote

the number of supporting points in ωN .

The chance-constrained set invariance guarantee is stated in

the following theorem.

Theorem 3 (adapted from Theorem 1 in [14]): Suppose

the same conditions as in Theorem 2 hold. Let PN denote

the probability measure in the N -Cartesian product of

Sn−1 × M. Let R̃∞(ωN ) be obtained from (7) with an

initial C-polytope X . Then, for any β ∈ (0, 1)

P
N({ωN : P(V (R̃∞(ωN ))) > ε(s(ωN ))}) ≤ β (22)

where V (R̃∞(ωN )) := {(x, σ) : ‖Aσx‖R̃∞(ωN ) >
‖x‖R̃∞(ωN )}, s(ωN) is the number of supporting points as

defined in Definition 6, and ε : {0, 1, · · · , N} → [0, 1] is a

function defined as:

ε(k) :=







1 if k = N ;

1− N−k

√

β

N(Nk)
0 ≤ k < N.

(23)

Since it is a simple adaptation of Theorem 1 in [14], the

proof is omitted. Indeed, this bound is established a posteriori

because it is based on the measured data ωN . With Theorem

3 in hand, we can derive a probabilistic guarantee on set

invariance in the following corollary.

Corollary 1: Suppose the same conditions as in Theorem

3 hold. Let R̃∞(ωN ) be the solution obtained from (7) with

an initial C-polytope X and s(ωN) be defined in Definition

6. Then, with probability no smaller than 1 − β, R̃∞(ωN )
is Mε(s(ωN)) almost-invariant set for System (1), where

ε(s(ωN )) is defined in (23).

Proof: From Theorem 3, with probability no smaller than

1 − β, P(V (R̃∞(ωN ))) ≤ ε(s(ωN )). Since {x ∈ Sn−1 :
‖Ax‖R̃∞(ωN ) > ‖x‖R̃∞(ωN )} = {x ∈ Sn−1 : ∃σ ∈
M : (x, σ) ∈ V (R̃∞(ωN ))}. Hence, µ(x ∈ Sn−1 :
‖Ax‖R̃∞(ωN ) > ‖x‖R̃∞(ωN )) ≤ MP(V (R̃∞(ωN ))) ≤
Mε(s(ωN)). �

From Proposition 3, an ǫ almost-invariant set is also a λ-

contractive set for some λ > 0. In this regard, the guarantee

in Theorem 3 (or Corollary 1) provides more information

than the one in Theorem 2. However, as validated by numer-

ical simulation in the next section, with the same number of

samples and the same confidence level, the contraction rate

obtained from Theorem 2 is often better in most of cases

(unless s(ωN ) is very small). In other words, Theorem 3

provides more information with lower confidence level while

Theorem 2 provides less information with higher confidence

level for the same setting.

V. NUMERICAL SIMULATION

We consider switched linear systems of dimension from 2
to 8 and number of modes from 4 to 8, generated using the

JSR toolbox [21]. The initial set is X = {x : ‖x‖∞ ≤ 1}
and 10000 points are sampled randomly and uniformly on the

unit sphere. We then use Algorithm 1 to compute R̃∞(ωN )
with a tolerance of 10−8. While the matricesA are unknown,

we still show R∞ for reference. In order to evaluate the

difference between R∞ and its inner bound R̃∞(ωN ), we

compute λ∗ = max{λ ≥ 0 : λR∞ ⊆ R̃∞(ωN )}. The results

are given in Table I, where k̃ is the number of iterations

needed for Algorithm 1 and k∗ is the number of iterations

needed for the standard algorithm in (6). As expected, for

low-dimensional systems, R̃∞(ωN ) can be considered as

a good approximation of R∞, while, for high-dimensional

systems, the difference is more significant.

(n,M) k̃ V(R̃∞(ωN )) k∗ V(R∞) λ∗

(2, 4) 4 8 2 8 0.9992

(3, 4) 6 20 2 22 0.9551

(4, 4) 6 34 2 38 0.8863

(4, 6) 9 52 2 48 0.8795

(6, 6) 10 192 3 272 0.7093

(8, 6) 11 322 3 1012 0.6158

(8, 8) 11 354 3 1196 0.5837

TABLE I: Performance of the proposed algorithm for differ-

ent values of n and M .

For rigorous verification, we compute the probabilistic

bounds derived in Theorems 2 & 3 for the case where

n = 3 and M = 4. We fix the confidence level at β =
0.001. For Theorem 2, we find N such that B(ǫ;N) = β
for different values of ǫ and compute the contraction rate

λB := 1/γ(R̃∞(ωN ), I(sin2(2θ(ǫ)); n−1
2 , 1

2 )/2). Thus, we

obtain a curve of contraction rate against the number of

samples N . For Theorem 3, we compute ε(s(ωN )) and

λε := 1/γ(R̃∞(ωN),Mε(s(ωN ))) for different values of

N . The curves given in Figure 2 show that the contraction

rate from Theorem 2 is tighter.
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Fig. 2: Probabilistic guarantees obtained for the 3-

dimensional example with 4 modes.



VI. CONCLUSIONS

We have presented a data-driven method for computing

polyhedral invariant sets for black-box switched linear sys-

tems based on the one step forward reachable set. The

convergence of this method is guaranteed under the stability

assumption. Almost-invariant sets have been introduced for

switched linear systems. The convexity-preserving property

of switched linear systems allowed us to establish a proba-

bilistic guarantee a priori via contraction analysis. With the

chance-constraint theorem for nonconvex problems, we have

also derived an a posteriori guarantee which provides a bound

on the level of set invariance violation of the computed

set. Finally, numerical examples are given to illustrate the

performance of the proposed method.

APPENDIX

Proof of Proposition 3: Let S̃ = {x ∈ Sn−1 : ‖Ax‖S ≤
‖x‖S , ∀A ∈ A} and α∗ := maxα≥0{α : αS ⊆ conv({x ∈
S : x/‖x‖ ∈ S̃})}. For any x ∈ {x ∈ S : x/‖x‖ ∈ S̃}
and A ∈ A, Ax ∈ S, which implies that Aconv({x ∈
S : x/‖x‖ ∈ S̃}) ⊆ S for any A ∈ A. Hence, α∗AS ⊆
Aconv({x ∈ S : x/‖x‖ ∈ S̃}) ⊆ S for any A ∈ A. That is,

for any x ∈ S, Ax ∈ 1
α∗

S for any A ∈ A. Therefore,

S is a 1
α∗

-contractive set. Now, it suffices to show that

γmin(S, ǫ) is a lower bound of α∗. For any u ∈ V(S), let

ᾱ(u) := maxα≥0{α : αu ∈ conv({x ∈ S : x/‖x‖ ∈ S̃})}.
Then, it holds that α∗ = minu∈V(S) ᾱ(u). In the rest of

the proof, we aim to show that ᾱ(u) ≥ γ(u, S, ǫ) for any

u ∈ V(S). Suppose θ̃ is the smallest θ such that the set

{α ≥ 0 : αu ∈ conv({x ∈ ∂S : x/‖x‖ ∈ S̃ ∩ Cap(u, θ)})}
is non-empty. Let α̃(u) := maxα≥0{α : αu ∈ conv({x ∈
∂S : x/‖x‖ ∈ S̃ ∩ Cap(u, θ̃)})}. Since conv({x ∈ S :
x/‖x‖ ∈ S̃}) ⊇ conv({x ∈ ∂S : x/‖x‖ ∈ S̃ ∩ Cap(u, θ̃)}),
ᾱ(u) ≥ α̃(u). The value of α̃(u) depends on the shape of the

violating set Sn−1\S̃. Note that the set (Sn−1\S̃)\Cap(u, θ̃)
does not affect the value of α̃(u). From this observation

and the relation between the angel and the measure of the

spherical cap (see [12] for details), we can see that α̃(u)
reaches the minimal when Cap(u, θ̃) = Sn−1 \ S̃ with

θ̃ = δ(ǫ) as defined in (9). It can be verified that α̃(u)
becomes γ(u, S, ǫ) in this case. Therefore, ᾱ(u) ≥ γ(u, S, ǫ)
and thus α∗ ≥ γmin(S, ǫ). �

Proof of Lemma 1: (i) Since θ(ǫ) ∈ (0, π/2), conv(S ∩
C(u, θ(ǫ)))) = conv(∂S∩C(u, θ(ǫ)))) for any u ∈ V(S). It is

obvious that ∂S =
(

∂S ∩ C(u, θ(ǫ)))
)

∪ (∂S ∩ C(u, θ(ǫ)))) .
Taking convex hull of both sides yields S ⊆ conv(∂S ∩
C(u, θ(ǫ)))) ∪ conv(∂S ∩ C(u, θ(ǫ)))), which implies that

conv(S ∩ C(u, θ(ǫ)))) ⊇ S \ conv(∂S ∩ C(u, θ(ǫ)))). Thus,

γ(u, S, ǫ) ≤ sup
0≤α≤1

{α : αu ∈ S \ conv(∂S
⋂

C(u, θ(ǫ))))}

= sup
0≤α≤1

{α : αu 6∈ conv(∂S
⋂

C(u, θ(ǫ))))}.

From the definition in (14), it can be verified that

∂S
⋂

C(u, θ(ǫ)) ={x ∈ ∂S : uTx ≥ ‖x‖‖u‖δ(ǫ)} (24)

⊆{x ∈ ∂S : uTx ≥ ‖u‖dmin(u, S, ǫ)δ(ǫ)}

where dmin(v, S, ǫ) is defined as in (17). Observe that

conv({x ∈ ∂S : uTx ≥ ‖u‖dmin(u, S, ǫ)δ(ǫ)}) = {x ∈
S : uTx ≥ ‖u‖dmin(u, S, ǫ)δ(ǫ)}. This, together with (24),

implies that sup0≤α≤1{α : αu 6∈ conv(∂S
⋂ C(u, θ(ǫ))))} ≥

δ(ǫ)dmin(u, S, ǫ)/‖u‖. Finally, we arrive at γ(u, S, ǫ) ≥
δ(ǫ)dmin(u, S, ǫ)/‖u‖, which implies that γmin(S, ǫ) ≥
γ(S, ǫ). This completes the proof. �
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