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Regret-Optimal Full-Information Control
Oron Sabag, Gautam Goel, Sahin Lale, Babak Hassibi

Abstract—We consider the infinite-horizon, discrete-time full-
information control problem. Motivated by learning theory, as a
criterion for controller design we focus on regret, defined as the
difference between the LQR cost of a causal controller (that has
only access to past and current disturbances) and the LQR cost of
a clairvoyant one (that has also access to future disturbances). In
the full-information setting, there is a unique optimal non-causal
controller that in terms of LQR cost dominates all other con-
trollers, and we focus on the regret compared to this particular
controller. Since the regret itself is a function of the disturbances,
we consider the worst-case regret over all possible bounded
energy disturbances, and propose to find a causal controller that
minimizes this worst-case regret. The resulting controller has
the interpretation of guaranteeing the smallest possible regret
compared to the best non-causal controller that can see the future,
no matter what the disturbances are. We show that the regret-
optimal control problem can be reduced to a Nehari extension
problem, i.e., to approximate an anticausal operator with a causal
one in the operator norm. In the state-space setting we obtain
explicit formulas for the optimal regret and for the regret-optimal
controller (in both the causal and the strictly causal settings).
The regret-optimal controller is the sum of the classical H2

state-feedback law and an n-th order controller (where n is the
state dimension of the plant) obtained from the Nehari problem.
The controller construction simply requires the solution to the
standard LQR Riccati equation, in addition to two Lyapunov
equations. Simulations over a range of plants demonstrates that
the regret-optimal controller interpolates nicely between the H2

and the H∞ optimal controllers, and generally has H2 and H∞
costs that are simultaneously close to their optimal values. The
regret-optimal controller thus presents itself as a viable option
for control system design.

I. INTRODUCTION

In this paper, we consider control through the lens of
regret minimization. While the literature on control is vast,
control theorists have largely studied control in two distinct
settings. In one setting, we assume that the disturbances are
generated by random processes whose statistics we know (in
the Gaussian case this is LQG control, in the iid case with
linear controllers it is H2 control), and the goal is to design a
control policy which minimizes the expected control cost. In
robust control, there are no distributional assumptions about
the noise and we seek to minimize the worst-case gain across
all bounded disturbances (for bounded energy or power this
is H∞ control [2], [3], for bounded amplitude it is `1 control
[4]). In the regret minimization framework, instead of trying
to design controllers that achieve optimal performance relative
to a certain class of disturbances, we seek to design controllers
that closely track the performance of some benchmark non-
causal controller, irrespective of how the disturbances are
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generated. The motivation behind regret as performance metric
is that the resulting controllers are adaptive: they should obtain
good performance regardless of whether the disturbances are
stochastic, adversarial, etc. This stands in stark contrast to
H2 and H∞ control, which generally yield controllers that
perform well in the environments they are designed for but
whose performance can degrade badly when placed in different
environments. This is made transparent in (8).

Regret minimization in control has attracted much recent
interest (see, e.g., [5]–[16] and the references therein). In this
paper, we will study the so-called full-information control
problem, where at every time instant the causal controller has
access to the current and past states. Most papers in this area
try to design causal controllers that compete with the best
static linear state feedback controller selected in hindsight; in
other words, they compete with the controller which in every
round sets the control action ut to be Kxt where xt is the
state and K is a fixed matrix selected with full clairvoyant
knowledge of the disturbances. We believe this choice of non-
causal controller to be rather unnatural:

Why restrict to static linear state feedback?

It is not clear when or whether such a non-causal policy
outperforms a causal controller that is allowed to be an
arbitrary causal function of the current and past states. We
therefore would like to contend that it is more natural to
design controllers which compete with the best sequence of
control actions selected in hindsight, not just those generated
by static linear state feedback. In other words, we seek to
design controllers that compete with the optimal sequence of
control actions u∗1 . . . u

∗
T−1, without imposing the restriction

that the benchmark sequence satisfy u∗t = −Kxt for some
fixed matrix K.

We utilize the regret metric to design a causal controller
by comparing its performance with the unique optimal non-
causal controller. We then define the optimal regret as the
largest difference between the costs of the causal and the
non-causal controller among all bounded energy disturbances.
The motivation behind the regret definition is to construct
a causal controller aims to mimic the behavior of the non-
causal controller by minimizing the regret distance. At the
operator level, we show that the regret problem can be reduced
to the classical Nehari problem [17]. For the state-space
setting, we derive the optimal regret as a simple formula and
provide an explicit regret-optimal controller that is given by a
simple state-space realization. The resulting controller inherits
a finite-dimensional state-space structure from the underlying
system and its implementation requires the computation of the
standard LQR Riccati equation and two additional Lyapunov
equations.

The rest of the paper is organized as follows. In Section
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II, we present the problem formulation. Section III includes
our main results regarding the causal and the strictly causal
scenario. In Section IV, we present numerical simulations and
Section V includes the proofs outline. Finally, the paper is
concluded in Section VI and technical proofs appear in the
appendices.

II. THE SETTING AND PROBLEM FORMULATION

In this section, we present the setting and the regret problem
in its state-space representation. We then proceed to discuss the
regret problem from a general operational theory perspective
to expose the fundamental difference between H∞ and regret-
optimal controls.

A. The setting

A time-invariant linear dynamical system is given by

xt+1 = Axt +Buut +Bwwt. (1)

The vector xt ∈ Rn is the state variable, ut ∈ Rm is the
control variable which we can dynamically adjust to influence
the evolution of the system, and wt ∈ Rp is the disturbance
process. It is also assumed that the pair (A,Bu) is stabilizable.

A policy π is defined as a mapping of noise sequences
w = {wt} to control sequences u = {ut}. At this point,
it is convenient to define policy as a mapping of the dis-
turbance sequence and not the states sequence which is a
more natural assumption in practice. However, it will be
shown that the regret-optimal policy can be implemented as
a mapping of the system states only. We mostly focus on the
doubly infinite-horizon regime where, for a fixed policy π, the
linear–quadratic regulator (LQR) cost is given by

cost(π;w) =

∞∑
t=−∞

(x∗tQxt + u∗tRut) , (2)

where Q,R � 0 are weight matrices. We remark that for the
above infinite sum to have any chance of being finite (and
therefore meaningful) it is necessary for the disturbance to be
square-summable, i.e., w = {wt} ∈ `2.

In the classical H2 and H∞ control problems, the objective
is to design a controller which minimizes the LQR cost under
different assumptions on w which in turn imply the optimiza-
tion of some norm. Our approach is different since we aim
to design a causal controller (policy) based on a comparison
criteria with an unrealizable controller. Specifically, we design
a causal controller that minimizes the norm of its LQR cost
subtracted from the LQR cost of the best non-causal controller.
In other words, the regret-optimal controller aims to mimic the
behaviour of a non-causal controller by minimizing a regret
objective.

More formally, let the set of offline (non-causal) policies
be ΠOFF which corresponds to policies that have clairvoyant
access to the entire noise sequence w. Then, the regret of a
policy π is defined as

Regret(π) = sup
‖w‖2≤1

(
cost(π;w)− inf

π′∈ΠOFF
cost(π′;w)

)
.

(3)

The regret criterion is now made clear; the performance of a
controller, defined by a policy π, is measured by the worst-case
disturbance to the best offline policy. The comparison between
the two policies becomes meaningful since the disturbance
w plays a role in both costs. Finally, note that the offline
policy is optimized over the set of all offline policies and is
not restricted to being linear or time-invariant.

Here, we assumed that the disturbance w has bounded en-
ergy, i.e., that w is an `2 sequence. An alternative formulation
is to define the infinite horizon cost as limT→∞

1
T costT (π;w)

where costT is cumulative cost and to assume that the se-
quence w has bounded power, i.e., limT→∞

1
T

∑T−1
t=0 w

∗
twt <

∞. It is known in H∞ theory that both formulations lead to
the same optimal controller

We consider two scenarios for the regret optimization in
(3): the causal and the strictly causal controllers. The causal
policy is a one that chooses the control signal ut based on
{wi}i≤t, while the strictly causal controller has access to
{wi}i<t only. The sets of the causal and strcitly causal policies
are denoted by ΠC and ΠS.C. respectively. Moreover, we
restrict our attention in both scenarios to linear policies1.

Let us summarize the problem formulation as follows:

Problem 1 (Full Information Regret-Optimal Control). Find
a linear causal policy π that solves the optimization problem

Regret∗= inf
π∈ΠC

Regret(π). (4)

Similarly, for the case of a strictly causal policy, the regret is
defined as

Regret∗ = inf
π∈ΠS.C.

Regret(π). (5)

In section III, we solve Problem 1 for both scenarios. Specif-
ically, we will provide an explicit formula for the optimal
regret value and construct a causal/strictly-causal controllers
that achieve the optimal regrets.

B. The regret problem in operator form

We introduce the operator notation for the regret problem.
As we will see, despite the fact that the state-space model in
(1) is a special case of this notation, it leads to clean exposition
of the regret problem and an insightful comparison with the
H∞ control problem.

Consider a linear dynamical system given by

s = Fv +Gw,

where F and G are causal (lower triangular) block operators.
The sequence w corresponds to the disturbance, s is the
state sequence and v is a regulating sequence, i.e., a control
sequence. An operator (controller) K is a mapping from a
sequence w to a sequence v. For a fixed K, the cost is defined
as

‖s‖22 + ‖v‖22.

Note here that we intentionally omit the time-horizon which
can be either finite, semi-infinite or the doubly-infinite regime
that is required for our problem formulation.

1It is possible to show that the optimal causal controller is linear, but it is
beyond the scope of this paper.
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To see that the state-space model is a special case of the
setting, one can eliminate the weight matrices Q = Q∗/2Q1/2

and R = R∗/2R1/2 by defining the transformed state vari-
able s = {Q1/2xt} and the transformed control variable
v = {R1/2ut}. The LQR cost now takes the required form,
i.e.,

cost(π;w) = ‖s‖22 + ‖v‖22.

Furthermore, we can choose the causal operators F and G to
be lower triangular, doubly-infinite block Toeplitz operators
with Markov parameters Fi = Q1/2Ai−1BuR

−1/2 and Gi =
Q1/2Ai−1Bw, respectively, for i > 0.

It is convenient to define the cost operator[
s
v

]
=

[
FK +G

K

]
︸ ︷︷ ︸

TK

w, (6)

for any linear controller K. The LQR cost of a linear controller
can now be compactly expressed as

cost(K;w) = w∗T ∗KTKw.

The following result characterizes the optimal non-causal
controller, K0, which is shown to be a linear function of w
and an alternative representation for the LQR cost of a linear
operator.

Theorem 1 (The non-causal controller [18]). The optimal non-
causal controller is linear and is given by v = K0w, where
K0 is the linear operator

K0 = −(I + F ∗F )−1F ∗G.

Furthermore, for any linear operator K, one can write

T ∗KTK = (K −K0)∗(I + F ∗F )(K −K0) + T ∗K0
TK0

. (7)

The optimality of a linear non-causal controller implies
that the regret problem can be formulated with respect to an
arbitrary offline controller. Note that by (7), the non-causal
controller outperforms any controller K disturbance for any
w. The results in Theorem 1 are well-known, e.g. [18, Th.
11.2.1], but for completeness, we provide a concise proof of
Theorem 1 in Appendix A.

As mentioned earlier, Problem 1 presents a new formulation
of control problems that is distinct from conventional H2

and H∞ control. It is insightful to compare the objectives of
the regret-optimal control and the classical H∞ formulation.
Recall that in both formulations there is a maximization over
w that can be replaced with an operator norm. Thus, their
objectives can be written as

inf
causal K

‖T ∗KTK‖︸ ︷︷ ︸
H∞ control

, inf
causal K

‖T ∗KTK − T ∗K0
TK0
‖︸ ︷︷ ︸

regret-optimal control

(8)

The stark difference is now transparent; in H∞ control, one
attempts to minimize the worst-case gain from the distur-
bance energy to the control cost, whereas in regret-optimal
control one attempts to minimize the worst-case gain from
the disturbance energy to the regret. It is this latter fact that
makes the regret-optimal controller more adaptive. It has as its

baseline the best that any noncausal controller can do, whereas
the H∞ controller has no baseline to measure itself against.
The comparison of the regret-optimal controller and the H2

controller will be discussed extensively after presenting the
results in Section III.

C. The Nehari problem

Before proceeding to the main results, we present a fun-
damental problem that lies at the heart of the solution to the
regret problem.

Problem 2 (Nehari Problem [17]). Given a strictly anti-
causal (strictly upper triangular) doubly-infinite block Toeplitz
operator U , find a causal (lower triangular) doubly-infinite
block Toeplitz operator L, such that ‖L− U‖ is minimized.

The Nehari problem seeks the best causal approximation
to a strictly anti-causal operator in the operator norm sense.
The problem has been widely investigated and the minimal
norm can be characterized by the Hankel norm of an operator.
As we will see in Theorem 9 and its application to our
problem in the next section, when the operator has a state-
space structure, the Hankel norm can be computed explicitly
and we can also characterize the state-space representation of
the approximation L.

Throughout the paper, we will occasionally refer to a γ-
optimal solution for the Nehari problem, that is, a solution Lγ
that achieves ‖Lγ − U‖ ≤ γ, when such a solution exists.

III. MAIN RESULTS

This section has three parts and contains our main results. In
Section III-A, we present the reduction of the regret problem
to a Nehari problem in its general operator notation. We then
proceed in Section III-B to present the optimal regret value
and the regret-optimal controller for the causal scenario in the
frequency and time domains. Lastly, in Section III-C results
for the strictly causal scenario.

A. Reduction to a Nehari problem

The following theorem presents the relation of the regret
and the Nehari problems.

Theorem 2 (Reduction to the Nehari problem). The optimal
regret can be formulated as the Nehari problem

inf
causal K

‖T ∗KTK − T ∗K0
TK0
‖ = inf

causal L
‖L− {∆K0}− ‖,

(9)

where ∆ is given by the canonical factorization ∆∗∆ = I +
F ∗F , K0 is the optimal offline controller and {·}− denotes
the strictly anti-causal part of an operator.

Furthermore, let L be a solution to the Nehari problem in
(9), then a regret-optimal controller is given by

K = ∆−1
(
L+ {∆K0}+

)
, (10)

where {·}+ denotes the causal part of an operator.

Nehari showed that the minimal value of the approximation
problem in (9) is equal to the operator norm of the Hankel op-
erator [17]. In our case, it is the anticausal operator {∆K0}−.
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However, it is rather involved to compute this minimal value
and the optimal operator L unless the operators have a state-
space structure [18]. In the following section, we solve the
Nehari problem in (9) explicitly for the case of a state-space
model. Indeed, Theorem 2 already reveals the technical steps
required to derive the controller explicitly. Specifically, we
will need to perform a canonical factorization of the positive
operator I+F ∗F and a decomposition of ∆K0 into its causal
and strictly anticausal parts. The proof of Theorem 2 appears
in Section V-D.

B. Solution for Problem 1 in the state-space setting

We proceed to present our main results regarding the
optimal regret value, the solution to the Nehari problem in
our setting and the causal, regret-optimal controller both in
frequency and in state-space representations. To preserve the
paper flow , proofs of the results in this section appear in
Section V.

It is useful to define P � 0 as the unique stabilizing solution
to the standard LQR Riccati equation

P = Q+A∗PA−A∗PBu(R+B∗uPBu)−1B∗uPA, (11)

and Klqr = (R + B∗uPBu)−1B∗uPA be the LQR controller
and AK , A−BuKlqr.

The first result is an explicit formula for the optimal regret
value using the maximal singular value of a matrix denoted
by σ̄(·).

Theorem 3 (The optimal regret value). The optimal regret for
the causal scenario is given by

Regret∗ = σ̄(ZΠ), (12)

where Z and Π are the unique solutions for the Lyapunov
equations

Z = AKZA
∗
K +Bu(R+B∗uPBu)−1B∗u

Π = A∗KΠAK +A∗KPBwB
∗
wPAK . (13)

The characterization of the optimal regret here follows from
the explicit formulas for the Hankel norm of an operator
when it has a state-space structure. More specifically, when
the operator can be represented with a state-space model, its
Hankel norm can be computed as the maximal singular value
of its controllability and observanility Gramians product.

Before presenting the regret-optimal controller for the causal
scenario, we present a technical result that lies at the heart of
the regret-optimal controller. Specifically, we will provide the
solution to the Nehari problem for our problem, i.e., the one
with the anticausal part of ∆(z)K0(z). For convenience, we
denote the strictly anticausal part of ∆(z)K0(z) as T (z). The
explicit expression for T (z) is not necessary here and will be
provided in the sequel.

Lemma 1. For any γ ≥
√

Regret∗, a γ−optimal solution to
the Nehari problem with the anticausal transfer function T (z)
(given in (39)) is

Lγ(z)

= −(R+B∗uPBu)−∗/2B∗uΠ(I + Fγ(zI − Fγ)−1)Kγ ,
(14)

where

Kγ = (I −AKZγA∗KΠ)−1AKZγA
∗
KPBw

Fγ = AK −KγB
∗
wPAK , (15)

Π is given in (13) and Zγ is obtained as the unique solution
for the Lyapunov equation

Zγ = AKZγA
∗
K + γ−2Bu(R+B∗uPBu)−1B∗u. (16)

Recall that a γ-optimal solution to the Nehari problem
implies that the causal approximation Lγ induces an operator
norm at most γ. Thus, any γ induces a solution to the Nehari
problem which in turn induces a controller that achieves a
regret γ. Obviously, the regret-optimal controller is revealed
when γ =

√
Regret∗. With some abuse of notation, from

here, γ refers to the minimal value such that there exists a
solution, i.e.,

√
Regret∗.

We are now ready to present the regret-optimal controller
using the solution to the Nehari problem. The first representa-
tion of the optimal controller is given in the frequency domain.
Its main purpose is to reveal the close relation with the H2

controller, while a more explicit regret-optimal controller is
given in Theorem 5.

Theorem 4 (Regret-optimal controller in frequency domain).
Given γ ≥

√
Regret∗, a γ-optimal regret controller for the

causal scenario is given by

K(z) = ∆−1(z)(Lγ(z) + S(z)), (17)

where

∆−1(z) = R1/2(I −Klqr(zI −AK)−1Bu)(R+B∗uPBu)−1/2

S(z) = −(R+B∗uPBu)−∗/2B∗u(PA(zI −A)−1 + P )Bw,

Lγ(z) is given in (14) and the triplet (P,Klqr, AK) is given
in (11).

The regret-optimal controller can also be expressed as

K(z) = H(zI − F )−1G+ J, (18)

where

H = −R1/2
(
(R+B∗uPBu)−1B∗uΠFγ Klqr

)
F =

(
Fγ 0

−Bu(R+B∗uPBu)−1B∗uΠFγ AK

)
G =

(
Kγ

Bw −Bu(R+B∗uPBu)−1B∗u(PBw + ΠKγ)

)
J = −R1/2(R+B∗uPBu)−1B∗u(PBw + ΠKγ). (19)

To assess the essential difference between the regret-optimal
controller and the classical H2 controller, let us write the non-
causal controller as

∆−1(z)∆(z)K0(z) = ∆−1(z)(S(z) + T (z)), (20)

where S(z) and T (z) represent the decomposition of
∆(z)K0(z) to its causal and strictly anticausal transfer func-
tions, respectively. It can be shown that the expression
∆−1(z)S(z) is the classical H2 controller. It is now evident
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that in H2 control the anticausal part T (z) is being omitted
from the optimal controller. This fact should be of no surprise
since in the H2 norm (the Frobenius norm), the controller has
no effect on the cost induced by the anticausal part T (z).

However, in the regret-optimal control, the transfer function
T (z) is meaningful and is replaced with its causal approxima-
tion Lγ(z). Thus, the controller may be viewed as a correction
to the classical H2 controller. Following this relation with
the H2 controller, we proceed to show that the regret-optimal
controller has a state-feedback law of the H2 controller with
a correction that is driven by a Nehari state space.

Theorem 5 (Regret-optimal controller in time domain). For
any γ ≥

√
Regret∗, a γ-optimal regret controller for the

causal scenario is given by

ut = ût −Klqrxt − (R+B∗uPBu)−1B∗uPBwwt, (21)

where (P,Klqr) is given in (11) and ût is the (scaled) solution
to the Nehari problem, that is,

ξt+1 = Fγξt +Kγwt

ût = −(R+B∗uPBu)−1B∗uΠ(Fγξt +Kγwt) (22)

with (Fγ ,Kγ) given in (15).

Recall that the optimal H2 (causal) controller has the state-
feedback law

uH2
t = −Klqrxt − (R+B∗uPBu)−1B∗uPBwwt. (23)

Thus, the regret-optimal controller is the classical H2 state-
feedback law with an additional state ût driven by the state-
space in (22). The causal approximation results in an increased
dimension due to the tracking of the hidden state ξt. However,
from computational complexity perspective, the regret-optimal
controller requires a solution to the standard LQR Riccati
equation with two additional Lyapunov equations to obtain
Zγ and Π. Compared to H∞ problem, there are no indefinite
factorizations. By examining the structure of the controller
(22), one can conclude the practical implications that the
controller does not need a direct access to the disturbance
but to the state. This is states in the following result.

Corollary 1. The regret-optimal controller can be imple-
mented with access to the state xt (rather than the disturbance
wt).

C. Solution for the the strictly causal scenario

In this section, we present the optimal regret value and
the regret-optimal controller both in frequency domain and
in state-space representation. The structure of the solutions is
similar to the causal scenario. To distinguish from the causal
scenario but be consistent, we add an overline over constants
that correspond to the strictly causal scenario.

Theorem 6. The optimal regret for strictly causal scenario is

Regret∗ = σ̄(ZΠ), (24)

where Z and Π are obtained as the solutions to the Lyapunov
equations

Z = AKZA
∗
K +Bu(R+B∗uPBu)−1B∗u

Π = A∗KΠAK + PBwB
∗
wP. (25)

Note that Z is the same as the one used to compute the
regret in the causal scenario.

Theorem 7 (Strictly causal regret-optimal controller (Z-do-
main)). For any γ ≥ Regret∗, a γ-optimal regret controller
for the strictly causal scenario is given by

K(z) = ∆−1(z)(S(z) + Lγ(z)), (26)

with

∆−1(z) =R1/2(I−Klqr(zI−AK)−1Bu)(R+B∗uPBu)−1/2

S(z) = −(R+B∗uPBu)−∗/2B∗uPA(zI −A)−1Bw

Lγ(z) = −(R+B∗uPBu)−∗/2B∗uΠ(zI − F γ)−1Kγ , (27)

where the triplet (P,Klqr, AK) is given in (11),

Kγ = (I −AKZγA∗KΠ)−1AKZγPBw

F γ = AK −KγB
∗
wP, (28)

Π is given in (25) and Zγ is the solution to the Lyapunov
equation

Zγ = AKZγA
∗
K + γ−2Bu(R+B∗uPBu)−1B∗u. (29)

Theorem 8 (The strictly causal regret-optimal controller in
time-domain). For any γ ≥ Regret∗, a γ-optimal regret
controller strictly causal regret-optimal controller is given by

ut = ût −Klqrxt, (30)

where ût is given by

ξt+1 = F γξt +Kγwt

ût = −(R+B∗uPBu)−1B∗uΠξt, (31)

and (P,Klqr) is given in (11) and (F γ ,Kγ , Π̄) are given in
(28).

In a very similar fashion to the causal scenario, the con-
troller inherits the state-feedback law of the LQR problem.
Also, the controller can be implemented using the state only
since Kγwt can be easily expressed as a function of the
tuple (xt, xt−1, ut−1). The proof of the strictly causal scenario
appear in Section V-C.

IV. NUMERICAL EXAMPLES

In this section, we empirically study the performance of the
regret-optimal controller compared to the traditional H2 and
H∞ controllers. As mentioned earlier, the performance of any
(linear) controller is governed by the transfer operator TK that
maps the disturbance sequence w to the sequences s and v. It
will be useful to represent this operator via its transfer function
in the z-domain, i.e.,

TK(z) =

[
F (z)K(z) +G(z)

K(z)

]
,

The squared Frobenius norm of TK , which is what H2

controllers minimize, is given by

‖TK‖2F =
1

2π

∫ 2π

0

trace
(
T ∗K(ejω)TK(ejω)

)
dω,



6

0 /2 3 /2 2
2

3

4

5

6

7

8

9

10
Non-causal
H2

Regret-optimal
H

0 /2 3 /2 2
3

4

5

6

7

8

9

10

11

12
Non-causal
H2

Regret-optimal
H

Fig. 1. The cost operator as a function of the frequency for a randomly
generated linear dynamical system with six-dimensional state vector and two-
dimensional control vector. In the upper figure, the squared operator norm
for each of the controller is illustrated while the bottom figure describes the
squared Frobenius norm.

and the squared operator norm of TK , which is what H∞
controllers minimize, by

σ2
max(TK) = max

0≤ω≤2π
σ2

max

(
TK(ejω)

)
.

First, we consider the performance in a randomly generated
time-invariant linear dynamical system with n = 6 and m = 2.
All matrices, i.e., A,Bu, Bw, Q,R, are randomly generated
and where A is unstable but the pair (A,Bu) is stabilizable.
For this setting, we construct the optimal non-causal, H2,
H∞ and regret-optimal controllers and establish the transfer
operators TK for each of them. In order to assess and compare
the performance of respective controllers across the full range
of input disturbances, we plot ‖TK(ejω)‖2 and ‖TK(ejω)‖2F
as a function of frequency in Figure 1.

As can be seen, the non-causal controller outperforms
the other three controllers across all frequencies. The H2

controller minimizes the Frobenius norm, i.e., the average
performance over iid w, which is the area under the curve of
the bottom figure in Fig. 1. However, in doing so, it sacrifices
the worst-case performance and so has a relatively large peak
at low frequencies. The H∞ controller minimizes the operator
norm, i.e., the worst-case performance, which is the peak of
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Fig. 2. The cost operator as a function of the frequency for Boeing 747.
In the upper figure, the squared operator norm for each of the controller is
illustrated while the bottom figure describes the squared Frobenius norm.

the curve. However, in doing so, its sacrifices the average
performance and has a relatively large area under the curve. On
the other hand, regret-optimal controller nicely finds the best
of both worlds between H2 and H∞, i.e. stays close to average
performance over all frequencies of H2 and close worst-case
performance of H∞.

Next, we consider the longitudinal flight control of Boeing
747 with linearized dynamics [19]. For level flight of Boeing
747 at the altitude of 40000ft with the speed of 774ft/sec, for
a discretization of 1 second, the dynamics can be represented
with a linear dynamical system with

A =


.99 .03 −.02 −.32
.01 .47 4.7 0
.02 −.06 .40 0
.01 −.04 .72 .99

 Bu =


0.01 0.99
−3.44 1.66
−0.83 0.44
−0.47 0.25


and Bw = I . We take Q = I and R = I with appropriate
dimensions. For this dynamical system, we also construct the
optimal H2, H∞, and non-causal controllers, as well as the
regret-optimal controller. Figure 2 presents ‖TK(ejω)‖2 and
‖TK(ejω)‖2F for this system, as a function of frequency.
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TABLE I
PERFORMANCE OF THE CONTROLLERS IN NUMERICAL EXPERIMENT

‖TK‖2F ‖TK‖2 Regret

Noncausal Controller 1.33 78.8 0

Regret-optimal controller 2.16 99.4 20.6

H2 controller 1.91 128.7 49.95

H∞ controller 3.73 79 47.97
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Fig. 3. No-DC Time-domain evaluation of the numerical example: The
system is excited with a white Gaussian noise. It can be noted that the H2

controller, the one designed for such a disturbance characteristics outperforms
all causal controllers.

Recall that the regret-optimal controller minimizes

σmax

(
T ∗KTK − T ∗K0

TK0

)
= max

0≤ω≤2π

(
T ∗K(ejω)TK(ejω)− T ∗K0

(ejω)TK0(ejω)
)

(32)

i.e., it aims to stay as close as possible to the non-causal
controller across all frequencies. In doing so, similar to random
system example, it achieves the best of both worlds: an area
under the curve that is very close to that of the H2-optimal
controller (1.91 vs. 2.16) and it has a peak that improves
significantly upon the peak of the H2 controller and close to
H∞, i.e., its peak is 99.4 rather than the high peak of the H2

controller. This demonstrates that the regret-optimal controller
has a robust and satisfactory performance across a full range
of input disturbances w. The precise values of the resulted
norms and the regret values of the controllers are summarized
in Table I which compares the squared Frobenius, the squared
operator norm and the regret value.

We also include time evaluation of longitudinal flight con-
trol of Boeing 747 with two random disturbances. First, in
Fig. 3, we present the controllers’ performance with a white
Gaussian noise. As expected, the H2 controller outperforms
the other causal controllers. However, to illustrate the merits
of the regret-optimal controller, we add a DC component (i.e.,
a constant) to a white Gaussian disturbance. In this case,
the power ratio between the Gaussian noise will govern the
performance of the different controllers. In Fig. 4, we show the
evaluation with medium-range DC component. Specifically,
we extract the eigenvector that corresponds to the largest
singular value of TK(ejω = 1) and add it to a random
Gaussian noise. In this case, it can be noted in Fig. 4 that
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Fig. 4. Medium-DC Time-domain evaluation of the numerical example:
The system is excited with a white Gaussian noise that is added to a DC
component, i.e., a constant. It can be noted that in this regime where the weight
on the constant is in mid-range, the regret-optimal controller outperforms all
causal controllers.
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Fig. 5. Strong-DC Time-domain evaluation of the numerical example: The
system is excited with a white Gaussian noise that is added to a DC
component, i.e., a constant. In this regime, the weight on the constant is larger,
which causes H∞ to outperform all causal controller. Note that regret-optimal
performs noticeably close to H∞ controller.

the regret-optimal controller outperforms the H2 and H∞
controllers. It can be also seen that the H2 and the H∞ are
close in their performance, a gap that will diminish if the DC
weight is growing large. In Fig. 5, the performance of the
controllers is shown when the DC component is doubled. As
expected the H∞ outperform all the causal controllers in this
setting whereas H2 performs poorly. However, note that regret-
optimal controller performs remarkably close to H∞ controller
which demonstrates the best of both worlds behavior of regret-
optimal controller.

V. DERIVATION OF THE MAIN RESULTS

In this section, we prove the main results in Section III.
In Section V-A, we provide a solution to the general Nehari
problem. In Section V-B Finally, in Section V-C we provide
the proof for the strictly causal scenario.
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A. The general Nehari problem

The following theorem summarizes the solution to the
Nehari problem for an arbitrary anticausal transfer function.

Theorem 9 (Solution to the general Nehari problem). Con-
sider the Nehari problem with T (z) = H(z−1I − F )−1G in
a minimal form and stable F . The optimal norm is given by

min
causal and bounded L(z)

‖L(z)− T (z)‖ = σ̄(ZΠ), (33)

where Z and Π are the unique solutions to the Lyapunov
equations

Z = F ∗ZF +H∗H

Π = FΠF ∗ +GG∗. (34)

Moreover, for any γ ≥
√
σ̄(ZΠ), a γ-optimal solution to

(33) is given by

L(z) = HΠ(I + Fγ(zI − Fγ)−1)Kγ , (35)

with

Kγ = (I − F ∗ZγFΠ)−1F ∗ZγG

Fγ = F ∗ −KγG
∗, (36)

and Zγ is the solution to the Lyapunov equation

Zγ = F ∗ZγF + γ−2H∗H. (37)

Explicit solution to the state-space Nehari problem are
known and appear in the control literature, e.g., [20] [21].
To the best of our knowledge, the explicit solution in The-
orem 9 has not appeared in the literature and might be of
an independent interest. The solution follows directly from
algebraic simplification of the general solution that has been
characterized in [18]. A proof that is based on [18] and
contains the necessary simplifications appears in Appendix B.

B. Proofs of the main results

Recall that in order to apply the solution to the Nehari prob-
lem to our problem, one should have explicit expressions for
the spectral factorization ∆∗(z−∗)∆(z) = I + F ∗(z−∗)F (z)
and the decomposition of ∆(z)K0(z) into its causal and anti-
causal transfer function. We will now present these technical
lemmas and their proof will be provided in Appendix C.

The following lemma presents the required canonical spec-
tral factorization.

Lemma 2 (Spectral factorization). The transfer function I +
F ∗(z−∗)F (z) can be factored as ∆∗(z−∗)∆(z), where

∆(z)

= (R+B∗uPBu)1/2(I +Klqr(zI −A)−1Bu)R−1/2, (38)

P is the unique stabilizing solution to the Ricatti equation

Q− P +A∗PA−A∗PBu(R+B∗uPBu)−1B∗uPA = 0,

and Klqr = (R+B∗uPBu)−1B∗uPA. Furthermore, ∆−1(z) is
casual and bounded on the unit circle.

The following lemma provides the decomposition of the
transfer function ∆(z)K0(z) to its causal and strictly anti-
causal counterparts.

Lemma 3 (Decomposition). The transfer function
∆(z)K0(z) = −∆−∗(z−∗)F ∗(z−∗)G(z) can be written
as a sum of a strictly anticausal and causal transfer functions
T (z) and S(z) that are given by

T (z) = −(R+B∗uPBu)−∗/2B∗u(z−1I −A∗K)−1A∗KPBw

S(z) = −(R+B∗uPBu)−∗/2B∗uP (A(zI −A)−1 + I)Bw.
(39)

By having these two lemmas, we are ready to prove the
main results.

Proof of Theorem 3. To derive the optimal regret value, we
apply Theorem 9 with T (z) from Lemma 3. Note that T (z)
is bounded on the unit circle since (A,Bu) is stabilizable so
that the singular values of AK are strictly smaller than 1.

Recall that Lemma 1 provides an explicit solution to the
Nehari problem with T (z) in Section III.

Proof of Lemma 1. The proof follows directly from Theorem
9 with T (z) in Lemma 3 since the conditions for T (Z) were
verified in the proof of Theorem 3.

Proof of Theorem 4. Recall that the optimal controller is
given by

K(z) = ∆−1(z)(Lγ(z) + S(z)). (40)

By Lemma 1, the solution to the Nehari problem is

Lγ(z) = −(R+B∗uPBu)−∗/2B∗uΠ(I + Fγ(zI − Fγ)−1)Kγ .
(41)

By Lemma 2, we have that

∆−1(z) = R1/2(I −Klqr(zI −AK)−1Bu)(R+B∗uPBu)−1/2,
(42)

and by Lemma 3 the causal part of ∆(z)K0(z)is given by

S(z) = −(R+B∗uPBu)−∗/2B∗u(PA(zI −A)−1 + P )Bw.
(43)

The proof now follows by computing the products in (40)
as

∆−1(z)S(z)

= −R1/2(R+B∗uPBu)−1B∗uPBw

−R1/2Klqr(zI −AK)−1(Bw −Bu(R+B∗uPBu)−1B∗uPBw),

and

∆−1(z)Lγ(z)

= −R1/2(I −Klqr(zI −AK)−1Bu)(R+B∗uPBu)−1B∗uΠ

· (I + Fγ(zI − Fγ)−1)Kγ .

Summing these products and arranging the terms in a compact
form, we get that the controller is

K(z) = H(zI − F )−1G+ J, (44)
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with

H = −R1/2
(
(R+B∗uPBu)−1B∗uΠFγ Klqr

)
F =

(
Fγ 0

−Bu(R+B∗uPBu)−1B∗uΠFγ AK

)
G =

(
Kγ

Bw −Bu(R+B∗uPBu)−1B∗u(PBw + ΠKγ)

)
J = −R1/2(R+B∗uPBu)−1B∗u(PBw + ΠKγ). (45)

Proof of Theorem 5. The proof begins with the state-space
model in Theorem 4. We then show that one of the hidden
states of the controller is the system state xt. Finally, the
proof is completed by observing that the controller is a sum of
this state-feedback law and a (scaled) solution to the Nehari
problem.

Let ξ1, ξ2 be the hidden states of the controller in (18).
Then, the controller can be written as(

ξ1
t+1

ξ2
t+1

)
= F

(
ξ1
t

ξ2
t

)
+Gwt

R1/2ut = H

(
ξ1
t+1

ξ2
t+1

)
+ Jwt (46)

First, the control signal can be explicitly written as

ut = −(R+B∗uPBu)−1B∗uΠFγξ
1
t −Klqrξ

2
t

− (R+B∗uPBu)−1B∗u(PBw + ΠKγ)wt. (47)

Now, one can show that the evolution of ξ2
t is

ξ2
t+1 = Aξ2

t +Bwwt +Buut
(b)
= xt+1, (48)

where (a) follows from the control signal in (46) and (b)
follows from an inductive argument on the evolution of ξ2

t .
The last observation is that the evolution of ξ1

t is given by
the solution to the Nehari problem in Lemma 1, i.e.,

ξ1
t+1 = Fγξ

1
t +Kγwt

ũt = (R+B∗uPBu)−∗/2B∗uΠFγξ
1
t

+ (R+B∗uPBu)−∗/2B∗uΠKγwt (49)

To simplify the presentation of the controller, we multi-
ply scale ũt with −(R + B∗uPBu)−1/2 as ût = −(R +
B∗uPBu)−1/2ũt and omit the redundant superscript. To con-
clude, the control signal can be written as

ut = ût −Klqrξ
2
t − (R+B∗uPBu)−1B∗uPBwwt.

C. The strictly causal controller

In this section, we prove the main results on the strictly
causal controller.

Proof of Theorems 6-8. As in the causal scenario, the main
technical steps are the factorization and the decomposition.
The factorization is the one required for the causal scenario in
Lemma 2 and the factorization can be deduced directly from

the derivation of the decomposition for the causal scenario.
The proof then follows by showing that the strictly causal
regret problem reduces to a Nehari problem with the same
structure as in Theorem 9. That is, the problem is converted
into the approximation of a strictly anticausal transfer function
with a causal one.

Using Lemma 3, we can write the decomposition of
−∆−∗(z−∗)F ∗(z−∗)G(z) as the sum of the transfer functions

T (z) = −(R+B∗uPBu)−∗/2B∗u(I + (z−1I −A∗K)−1A∗K)PBw

S(z) = −(R+B∗uPBu)−∗/2B∗uPA(zI −A)−1Bw, (50)

where T̄ (z) is now an anticausal transfer function while S̄(z)
is a strictly causal transfer function.

In the case of a strictly causal controller, following the same
steps in Theorem 2, it can be shown that the regret problem
is reduced to the Nehari problem

min
S. Causal L(z)

‖L(z)− T (z)‖ (51)

and a regret-optimal controller is given by

∆−1(z)(S(z) + Lγ(z)). (52)

We will now show that the solution to (51) can be formu-
lated as a solution to the general Nehari problem in Theorem
9. Consider the following chain of equalities

min
S. Causal L(z)

‖L(z)− T (z)‖ = min
S. Causal L(z)

‖zL(z)− zT (z)‖

(a)
= min

causal L′(z)
‖L′(z)− zT (z)‖,

(53)

where (a) follows from the invertible change of variable
L′(z) = zL(z).

Since the transfer function zT (z) is strictly anticausal, the
regret problem is reduced to a new Nehari problem with the
same structure as in Theorem 9. Specifically, we will use
Theorem 9 with the strictly anticausal transfer function

zT (z) = −(R+B∗uPBu)−∗/2B∗u(z−1I −A∗K)−1PBw
(54)

to conclude the optimal regret value and the solution to the
Nehari problem. The optimal regret for the strictly causal
scenario is

Regret∗ = σ̄(ZΠ), (55)

where Z and Π are obtained as the solutions to the Lyapunov
equations

Z = AKZA
∗
K +Bu(R+B∗uPBu)−1B∗u

Π = A∗KΠAK + PBwB
∗
wP. (56)

Using Theorem 9, we have L′(z) explicitly which gives the
solution to the Nehari problem

− Lγ(z)

= −z−1L′(z)

= z−1(R+B∗uPBu)−∗/2B∗uΠ(I + F γ(zI − F γ)−1)Kγ

= (R+B∗uPBu)−∗/2B∗uΠ(zI − F γ)−1Kγ ,
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where

Kγ = (I −AKZγA∗KΠ)−1AKZγPBw

F γ = AK −KγB
∗
wP, (57)

Π is given in (56) and Zγ is the solution for the Lyapunov
equation

Zγ = AKZγA
∗
K + γ−2Bu(R+B∗uPBu)−1B∗u. (58)

Note that Z and Zγ are the same as in the causal scenario.
Therefore, strictly causal regret-optimal controller is

K(z) = ∆−1(z)(S(z) + Lγ(z)) (59)

The state-space derivation follows from the products

∆−1(z)S(z) = −R1/2Klqr(zI −AK)−1Bw

∆−1(z)Lγ(z) = −R1/2(I −Klqr(zI −AK)−1Bu)

· (R+B∗uPBu)−1B∗uΠ(zI − Fγ)−1Kγ .

D. Proof of Theorem 2

We are now moving to show the regret formulation as a
Nehari problem in its general operator notation.

Proof of Theorem 2. Consider the following chain of equali-
ties

inf
causal K

sup
‖w‖2≤1

(
w∗T ∗KTKw − w∗T ∗K0

TK0w
)

= inf
causal K

‖T ∗KTK − T ∗K0
TK0
‖

(a)
= inf

causal K
‖∆K −∆K0‖2

= inf
causal K

‖∆K − {∆K0}+ − {∆K0}− ‖
2

(b)
= inf

causal L
‖L− {∆K0}− ‖

2, (60)

where (a) follows from Theorem 1 and the canonical factor-
ization

I + F ∗F = ∆∗∆, (61)

where ∆ is causal and ∆−1 is causal and bounded by the
positive definiteness of I + F ∗F . For step (b), note that,
for any L, one can recover a causal solution K by setting
K = ∆−1L + {∆K0}+. This solution is causal since ∆−1

and {∆K0}+ are causal operators.

VI. CONCLUSIONS

We derived a novel controller based on a regret criteria when
compared to a clairvoyant controller with non-causal access
to the entire disturbance sequence. The main difference from
the classical H∞ is its robustness against a clairvoyant con-
troller rather than the classical robustness without a reference
controller. The implementation of the regret-optimal controller
is simple and is published in a public Git repository [22].
As illustrated in the numerical examples, the regret criteria
is a viable approach and its potential should be assessed for

other control systems. In two subsequent works, regret-based
systems design has been utilized for the filtering problem in
[23] and the finite-horizon control problem studied in this
paper [24]. An interesting research direction is to extend the
regret-optimal controller to the case of partial observability,
i.e., measurement-feedback systems. The regret can be reduced
to a Nehari problem at the operator level [15], but an explicit
solution for state-space systems is still under investigation.

APPENDIX A
DERIVATION OF THE NON-CAUSAL CONTROLLER

The proof is presented for completeness and appeared in
previous literature, e.g. [18].

Proof of Theorem 1. For any noise realization w, the cost-
minimizing non-casual sequence of control actions with re-
spect to w is the solution of

min
v
‖Fv +Gw‖22 + ‖v‖22.

Completing the square and applying the Matrix Inversion
Lemma, the objective can be rewritten as

((I+F ∗F )v+F ∗Gw)∗(I+F ∗F )−1((I+F ∗F )v + F ∗Gw)

+ w∗G∗(I + FF ∗)−1Gw. (62)

Notice that v is arbitrary; in particular we do not assume a
priori that v is a linear function of w. The second term does
not depend on v, while the first term is non-negative and equals
zero when v is chosen as v = −(I + F ∗F )−1F ∗Gw. Note
that the matrix (I + F ∗F ) is positive-definite and hence is
invertible. Also, note that the choice of v is a linear function of
w; we have shown that the optimal offline policy is to select the
control sequence v = K0w where K0 = −(I+F ∗F )−1F ∗G.

To show the second part of the theorem, fix an arbitrary
linear controller K. Then, plugging in v = Kw into (62) and
omitting the sequence w yields

T ∗KTK = (K −K0)∗(I + F ∗F )(K −K0) + T ∗K0
TK0

.

APPENDIX B
GENERAL SOLUTION TO THE NEHARI PROBLEM (THEOREM

9)

Proof of Theorem 9. By Theorem 12.8.2 in [18], the optimal
value of a Nehari problem is the maximal singular value of the
Hankel operator of T (z). The Hankel operator can be com-
puted as the product ΠZ, where Z and Π are the controllability
and observability Gramians, respectively. Specifically, these
can be computed as the solutions to the Lyapunov equations

Π = FΠF ∗ +GG∗

Z = F ∗ZF +H∗H. (63)

The second part is the characterization of the optimal
controller which achieves an approximation with norm γ. The
optimal controller can be deduced from the proof of Lemma
12.8.1 in [18] when combining with Lemma 12.8.2. However,
it requires some further simplifications to have the simple
expression in Theorem 9.
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Throughout the derivations, we will use their original nota-
tion and relate to our notation lastly.

Let P be an hermitian matrix that will be specified by
the end of the proof. The transfer function of the (central)
optimal approximation which solves the Nehari problem is
−L21(z)L−1

11 (z). The following factorization appears in the
proof of Lemma 12.8.1(
L11(z) L12(z)
L21(z) L22(z)

)
= R1/2

e +

(
−G∗
HΠF ∗

)
(zI − F ∗)−1KpR

1/2
e

(64)

where

KpR
1/2
e =

(
−F ∗PG H∗ + F ∗P (I +GG∗P )−1FΠH∗

)
·
(

(I +G∗PG)−∗/2 0
0 φ

)
=
(
−F ∗PG(I +G∗PG)−∗/2 φ

)
R1/2
e =

(
(I +G∗PG)1/2 0

−HΠF ∗PG(I +G∗PG)−∗/2 φ

)
.

The notation φ denotes terms that are not relevant to the
characterization of the central optimal controller.

Simplifying the relevant coordinates in the second term of
(64), we obtain(
−G∗
HΠF ∗

)
(zI − F ∗)−1KpR

1/2
e

=

(
G∗(zI − F ∗)−1F ∗PG(I +G∗PG)−∗/2 φ

−HΠF ∗(zI − F ∗)−1F ∗PG(I +G∗PG)−∗/2 φ

)
,

so that L11(z) and L21(z) can be explicitly expressed as

L11(z) = [I +G∗(zI − F ∗)−1Kp](I +G∗PG)1/2

L21(z) = −HΠF ∗PG(I +G∗PG)−∗/2

−HΠF ∗(zI − F ∗)−1F ∗PG(I +G∗PG)−∗/2

= −HΠ(I + F ∗(zI − F ∗)−1F ∗)F ∗PG(I +G∗PG)−∗/2,

where Kp , F ∗PG(I +G∗PG)−1.
Recall that the central approximation is given by

−L21(z)L−1
11 (z). Plugging in the expressions we obtained for

L21(z) and L−1
11 (z), we see that the controller is

− L21(z)L−1
11 (z)

= HΠ(I + F ∗(zI − F ∗)−1)Kp(I +G∗(zI − F ∗)−1Kp)
−1

= HΠz(zI − F ∗)−1(I +KpG
∗(zI − F ∗)−1)−1Kp

(a)
= HΠz(zI − Fc)−1Kp

= HΠ(I + Fc(zI − Fc)−1)Kp, (65)

where (a) follows from Fc , F ∗ −KpG
∗.

Finally, for any valid γ, we let Zγ be the unique solutions
to the Lyapunov equation

Zγ = F ∗ZγF + γ−2H∗H.

Then, by Lemma 12.8.2, the solution to the Riccati equation
is given by P = (I − ZγΠ)−1Zγ . This explicit solution can
also lead to the simplification of Kp as

Kp = F ∗(I − ZγΠ)−1ZγG(I +G∗(I − ZγΠ)−1ZγG)−1

= F ∗(I − ZγΠ + ZγGG
∗)−1ZγG

= F ∗(I − ZγFΠF ∗)−1ZγG, (66)

where (a) follows from the Lyapunov equation Π = FΠF ∗+
GG∗.

To conclude the proof with our notation, we denote L(z) as
the optimal −L21(z)L−1

11 (z), Kγ = F ∗(I−ZγFΠF ∗)−1ZγG
and Fγ = F ∗ −KγG

∗.

APPENDIX C
TECHNICAL LEMMAS

Lemma 4. The transfer function of F (z) and G(z) are given
by

F (z) = Q1/2(zI −A)−1BuR
−1/2

G(z) = Q1/2(zI −A)−1Bw. (67)

Therefore, I + F ∗(z−∗)F (z) = I + R−∗/2B∗u(z−1I −
A∗)−1Q(zI −A)−1BuR

−1/2.

Proof of Lemma 4. The linear operator TF : v → s can be
represented as the state-space model

xt+1 = Axt +BuR
−1/2vt

st = Q1/2xt. (68)

Taking the z-transform, we obtain:

zX(z) = AX(z) +BuR
−1/2V (z)

S(z) = Q1/2X(z), (69)

so that F (z) = Q1/2(zI −A)−1BuR
−1/2.

The transfer function G(z) = Q1/2(zI − A)−1Bw can be
obtained similarly from the state-space model

xt+1 = Axt +Bwwt

st = Q1/2xt.

Proof of Lemma 2. By Lemma 4, we have

I + F ∗(z−∗)F (z)

= I +R−∗/2B∗(z−1I −A∗)−1Q(zI −A)−1BR−1/2.
(70)

For ease of derivation, we will factor the term R∗/2(I +
F ∗(z−∗)F (z))R1/2 as ∆̃∗(z−∗)∆̃(z), and then the required
factorization can be recovered as ∆(z) = ∆̃(z)R−1/2.

We can express R∗/2(I + F ∗(z−∗)F (z))R1/2 in matrix
form as(
B∗(z−1I −A∗)−1 I

)(Q 0
0 R

)(
(zI −A)−1B

I

)
=
(
B∗(z−1I −A∗)−1 I

)(Q− P +A∗PA A∗PB
B∗PA R+B∗PB

)
·
(

(zI −A)−1B
I

)
, (71)

where the equality can be verified directly and holds for any
Hermitian matrix P .
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The middle matrix in (71) can be factored as(
I Ψ∗(P )
0 I

)(
Γ(P ) 0

0 R+B∗PB

)(
I 0

Ψ(P ) I

)
,

where

Γ(P ) , Q− P +A∗PA−A∗PB(R+B∗PB)−1B∗PA

and
Ψ(P ) , (R+B∗PB)−1B∗PA.

Suppose that (A,B) is a stabilizable pair; then the Riccati
equation Γ(P ) = 0 has a unique Hermitian solution. Suppose
P is chosen to be this solution and define Klqr = Ψ(P ).
Finally, by defining

∆̃(z) = (R+B∗PB)1/2(I +Klqr(zI −A)−1B),

we obtain the desired factorization

R∗/2(I + F ∗(z−∗)F (z))R1/2 = ∆̃∗(z−∗)∆̃(z).

Recall that ∆(z) = ∆̃(z)R−1/2, so

∆(z) = (R+B∗PB)1/2(I +Klqr(zI −A)−1B)R−1/2.

Finally, it remains to check that this choice of ∆(z) is
causal, and its inverse is causal and bounded on the unit circle.

To see that the inverse is bounded, by the Matrix Inver-
sion Lemma, the poles are at the eigenvalues of the matrix
A − BKlqr. It is a stable since P was chosen to be the
unique Hermitian solution to the Ricatti equation, and hence
its spectral radius is less than 1, which due to the causality
of ∆−1(z) guarantees the boundedness of ∆−1(z) on the unit
circle.

Proof of Theorem 3. Recall that we decompose the product
∆(z)K0(z) = −∆−∗(z−∗)F ∗(z−∗)G(z). The transfer func-
tions are given by

∆−∗(z−∗) = (R+B∗uPBu)−∗/2

· (I +B∗u(z−1I −A∗)−1K∗lqr)
−1R∗/2

F ∗(z−∗) = R−∗/2B∗u(z−1I −A∗)−1Q∗/2

G(z) = Q1/2(zI −A)−1Bw. (72)

First, consider the ∆−∗(z−∗)F ∗(z−∗) (omitting constants
on the sides)

(I +B∗u(z−1I −A∗)−1K∗lqr)
−1B∗u(z−1I −A∗)−1

= B∗u(I + (z−1I −A∗)−1K∗lqrB
∗
u)−1(z−1I −A∗)−1

= B∗u(z−1I −A∗ +K∗lqrB
∗
u)−1

= B∗u(z−1I −A∗K)−1 (73)

We now multiply G(z) with (73) and apply a decomposition
as appear in [18, Lemma 12.3.3],

−∆−∗(z−∗)F ∗(z−∗)G(z)

= −(R+B∗uPBu)−∗/2B∗u

· (z−1I −A∗K)−1Q(zI −A)−1Bw

= −(R+B∗uPBu)−∗/2B∗u

· [(z−1I −A∗K)−1A∗KW +WA(zI −A)−1 +W ]Bw,

where W solves Q −W + A∗KWA = 0 . Finally, note that
W = P solves the Lyapunov equation.
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