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Abstract— We introduce a novel framework to approximate
the aggregate frequency dynamics of coherent generators.
By leveraging recent results on dynamics concentration of
tightly connected networks, and frequency weighted balanced
truncation, a hierarchy of reduced-order models is developed.
This hierarchy provides increasing accuracy in the approxima-
tion of the aggregate system response, outperforming existing
aggregation techniques.

I. INTRODUCTION

Assessing performance in power grid frequency control
requires models which are both accurate and tractable. In
large-scale networks this goal has been sought for decades
through aggregation based on coherency [1]. Generally
speaking, a group of generators is considered coherent if their
bus frequencies exhibit a similar response when subject to
power disturbances. These generators are often subsequently
modeled by a single effective machine.

Various methods for identifying coherent group of gener-
ators have been introduced in the past [2]–[6]. The Linear
Simulation Method [7] groups generators whose maximum
difference in time-domain response is within some tolerance.
Similarly, [3] develops a clustering algorithm based on the
pairwise maximum difference in time-domain response. The
Weak Coupling Method [6] quantifies strength of coupling
between two areas to iteratively determine the boundaries of
coherent generator groups. The Two Time Scale Method [4],
[5] computes the eigen-basis matrix associated with the elec-
tromechanical modes in the linearized network: generators
with similar entries on the basis matrix with respect to low
frequency oscillatory modes are considered coherent.

Once generators are grouped by coherence, an effec-
tive machine model is typically proposed for each group.
Previous work [8]–[13] suggests that inertial and damping
coefficients for the effective generator should chosen as the
sum of the corresponding generator parameters. However,
in the presence of turbine control dynamics, the proper
choice of turbine time constants is unclear. Optimization-
based approaches [9], [10] minimize an error function to
choose the time constant of the effective generator. Other
approaches use the average [11], or the weighted harmonic
mean [12] of time constants of generators in the coherent
group. Accurate models of the coherent dynamics play an im-
portant role in applications to area dynamics modeling [12],
optimization of DER participation [10], frequency shaping
control [14]. Moreover, new modeling demands arise in
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modern-day networks where coherent groups may include
grid-forming inverters [15], [16] in addition to classical
synchronous generators.

In this paper, we leverage new results [17] on character-
izing coherence in tightly-connected networks to propose a
general framework for aggregation of coherent generators.
For n coherent generators with transfer function gi(s), i =
1, · · · , n, the aggregate coherent dynamics are accurately
approximated by ĝ(s) =

(∑n
i=1 g

−1
i (s)

)−1
. In particular, we

show that ĝ(s) is a natural characterization of the coherent
dynamics in the sense that, as the algebraic connectivity of
the network increases, the response of the coherent group
is asymptotically ĝ(s). Note, however, than in general due
to heterogeneity in turbine control dynamics, the aggregate
transfer function ĝ(s) will be of an order which scales with
the network size. We thus seek a low-order approximation.

In contrast with the conventional approach [9], [10], [12]
we will not restrict the choice of low order models to the
simple selection of parameters of an effective generator.
Rather, we will resort to frequency weighted balanced trun-
cation to develop a hierarchy of models of adjustable order
and increasing accuracy. In particular, for an aggregation
of n second order generator models, we find that high
accuracy can often be achieved by a reducing the 2n-order
system to 3rd order. We note however that the aggregation
techniques introduced in this paper apply to any linear model
of generators, including those of higher order than two.

We compare two alternatives: providing an aggregate
model for a set of turbines, and subsequently closing the
loop, versus performing the reduction directly on the closed
loop ĝ(s). The first is motivated by retaining the interpreta-
tion whereby one or two equivalent generators represent the
aggregate; still, we show how a similar interpretation may
be available for the second, more accurate method.

The rest of the paper is organized as follows. In Section
II, we provide the theoretical justification of the coherent
dynamics ĝ(s). In Section III, we propose reduced-order
models for ĝ(s) by frequency weighted balanced truncation.
We then show via numerical illustrations that the proposed
models can achieve accurate approximation (Section IV).
Lastly, we conclude this paper with more discussions on the
implications of our current results. A preliminary one-and-
half page abstract of this work was presented in [18].

II. AGGREGATE DYNAMICS OF COHERENT GENERATORS

Consider a group of n generators, indexed by i = 1, · · · , n
and dynamically coupled through an AC network. Assuming
the network is in steady-state, Fig.1 shows the block diagram
of the linearized system around its operating point.
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Fig. 1. Block Diagram of Linearized Power Networks

Due to the space constraints, we refer to [19] for de-
tails on the linearization procedure. The signals w =
[w1, · · · , wn]T , u = [u1, · · · , un]T , pe = [pe1, · · · , pen]T are
in vector form. For generator i, the transfer function from net
power deviation (ui− pei ) at its generator axis to its angular
frequency deviation wi, relative to their equilibrium values,
is given by gi(s). The net power deviation at generator i,
includes disturbance ui reflecting variations in mechanical
power or local load, minus the electrical power pei drawn
from the network.

The network power fluctuations pe are given by a lin-
earized (lossless) DC model of the power flow equation
pe(s) = 1

sLw(s). Here L is the Laplacian matrix of
an undirected weighted graph, with its elements given by
Lij = ∂

∂θj

∑n
k=1 |Vi||Vk|bik sin(θi − θk)

∣∣∣
θ=θ0

, where θ0

are angles at steady state, |Vi| is the voltage magnitude at bus
i and bij is the line susceptance. Without loss of generality,
we assume the steady state angular difference θ0i − θ0j

across each line is smaller than π
2 . Moreover, because L

is a symmetric real Laplacian, its eigenvalues are given by
0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L). The overall linearized
frequency dynamics of the generators is given by

wi(s) = gi(s)(ui(s)− pei (s)), i = 1, · · · , n , (1a)

pe(s) =
1

s
Lw(s) . (1b)

Generally, a group of generator coupled as in Fig. 1 is
considered coherent if all generators have the same/similar
frequency responses under disturbance u of any shape. We
are interested in characterizing the dynamic response of
coherent generators, which we term here coherent dynamics.
With this aim, we seek conditions on the network (1) under
which the entire set of generators behave coherently. The
same approach can be used on subgroups of generators.

To motivate our results, we start with summing over all
equations in (1a) to get

n∑
i=1

g−1
i (s)wi(s) =

n∑
i=1

ui(s)−
n∑
i=1

pei (s) =

n∑
i=1

ui(s) . (2)

Notice that the term
∑n
i=1 p

e
i (s) = 1T Lsw(s) = 0 since

1 = [1, · · · , 1]T is an left eigenvector of λ1(L) = 0.
A pragmatical approach to obtain a model of coherent

behavior is to simply impose the equality wi(s) = ŵ(s)
between the frequency output. Solving from (2) we obtain:

ŵ(s) =

(
n∑
i=1

g−1
i (s)

)−1 n∑
i=1

ui(s) =: ĝ(s)

n∑
i=1

ui(s); (3)

the group of generators is aggregated into a single effective
machine ĝ(s), responding to the total disturbance.

A. Coherence in Tightly Connected Networks

To properly justify the use of (3) as an accurate descriptor
of the coherent dynamics, we state here a precise result. Our
analysis will highlight the role of the algebraic connectivity
λ2(L) of the network as a direct indicator of how coherent
a group of generators is.

For the network shown in Fig.1, the transfer matrix from
the disturbance u to the frequency deviation w is given by

T (s) = (In + diag{gi(s)}L/s)−1
diag{gi(s)} , (4)

where In is the n × n identity matrix. We establish that
the transfer matrix T (s) converges, as algebraic connectivity
λ2(L) increases, to one where all entries are given by ĝ(s).

We make several assumptions: 1) T (s) is stable; 2) ĝ(s)
in (3) is stable 3) all gi(s) are minimum phase systems. All
generator network models discussed in this paper (Section II-
B,II-C) satisfy these assumptions. In particular, the stability
of T (s) is guaranteed by passivity of the network [20]. We
state the following result.

Theorem 1. Given the assumptions above, the following
holds for any η0 > 0:

lim
λ2(L)→+∞

sup
η∈[−η0,η0]

∥∥T (jη)− ĝ(jη)11T
∥∥ = 0 ,

where j =
√
−1 and 1 ∈ Rn is the vector of all ones.

The transfer matrix ĝ(s)11T has the property that for an
arbitrary vector disturbance u(s), the response is w(s) =
ĝ(s)11Tu(s) = (ĝ(s)

∑n
i=1 ui(s)) 1; this says the vector of

bus frequencies responds in unison, with all entries equal
to the response ŵ in (3). Theorem 1 states that in the
limit of large connectivity, the true response T (s)u(s) is
approximated by the one in (3) for the disturbances in the
frequency band [0, η0]. The proof is shown in the appendix.

Fig. 2. Step response of Icelandic grid (generator responses and the CoI
frequency response), and step response of coherent dynamics ĝ(s). The
oscillatory response of a specific generator is highlighted in blue line.

The limit of high connectivity analyzed in the theorem
is a good assumption for many cases of tightly connected
networks, but one may wonder about the relevance of ĝ(s)
in a less extreme case. We explore this through a numerical
simulation on the Icelandic Power Grid [21], of moderate
connectivty. As shown in Fig.2, the step response has inco-
herent oscillations from individual generators. Nevertheles,



if one looks at the Center of Inertia (CoI) frequency wcoi =
(
∑n
i=1miwi)/(

∑n
i=1mi), a commonly used system-wide

metric, we see it is very closely approximated by the coherent
dynamics ĝ(s). Thus we will proceed with this model of ag-
gregate response. For certain generator models, however, the
complexity of ĝ(s) motivates the need for approximations.

As a side note, such coherence among generators is
frequency-dependent. As we suggested above, the effective
algebraic connectivity

∣∣∣λ2(L)
s

∣∣∣ determines how close T (s)

is to ĝ(s)11T at certain point. For any fixed λ2(L), there
is a large enough cutoff frequency ηc such that

∣∣∣λ2(L)
jη

∣∣∣ is
sufficiently small for any η ≥ ηc, which is to say, for certain
coherent group of generators, the responses of generators are
not coherent at all under a disturbance with high frequency
components over band [jηc,+∞).

B. Aggregate Dynamics for Different Generator Models

Having characterized how the coherent dynamics given by
ĝ(s) represent the network’s aggregate behavior, from now
on we will use with no distinction the terms “aggregate” and
“coherent” dynamics. Now we look into the explicit forms
these dynamics take for different generator models.

Case 1. Generators with 1st order model, of two types:
1) For synchronous generators [13], gi(s) = 1

mis+di
,

where mi, di are the inertia and damping of generator i,
respectively. The coherent dynamics are ĝ(s) = 1

m̂s+d̂
,

where m̂ =
∑n
i=1mi and d̂ =

∑n
i=1 di.

2) For droop-controlled inverters [15], gi(s) =
kP,i

τP,is+1 ,
where kP,i and τP,i are the droop coefficient and the filter
time constant of the active power measurement, respectively.
The coherent dynamics are ĝ(s) = k̂P

τ̂P s+1 , where k̂P =(∑n
i=1 k

−1
P,i

)−1

, τ̂P = k̂P (
∑n
i=1 τP,i/kP,i).

Notice that both dynamics are of the same form; by
suitable reparameterization, we may use the “swing” model
gi(s) = 1

mis+di
to model both types of generators. In this

case no order reduction is needed: the aggregate model given
in Case 1 is consistent with the conventional approach of
choosing inertia m̂ and damping d̂ as the respective sums
over all generators. Theorem 1 explains why such a choice
is indeed appropriate.

The aggregation is more complicated when considering
generators with turbine droop control:

Case 2. Synchronous generators given by the swing model
with turbine droop [13]

gi(s) =
1

mis+ di +
r−1
i

τis+1

, (5)

where r−1
i and τi are the droop coefficient and turbine time

constant of generator i, respectively. The coherent dynamics
are given by

ĝ(s) =
1

m̂s+ d̂+
∑n
i=1

r−1
i

τis+1

. (6)

When all generators have the same turbine time constant
τi = τ̂ , then ĝ(s) in (6) reduces to the typical effective ma-
chine model of the form (5) with parameters (m̂, d̂, r̂−1, τ̂),
where r̂−1 =

∑n
i=1 r

−1
i , i.e., the aggregation model is still

obtained by choosing parameters as the respective sums
of their individual values. However, if the τi are hetero-
geneous, then

∑n
i=1

r−1
i

τis+1 is generally high-order because
the summands have distinct poles. As the result, the closed-
loop dynamics ĝ(s) is a high-order transfer function and
cannot be accurately represented by a single generator model.
The aggregation of generators thus requires a low-order
approximation of ĝ(s).

C. Aggregate Dynamics for Mixture of Generators

We have shown the aggregate dynamics for generators of
three different types. When a mixture of these different types
is present1, we propose (5) to be a general representation of
the three types; in particular, the first order models can be
regarded as (5) with r−1

i = 0. Therefore, (6) provides a
general representation of the aggregate dynamics resulting
from a mixture of generators. Again, high-order coherent
dynamics arise when heterogeneous turbines exist.

III. REDUCED ORDER MODEL FOR COHERENT
GENERATORS WITH HETEROGENEOUS TURBINES

As shown in the previous section, the coherent dynamics
ĝ(s) are of high-order if the coherent group has generators
with different turbine time constants. This suggests that
substituting ĝ(s) with an equivalent machine of the same
order as each gi(s) may lead to substantial approximation
error. In this section we propose instead a hierarchy of
reduction models with increasing order, based on balanced
realization theory [22], such that eventually an accurate
reduction model is obtained as the order of the reduction
increases. We further explore other avenues of improvement
by applying the reduction methodology over the coherent
dynamics itself, instead of the standard approach of applying
a reduction only on the turbines [9], [10], [12].

We use frequency weighted balanced truncation [23] to
approximate ĝ(s). Frequency weighted balanced truncation
identifies the most significant dynamics with respect to
particular LTI frequency weight by computing the weighted
Hankel singular values, which decay fast in many cases,
allowing us to accurately approximate high-order systems.
Importantly, the reduction procedure favors approximation
accuracy in certain frequency range specified by the weights.
The detailed procedure of frequency weighted balanced
truncation is shown in Appendix.V-B. Given a SISO proper
transfer function G(s), and a frequency weight W (s) the
k-th order weighted balanced truncation returns

G̃k(s) =
bk−1s

k−1 + · · ·+ b1s+ b0
aksk + · · ·+ a1s+ a0

, (7)

1Generally, when considering a mixture of synchronous generators and
grid-forming inverters, our network model is valid only when synchronous
generators make up a significant portion of the composition.



which is guaranteed to be stable [23], and such that the
weighted error supη∈R |W (jη)(G(jη) − G̃k(jη))| is upper
bounded, with an upper bound decreasing to zero with the
order k. For our purposes, W (s) must have high gain in the
low frequency range, so that the DC gains of the original and
reduced dynamics are approximately matched, i.e., G(0) '
G̃(0). Our proposed two model reduction approaches for
high-order ĝ(s) in (6) are both based on frequency weighted
balanced truncation.

A. Model Reduction on Turbine Dynamics

Our first model is based on applying balanced truncation to
the turbine aggregate. Essentially, ĝ(s) in (6) is of high order
because it has high-order turbine dynamics

∑n
i=1

r−1
i

τis+1 ; we
seek to replace it with a reduced-order model. This is akin to
the existing literature [9], [10] which replaces an aggregate
of turbines in parallel by a first order turbine model with
parameters obtained by minimizing certain error functions.

We denote the aggregate turbine dynamics as ĝt(s) :=∑n
i=1

r−1
i

τis+1 . We also denote the (k − 1)-th reduction
model of ĝt(s) by frequency-weighted balanced truncation
as g̃t,k−1(s). Then the k-th order reduction model of ĝ(s) is
given by

g̃tbk (s) =
1

m̂s+ d̂+ g̃t,k−1(s)
, (8)

with, again, m̂ =
∑n
i=1mi, d̂ =

∑n
i=1 di. We highlight two

special instances of relevance for our numerical illustration.
1) 2nd order reduction model: When k = 2, the reduced

model g̃t,1(s) can be interpreted as a first order turbine model

g̃t,1(s) =
b0

a1s+ a0
=

b0/a0

(a1/a0)s+ 1
:=

r̃−1

τ̃ s+ 1
,

with parameters (r̃−1, τ̃) chosen by the weighted balanced
truncation method. Then the overall reduction model g̃tb2 (s)
is second order, which is a single generator model.

Unlike [9], [10], there is a DC gain mismatch between
g̃tb2 (s) and the original ĝ(s) since r̃−1 6= r̂−1 =

∑n
i=1 r

−1
i .

Later in the simulation section, by choosing a proper fre-
quency weight W (s), we effectively make the DC gain
mismatch negligible. Unfortunately, as we will see in the
numerical section, k = 2 may not suffice to accurately
approximate the coherent dynamics.

2) 3rd order reduction model: To obtain a more accurate
reduced-order model, one may consider k = 3 as the
next suitable option. In fact, we see in the later numerical
simulation, a 2nd order turbine model g̃t,2(s), i.e., k = 3, is
sufficient to give an almost exact approximation of ĝt(s).

We can also interpret g̃t,2(s), by means of partial fraction
expansion, i.e.,

g̃t,2(s) =
b1s+ b0

a2s2 + a1s+ a0
=

r̃−1
1

τ̃1s+ 1
+

r̃−1
2

τ̃2s+ 1
,

assuming the poles are real. Then the reduced dynamics
g̃t,2(s) can be viewed as two first order turbines in parallel
with parameters (r̃−1

1 , τ̃1) and (r̃−1
2 , τ̃2). In Section IV-B, we

show such interpretation is valid for our numerical example.

B. Model Reduction on Closed-loop Coherent Dynamics

Our second proposal is: instead of reducing the turbine
dynamics (8), to apply weighted balanced truncation directly
on ĝ(s). Thus, we denote g̃clk (s) as the k-th order reduction
model, via frequency weighted balanced truncation, of the
coherent dynamics ĝ(s). Again, DC gain mismatch can be
made negligible by properly choosing W (s).

As compared to Section III-A, the reduced model might
not be easy to interpret in practice. Nevertheless, the proce-
dure described below often leads to such an interpretation.

1) 2nd order reduction model: When k = 2, we wish
to interpret g̃cl2 (s) in terms of a single generator with a
first order turbine of the form in (5), with parameters
(m̃, d̃, r̃−1, τ̃). Given

g̃cl2 (s) =
b1s+ b0

a2s2 + a1s+ a0
:=

N(s)

D(s)
,

obtained via the proposed method, we write the polynomial
division D(s) = Q(s)N(s)+R, where Q(s), R are quotient
and remainder, respectively. This leads to the expression

g̃cl2 (s) =
N(s)

Q(s)N(s) +R
=

1

Q(s) + R
N(s)

.

Here the first order polynomial Q(s) can be matched to
m̃s+ d̃, and R

N(s) to r̃−1

τ̃s+1 . Provided the obtained constants
(m̃, d̃, r̃−1, τ̃) are positive, the interpretation follows.

2) 3rd order reduction model: Similarly, when k = 3,
the reduced model is g̃cl3 (s) = N(s)

D(s) , with N(s) of 2nd
order and D(s) of 3rd order. The polynomial division
D(s) = Q(s)N(s) + R(s), still gives a first order quotient
Q(s), which is interpreted as m̃s + d̃; the second order
transfer function R(s)

N(s) can be expressed, by partial fraction
expansion, as two first order turbines in parallel, provided
the obtained constants remain positive. We explore this in
the examples studied below.

IV. NUMERICAL SIMULATIONS

We now evaluate the reduction methodologies proposed
in the previous section, and compare their performance with
the solutions proposed in [9], [10]. In our comparison,
we consider 5 generators forming a coherent group2. All
parameters are expressed in a common base of 100 MVA.

The test case: 5 generators, m̂ = 0.0683(s2/rad), d̂ =
0.0107. The turbine and droop parameters of each generator
are listed in Table I. In all comparisons, a step change of
−0.1 p.u. is used.

Remark. In the test case, we only aggregate 5 generators
and report all parameters explicitly in order to give more
insights on how the distribution of time constant τi affects
our approximations. It is worth noting that similar behavior
is observed when reducing coherent groups with a much
larger number of generators. In particular, the accuracy found

2More specifically, we assume sufficiently strong network coupling
among these generators such that the frequency responses are coherent.
The numerical simulation will only illustrate the approximation accuracy
with respect to the coherent response rather than individual ones.



TABLE I
DROOP CONTROL PARAMETERS OF GENERATORS IN TEST CASE

Parameter
Index 1 2 3 4 5

droop r−1
i (p.u.) 0.0218 0.0256 0.0236 0.0255 0.0192

time constant τi (s) 9.08 5.26 2.29 7.97 3.24

below with 3rd order reduced models is also observed in
these higher order problems.

A. DC Gain Mismatch Cancellation

As mentioned in the previous section, one of the draw-
backs of the balanced truncation method is that it does not
match the DC gain of the original system, which leads to
an error on the steady-state frequency. We illustrate this
issue in Fig. 3, where we compare the step response of two
2nd order reduction models g̃tb2 (s) using frequency weighted
balanced truncation on the turbines, with different weights:
1) unweighted: W1(s) = 1; 2) weighted: W2(s) = s+3·10−2

s+10−4 .
Fig. 3 compares step responses and Bode plots for the

original coherent dynamics ĝ(s) (solid gray) with those of
reduced models (dotted and dashed lines).

Fig. 3. Second order models by balanced truncation on turbine dynamics
with frequency weights W1(s) = 1 (unweighted) and W2(s) =

s+3·10−2

s+10−4

(weighted). Step response (left) and Bode plot (right).

The DC gain mismatch is reflected in the steady state
step response; we see that it is significantly reduced by
frequency weighted balanced truncation. However, it gives
worse approximation to ĝ(s) in the transient phase than the
unweighted truncation. The Bode plot also reflects such a
trade-off: the unweighted model has lower approximation
error around the peak gain (0.1 − 1 rad/s) of ĝ(s), at the
cost of inaccuracies in the low frequency range (< 0.1rad/s).
The weighted model exhibits exactly the opposite behavior,
as the weight W2(s) = s+3·10−2

s+10−4 puts more emphasis on low
frequency ranges.

As we will show in Section IV-D, neither can
optimization-based approaches get rid of this trade-off. This
suggests that a second order model is not sufficient to fully
recover our coherent dynamics ĝ(s). The main reason is that
the time constants τi have wide spread: from ∼2s to ∼9s. As
the result, it is difficult to find a proper time constant τ̃ to
account for both fast and slow turbines. The way to resolve
it is approximating ĝ(s) by higher-order reduced models.

B. Effect of Reduction Order k in Accuracy

We now evaluate the effect of the order of the reduction
in the accuracy. That is, we compare 2nd and 3rd order
balanced truncation on the turbine dynamics, g̃tb2 (s) (BT2-
tb), g̃tb3 (s) (BT3-tb), as well as balanced truncation on the
closed-loop coherent dynamics g̃cl2 (s) (BT2-cl), g̃cl3 (s) (BT3-
cl). The frequency weights are given by Wtb(s) = s+3·10−2

s+10−4

and Wcl(s) = s+8·10−2

s+10−4 , respectively. The step response and
step response error with respect to ĝ(s) are shown in Fig. 4.

Fig. 4. Comparison of all reduced-order models by balanced truncation

Compared to 2nd order models, 3rd order reduced models
give a very accurate approximation of ĝ(s). While it is not
surprising that approximation models with higher order (k =
3) outperform models with lower order (k = 2), it is not
trivial that a 3rd order model would provide this level of
accuracy for an intrinsically high order system.

Moreover, when we examine the transfer function given
by g̃tb3 (s) (from input u in p.u. to output w in rad/s), we find
an interesting interpretation. That is, the turbine model for
g̃tb3 (s) is given by

g̃t,2(s) =
0.0266s+ 0.0057

s2 + 0.5046s+ 0.0489
=

0.0473

2.68s+ 1
+

0.0684

7.64s+ 1
,

where the latter is obtained by partial fraction expansion and
can be viewed as two turbines (one fast turbine and one slow
turbine) in parallel, and the choices of droop coefficients for
these two turbines reflects the aggregate droop coefficients
of fast turbines (generators 3 and 5) and slow turbines
(generators 1,2, and 4), respectively, in ĝ(s).

C. Reduction on Turbines vs. Closed-loop Dynamics

Another observation from Fig. 4 is that reduction on the
closed-loop is more accurate than reduction on the turbine.
To get a more straightforward comparison, we list in Table
II the approximation errors of all 4 models in Fig 4 using
the following metrics: 1) L2-norm of step response error3

e(t) (in rad/s1/2): (
∫ +∞

0
|e(t)|2dt)1/2; 2) L∞-norm of e(t)

(in rad/s): maxt≥0 |e(t)|; 3) H∞-norm difference between
reduced and original models (from input u in p.u. to output
w in rad/s).

We observe from Table II that for a given the reduc-
tion order, balanced truncation on the closed-loop dynamics

3For reduced-order models obtained via frequency weighted balanced
truncation, there exists an extremely small but non-zero DC gain mismatch
that makes the L2-norm unbounded. We resolve this issue by simply scaling
our reduced-order models to have exactly the same DC gain as ĝ(s).



TABLE II
APPROXIMATION ERRORS OF REDUCED ORDER MODELS

Model
Metric L2 diff.

(rad/s1/2)
L∞ diff.
(rad/s) H∞ diff.

Guggilam [10] 7.2956 3.8287 10.2748
Germond [9] 3.9594 1.9974 5.1431
BT2-tb 4.3737 2.1454 7.5879
BT2-cl 2.0376 0.9934 2.0381
BT3-tb 0.0967 0.0361 0.1315
BT3-cl 0.0704 0.0249 0.0317

(g̃cl2 (s), g̃cl3 (s)) has smaller approximation error than bal-
anced truncation on turbine dynamics (g̃tb2 (s), g̃tb3 (s)) across
all metrics. Such observation seems to be true in general. For
instance, Fig. 5 shows a similar trend by plotting the same
configuration (metrics and models) of Table II for different
values of of the aggregate inertia m̂, while keeping all other
parameters the same.

Fig. 5. Approximation errors of second order models (left) and third order
models (right) by balanced truncation in different metrics. Approximation
errors of reduced-order models g̃tb2 (s), g̃tb3 (s) are shown in dashed lines;
Approximation errors of reduced-order models g̃cl2 (s), g̃cl3 (s) are shown in
solid lines. The approximation errors are in their respective unit.

It can be seen from Fig. 5 that reduction on closed-
loop dynamics improves the approximation in every metric,
uniformly, for a wide range of aggregate inertia m̂ values.
The main reason is that, when applying reduction on closed-
loop dynamics, the algorithm has the flexibility to choose the
corresponding values of inertia and damping to be different
from the aggregate ones in order to better approximate the
response. More precisely, from the reduced model we obtain

g̃cl2 (s) =
4.9733s+ 1

(0.06715s+ 0.01464)(4.9733s+ 1) + 0.1118
,

from which we can get the equivalent swing and turbine
model as

swing model:
1

0.06715s+ 0.01464
, turbine:

0.1118

4.9733s+ 1
.

The equivalent inertia and damping are m̃ = 0.06715 and
d̃ = 0.01464, which are different from the aggregate values
m̂, d̂. Therefore, when compared to reduction on turbine
dynamics, reduction on closed-loop dynamics is essentially
less constrained on the parameter space, thus achieving
smaller approximation errors.

D. Comparison with Existing Methods

Lastly, we compare reduced-order models via balanced
truncation on the closed-loop dynamics, g̃cl2 (s), g̃cl3 (s), with

the solutions proposed in [9], [10]. The step responses and
the approximation errors are shown in Fig. 6 and Table. II.

Fig. 6. Comparison with existing reduced-order models

In the comparison, g̃cl3 (s) outperforms all other reduced-
order models and it is the most accurate reduced-order
model of ĝ(s). It is also worth noting that g̃cl2 (s) has the
least approximation error among all 2nd order models. In
general, such results suggest us that to improve the accuracy
in reduced-order models of coherent dynamics of generators
ĝ(s), we should consider: 1) increasing the complexity
(order) of the reduction model; 2) reduction on closed-loop
dynamics instead of on turbine dynamics.

V. CONCLUSION AND FUTURE WORK

This paper concerns tractable models for frequency dy-
namics in the power grid, starting with the characterization
ĝ(s) =

(∑n
i=1 g

−1
i (s)

)−1
for the coherent response, which

is shown to be asymptotically accurate as the coupling
between generators (characterized via λ2(L)) increases. Our
characterization justifies existing aggregation approaches and
also explains the difficulties of aggregating generators with
heterogeneous turbine time constants. We leverage model
reduction tools from control theory to find accurate reduced-
order approximations to ĝ(s). For {gi(s)}ni=1 given by the
2nd order generator models, the numerical study shows that
3rd order models based on frequency weighted balanced
truncation on closed-loop dynamics are sufficient to accu-
rately represent ĝ(s).

There are many possible directions of further inquiry.
First, for situations of weaker coherency, we have seen
that in Fig.2, ĝ(s) well approximates the response of the
CoI frequency, and in fact the approximation is exact if
generator transfer functions {gi(s)}ni=1 are proportional to
each other [13]. An interesting question is to bound the
approximation error when proportionality fails.

A second topic of future research is experimentation with
higher-order gi(s) [9]. These arise due to more detailed
models of turbine dynamics, or to the presence of advanced
droop controllers [14], [24]. Classical aggregation strategies
are complicated in this setting, but our model reduction
program is in principle applicable and can help validate the
need for such level of modeling detail.

A. Proof of the Theorem 1

To proof the theorem, we need to present two lemmas first.



Lemma 1. Let A,B be matrices of order n. For increasingly
ordered singular values σi(A), σi(B), if σ1(A) ≥ σn(B),
then the following inequality holds:

‖(A+B)−1‖ ≤ 1

σ1(A)− σn(B)
=

1

σ1(A)− ‖B‖
Proof. By [25, 3.3.16], we have:

σ1(A) ≤ σ1(A+B) + σn(−B) .

Then as long as σ1(A) ≥ σn(B), the following holds

1

σ1(A+B)
≤ 1

σ1(A)− σn(B)
,

and notice that the left-hand side is exactly ‖(A+B)−1‖.

Lemma 2. Let ĝ(s), T (s) be defined in (3) and (4). Define
ḡ(s) := nĝ(s). Suppose for s0 ∈ C, we have |ḡ(s0)| ≤ M1

and max1≤i≤n |g−1
i (s0)| ≤M2 for some M1,M2 > 0. Then

for large enough λ2(L), the following inequality holds:∥∥∥∥T (s0)− 1

n
ḡ(s0)11T

∥∥∥∥
≤
M2

1M
2
2 + 2M1M2 +

M1M
2
2

|λ2(L)/s0|−M2

|λ2(L)/s0| −M2 −M1M2
2

+
1

|λ2(L)/s0| −M2
.

(9)

Proof. Since L is symmetric Laplacian matrix, the decom-
position of L is given by:

L = V ΛV T ,

where V = [ 1n√
n
, V⊥], V V T = V TV = In, and Λ =

diag{λi(L)} with 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L).
For the transfer matrix T (s), we have:

T (s) = (In + diag{gi(s)}L/s)−1diag{gi(s)}
= (diag{g−1

i (s)}+ L/s)−1

= (diag{g−1
i (s)}+ V (Λ/s)V T )−1

= V (V Tdiag{g−1
i (s)}V + Λ/s)−1V T .

Let H = V Tdiag{g−1
i (s0)}V + Λ/s0, then it’s easy to see

that:∥∥∥∥T (s0)− 1

n
ḡ(s0)1n1Tn

∥∥∥∥ = ‖T (s0)− ḡ(s0)V e1e
T
1 V

T ‖

=
∥∥V (H−1 − ḡ(s0)e1e

T
1

)
V T
∥∥

=
∥∥H−1 − ḡ(s0)e1e

T
1

∥∥ , (10)

where e1 is the first column of identity matrix In.
We write H in block matrix form:

H = V Tdiag{g−1
i (s0)}V + Λ/s0

=

[
1T
n√
n

V T⊥

]
diag{g−1

i (s0)}
[

1n√
n

V⊥
]

+ Λ/s0

=

[
ḡ−1(s0)

1T
n√
n

diag{g−1
i (s0)}V⊥

V T⊥ diag{g−1
i (s0)} 1n√

n
V T⊥ diag{g−1

i (s0)}V⊥ + Λ̃/s0

]

:=

[
ḡ−1(s0) hT12

h12 H22

]
,

where Λ̃ = diag{λ2(L), · · · , λn(L)}.
Invert H in its block form, we have:

H−1 =

[
a −ahT12H

−1
22

−aH−1
22 h12 H−1

22 + aH−1
22 h12h

T
12H

−1
22

]
,

where a = 1
ḡ−1(s0)−hT

12H
−1
22 h12

.
Notice that ‖1n‖ =

√
n and ‖V⊥‖ = 1, we have

‖h12‖ ≤
‖1n‖√
n
‖diag{g−1

i (s0)}‖‖V⊥‖ ≤M2 , (11)

by the compatibility between vector and matrix 2-norm,
along with that matrix 2-norm is sub-multiplicative. Addi-
tionally, by Lemma 1, when |λ2(L)/s0| > M2, the following
holds:

‖H−1
22 ‖ ≤

1

σ1(Λ̃)− ‖V T⊥ diag{g−1
i (s0)}V⊥‖

≤ 1

|λ2(L)/s0| −M2
. (12)

Lastly, when |λ2(L)/s0| > M2 + M2
2M1, by (11)(12), we

have:

|a| ≤ 1

|ḡ−1(s0)| − ‖h12‖2‖‖H−1
22 ‖

≤ (|λ2(L)/s0| −M2)M1

|λ2(L)/s0| −M2 −M1M2
2

. (13)

Now we bound the norm of H−1− ḡ(s0)e1e
T
1 by the sum

of norms of all its blocks:

‖H−1 − ḡ(s0)e1e
T
1 ‖

=

∥∥∥∥[aḡ(s0)hT12H
−1
22 h12 −ahT12H

−1
22

−aH−1
22 h12 H−1

22 + aH−1
22 h12h

T
12H

−1
22

]∥∥∥∥
≤ |a|‖H−1

22 ‖(|ḡ(s0)|‖h12‖2 + 2‖h12‖+ ‖h12‖2‖H−1
22 ‖)

+ ‖H−1
22 ‖ . (14)

By (11)(12)(13), we have the following:

‖H−1 − ḡ(s0)e1e
T
1 ‖

≤
M2

1M
2
2 + 2M1M2 +

M1M
2
2

|λ2(L)/s0|−M2

|λ2(L)/s0| −M2 −M1M2
2

+
1

|λ2(L)/s0| −M2
.

(15)

This bound holds as long as |λ2(L)/s0| > M2 + M2
2M1,

and combining (10)(15) gives the desired inequality.

Now we can proof theorem 1, we recite the theorem before
the proof:

Theorem 1. Given the assumptions in Section II-A, the
following holds for any η0 > 0:

lim
λ2(L)→+∞

sup
η∈[−η0,η0]

∥∥T (jη)− ĝ(jη)11T
∥∥ = 0 ,

where j =
√
−1 and 1 ∈ Rn is the vector of all ones.

Proof. ḡ(s) is stable because ĝ(s) is stable, then ḡ(s) is con-
tinuous on compact set [−jη0, jη0]. Then by [26, Theorem
4.15] there exists M1 > 0, such that ∀s ∈ [−jη0, jη0], we



have |ḡ(s)| ≤M1. Similarly, because all gi(s) are minimum-
phase, all g−1

i (s) are stable hence continuous on [−jη0, jη0].
Again there exists M2 > 0, such that ∀s ∈ [−jη0, jη0], we
have max1≤i≤n |g−1

i (s)| ≤M2.
Now we know that ∀s ∈ [−jη0, jη0], we have |ḡ(s)| ≤

M1,max1≤i≤n |g−1
i (s)| ≤ M2, i.e. the condition for

Lemma 2 is satisfied for a common choice of M1,M2 > 0.
By Lemma 2, ∀s ∈ [−jη0, jη0], we have:∥∥T (s)− ĝ(s)11T

∥∥
≤
M2

1M
2
2 + 2M1M2 +

M1M
2
2

|λ2(L)/s|−M2

|λ2(L)/s| −M2 −M1M2
2

+
1

|λ2(L)/s| −M2
.

Taking sups∈[−jη0,jη0] on both sides gives:

sup
s∈[−jη0,jη0]

∥∥T (s)− ĝ(s)11T
∥∥

≤
M2

1M
2
2 + 2M1M2 +

M1M
2
2

|λ2(L)|/η0−M2

|λ2(L)|/η0 −M2 −M1M2
2

+
1

|λ2(L)|/η0 −M2
.

Lastly, take λ2(L)→ +∞ on both sides, the right-hand side
gives 0 in the limit, which finishes the proof.

B. Frequency Weighted balanced Truncation

Given a minimum realization of frequency weight W (s)
to be (AW , BW , CW , DW ), the procedures of frequency
weighted balanced truncation for a minimum, strictly proper
and stable linear system (A,B,C) with order n are given as
follow:

1) The extended system4 is given by: A 0 B
BWC AW 0
DWC CW 0

 :=

[
Ā B̄

C̄ 0

]
.

2) Compute the frequency weighted controllability and
observability gramians Xc, Yo from the gramians
X̄c, Ȳo of extended system:

X̄c =

∫ ∞
0

eĀtB̄B̄T eĀ
T tdt, Ȳo =

∫ ∞
0

eĀ
T tC̄T C̄eĀtdt

Xc =
[
In 0

]
X̄c

[
In
0

]
, Yc =

[
In 0

]
Ȳc

[
In
0

]
.

3) Perform the singular value decomposition of
X

1
2
c YoX

1
2
c :

X
1
2
c YoX

1
2
c = UΣU∗ .

where U is unitary and Σ is diagonal, positive definite
with its diagonal terms in decreasing order. Then
compute the change of coordinates T given by:

T−1 = X
1
2
c UΣ−1 .

4) Apply change of coordinates T on (A,B,C) to get its
balanced realization (TAT−1, TB,CT−1). Then the
k-th order (1 ≤ k ≤ n) reduction model (Ak, Bk, Ck)

4When W (s) = 1, the extended system is exactly the same as original
(A,B,C), then the procedures give unweighted standard balanced trunca-
tion.

is given by truncating (TAT−1, TB,CT−1) as the
following:

Ak =
[
Ik 0

]
TAT−1

[
Ik
0

]
Bk =

[
Ik 0

]
TB

Ck = CT−1

[
Ik
0

]
.

Remark. Balanced truncation only applies to systems in state
space. For a transfer function, one should apply balanced
truncation to its minimum realization, then obtain reduced
order transfer function from the state-space reduction model.
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