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Abstract

Single particle tracking plays an important role in studying physical and kinetic properties of

biomolecules. In this work, we introduce the application of Expectation Maximization (EM) based

algorithms for solving localization and parameter estimation problems in SPT using data captured

from scientific complementary metal-oxide semiconductor (sCMOS) camera sensors. Two

representative methods are considered for generating the filtered and smoothed distributions

needed by EM: Sequential Monte Carlo - EM, and Unscented - EM. The SMC method uses

particle filtering and particle smoothing to handle general distributions, while the U scheme

reduces the computational burden through the use of an unscented Kalman Filter and an unscented

Rauch-Tung Striebel Smoother. We also investigate the influence of the number of images in the

dataset on the final estimates through intensive simulations as well as the computational efficiency

of the two methods.

I. Introduction

Single Particle Tracking (SPT) plays an important role in studying the physical properties

and dynamics of biomolecules. The targets of interest, such as viruses or proteins, are

nanometer-scale and not resolvable with standard optical microscopy. Their motion can be

revealed, however, by labeling them with a fluorescent tag, such as a quantum dot or

fluorescent protein, and imaging the resulting fluorescence signal. While SPT encompasses

many experimental techniques [1]–[3], in general, measurements about the system come in

the form of a sequence of images taken by a camera. These images are then analyzed to

determine particle trajectories and physical and kinetic parameters.

To date, many algorithms have been developed for analyzing SPT datasets. Under the

standard paradigm, a two-step process is applied in which images are first processed

individually to determine the location of each particle in a frame and these positions linked

across frames to form trajectories. In the second step, trajectories are analyzed to extract

information about the dynamic process, such as the value of the diffusion coefficient or other

motion parameters [4]–[6]. Though the performance of these methods is good when the
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signal level is high and the motion model simple, they begin to fail as the signal level

decreases or model complexity increases.

We previously introduced an approach based on nonlinear system identification that uses

Expectation Maximization (EM) combined with particle filtering and smoothing to analyze

segemented image data (that is, each image sequence contained information about a single

particle) [7]. (The segementation step, while not trivial, is a standard processing step in SPT

algorithms.) This general approach, termed Sequential Monte Carlo-EM (SMC-EM), can

handle nearly arbitrary nonlinearities in both the motion and observation models and has

been shown to work at least as well as state-of-the-art methods for 2-D diffusion. However,

this advantage comes at the cost of high computational complexity. This issue was then

addressed by replacing the particle-based methods with an Unscented Kalman filter (UKF)

and Unscented Rauch-Tung-Striebel smoother (URTSS), a scheme we refer to as Unscented-
EM (U-EM) [8].

In this work, we build upon our EM-based algorithms, extending them to handle SPT data

from cameras with pixel-dependent readout noise, an intrinsic characteristic of the scientific

complementary metal-oxide semiconductor (sCMOS) camera. sCMOS cameras are

increasingly popular due to their high frame rate, large imaging area, high sensitivity, and

relatively low cost [9], [10]. The unique architecture of sCMOS camera sensors leads the

readout noise to vary from pixel to pixel. Failing to account for the unique characteristics of

readout noise in each pixel has a negative impact on the quality of estimation [9].

Combining the photon detection process of the microscope with the read-out noise of the

detector leads to a nonlinear, non-Gaussian measurement model. While this can be handled

directly using SMC methods, the UKF requires Gaussian distributed noise. We thereore

apply a Generalized Anscombe Transformation to turn the measurement model into a form

that is amenable to UKF. Finally, we combine this observation model with an Ornstein-

Uhlenbeck motion model, a common model of motion for biomolecular processes that

combines diffusion with a restorative force. We study the relative performance of SMC-EM

and U-EM under this scenario. In addition, since the quality of the final estimates depends

both on the chosen algorithm and the amount of available data, we also consider the impact

of the number of camera frames available for analysis.

The remainder of the paper is organized as follows. In Sec. II, we present the motion and

observation models. In Sec. III, we briely review our EM-based algorithms. In Sec. IV, we

demonstrate the efficacy of the EM-based algorithms to SPT using sCMOS camera and

investigate the influence of image length on final localization and parameter estimation

performance. We also discuss the computation time for the different approaches. Finally, we

make a few concluding remarks in Sec. V.
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II. Problem Formulation

A. Motion model

For simplicity of presentation, and as is commonly assumed in the SPT literature, we take

the motion in each axis to be independent. Consider, then, a generic linear motion model in a

single axis given by

xt + 1 = axt + u + wt, wt 𝒩(0, Q), (1)

where xt ∈ ℝ denotes the position in one direction, u ∈ ℝ denotes a constant “velocity” term,

and wt ∈ ℝ denotes a Gaussian white noise stochastic process. The model (1) can describe a

variety of models important to biomolecular motion, including pure diffusion, Ornstein-

Uhlenbeck (O-U) processes, directed flow and combinations of these.

In this work, we focus on the O-U process. Motivated by the model presented in [11] where

O-U is used to describe a molecule tethered to a surface by a flexible chain, we set a and Q
in (1) as

a = e−AΔt′, (2a)

Q =
D 1 − e−2AΔt′

A , (2b)

where Δt′ is defined by the frame rate of the camera, A > 0 is the stiffness coefficient, and D
is the diffusion coefficient. These important physical parameters are usually unknown and

need to be estimated to reveal properrties of the biomolecular motion. Note that with

appropriate definitions of the parameters (a, Q), the O-U model can approximate confined

diffusion [12].)

The state transition probability density between two successive images under the O-U model

is

p xt + 1 ∣ xt = A
2πD 1 − e−2AΔt′

× exp − A
2D

xt + 1 − xte
−AΔt′ − u 2

1 − e−2AΔt′ .
(3)

B. Observation model

The output of the camera is a sequence of images that are usually segmented into small

regions, each given by a P × P pixelated square array and containing information about a

single particle. The size of each pixel, determined by the physical size of the camera element

and the optimal magnification, is denoted as Δx by Δy. At time step t, the intensity generated
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by a fluorescent particle is given by a Poisson random variable with a rate given by the

expected photon intensity for the pth pixel,

λp, t = ∫
xp, t
min

xp, t
max

∫
yp, t
min

yp, t
max

G
ΔxΔyPSF xt − ξ, yt − ξ′ dξdξ′, (4)

where (xt, yt) is the position of the fluorescent particle, (xp, t
min, xp, t

max, yp, t
min,yp, t

max) are the

integration bounds over the boundaries of the given pixel, G denotes the peak intensity of the

fluorescence, and PSF represents the point spread function of the instrument. For objects in

the focal plane of the instrument, this function is well-approximated by

PSF(x, y) = exp − x2

2σx
2 − y2

2σy
2 , (5)

where the particle is located at the origin, the pair (x, y) represents a position on the plane x-

y at which the PSF is being evaluated, and σx and σy are given by

σx = σy = 2λ
2πNA . (6)

Here λ is the wavelength of the emitted light and NA is the numerical aperture of the

objective lens being used [13].

In addition to the Poisson nature of the signal, there is always additional noise arising from

background fluorescence (also Poisson in nature) and from the read-out electronics of the

camera. For the small images with P pixels, the background intensity rate can be taken to be

a constant, Nbgd. For the read-out noise, we focus on an sCMOS camera sensor. These

devices have pixel-dependent statistics, leading to the model

I p, t Poiss λp, t + Nbgd + ϵp, t, (7a)

ϵp, t 0, σp, t
2 , (7b)

σp, t
2 =

Varp, t

gp, t
2 , (7c)

where Poiss(·) represents a Poisson distribution, σp,t is the standard deviation of the readout

noise, and Varp,t and gp,t are named variance and gain for the pth pixel at time t respectively.

C. Measurement model transformation

One of the algorithms described in Sec. III relies on a UKF. This filter is applicable to

nonlinear observation models with additive Gaussian noise [14]. However, the observation

model we considered in Sec.II-B is the convolution of a Poisson distribution and a Gaussian
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distribution. Therefore, we seek to transform the model in (7) into a form amenable to the

UKF. There are different approaches for variance stabilization, such as the Anscombe [15]

or the Freeman and Tukey [16] transformations, or direct approximation by a Gaussian

model (when measured intensities are sufficiently large) [17]. These different approaches

have been discussed and compared in [8] where it was found that in general the Anscombe

transform performs the best in the SPT setting. Therefore, we use the generalized Anscombe

transformation [18] to transform the observation model (7) into

I p, t = 2 λp, t + Nbgd + 3
8 + σp, t

2 + vt, vt 𝒩(0, 1) . (8)

To apply this transformation, the observed measurements Ip,t should be first expressed as

I p, t = 2 I p, t + 3
8 + σp, t

2 . (9)

We then take the transformed observation as the input for the U-EM method described in

Sec.III-C.

III. Inference Problem

Our general scheme for EM-based analysis of SPT data is shown in Fig. 1. As the figure

indicates, there is flexibility in choosing the filter and smoother used to calculate the

distributions needed for EM. In this work, we choose two different combinations, a particle

filter and particle smoother (Sec. III-B) and a UKF and Unscented Rauch-Tung-Striebel

smoother (Sec. III-C). We begin with a brief review of EM.

A. Expectation Maximization

Consider the problem of identifying an unknown parameter θ ∈ ℝ
nθ for the nonlinear state

space model

xt + 1 = f t xt, wt, θ , yt = ht xt, vt, θ , (10)

where x ∈ ℝ
nx is the state, y ∈ ℝ

ny is the observation, and w and v are process and

observation noise terms of appropriate dimension. Our goal is to find a Maximum

Likelihood (ML) estimate of the parameter θ ∈ ℝ
nθ from the data YN ≜ y1, …, yN , given by

θ = argmax
θ

logpθ YN . (11)

This optimization can only be solved in closed form in certain simple cases as pθ(YN ) is

typically intractable. EM approaches this problem by defining a hidden (or latent) variable

and moving towards the maximum of l(θ) = pθ(YN) through iterative optimization of a

function  given by
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𝒬 θ, θ (i) = 𝔼 pθ XN, YN ∣ YN, θ (i) , (12)

where θ (i) is current estimate of the parameter. The calculation of 𝒬 θ, θ (i)  is called the

Expectation (E)-step at the ith iteration. It has been shown that any choice of θ (i + 1) such that

𝒬 θ (i + 1), θ (i) > 𝒬 θ (i), θ (i)  also increases the original likelihood [19]. Thus, the E-step is

followed by a Maximization (M)-step to produce the next estimate,

θ (i + 1) = argmax
θ

𝒬 θ, θ (i)
(13)

Following [20], we decompose (12) as

𝒬 θ, θ (i) ≜ I1 θ, θ (i) + I2 θ, θ (i) + I3 θ, θ (i) , (14)

where

I1 θ, θ (i) ≜ 𝔼 logp x0 ∣ θ ∣ YN, θ (i) , (15a)

I2 θ, θ (i) ≜ ∑
t = 1

N
𝔼 logp xt ∣ xt − 1 ∣ YN, θ (i) , (15b)

I3 θ, θ (i) ≜ ∑
t = 1

N
𝔼 logp yt ∣ xt ∣ YN, θ (i) . (15c)

To determine the distributions needed in (15), we turn to filtering and smoothing algorithms.

B. SMC-EM

Under SMC-EM, the filtering and smoothing are done using a particle filter and a particle

smoother. While any particle-based scheme could be used (see, e.g., [14] for an overview of

particle methods), for simplicity here we use a basic Sequential Importance Resampling

(SIR) filter and smoother. Under this choice, the functions in (15) are approximated as

I1 ≈ I 1 ≜ ∑
i = 1

M
w1 ∣ N

i logpθ x1
i , (16a)

I3 ≈ I 3 ≜ ∑
t = 1

N
∑
i = 1

M
wt ∣ N

i log pθ yt ∣ xt
i , (16b)
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I2 ≈ I 2 ≜ ∑
t = 1

N − 1
∑
i = 1

M
∑
j = 1

M
wt ∣ N

i j log pθ xt + 1
j ∣ xt

i , (16c)

where N is the number of time steps, M is the number of sampled particles used for

approximating the distributions, and xt
i are the sampled particles. The weights in (16) are

given by first determining the importance weight wt
i

wt
i =

pθ yt ∣ xt
i

∑ j = 1
M pθ yt ∣ xt

j , i, j = 1, …, M . (17)

The smoothed weight wt ∣ N
i  is determined using a backward recursion,

wt ∣ N
i = ∑

j = 1

M
wt + 1 ∣ N

j wt
ipθ xt + 1

j ∣ xt
i

∑l = 1
M wt

lpθ xt + 1
j ∣ xt

l . (18)

Finally, the wt ∣ N
i j  are given by

wt ∣ N
i j =

wt
iwt + 1 ∣ N

j pθk
xt + 1

j ∣ xt
i

∑l = 1
M wt

lpθk
xt + 1

j ∣ xt
l . (19)

Further details about SMC-EM can be found in [7], [20].

C. U-EM

U-EM approximates the posterior distribution for the state of a dynamic system with a

Gaussian. It uses an unscented transform, propagating a set of deterministically selected

sigma points through the model to calculate the posterior mean and covariance. The 𝒬
function becomes

𝒬 θ, θ (i) ≈ − 1
2log 2πP0 − 1

2log(2πQ) − 1
2log(2πR)

− 1
2tr P0

−1 P0 ∣ N + m0 ∣ N − m0 m0 ∣ N − m0
T

− 1
2 ∑

t = 1

N
tr Q−1𝔼 xt − f xt − 1 xt − f xt − 1

T ∣ YN

− 1
2 ∑

t = 1

N
tr R−1𝔼 yt − h xt yt − h xt

T ∣ YN ,

(20)

where Q is the covariance of the process noise, R is the covariance of the observation noise,

P is the covariance of the state, P0 and m0 are the initial estimate of the state covariance and

mean state, P0|N, m0|N are the smoothed estimates of the state covariance and mean state at

the initial time, and tr denotes the trace operation.
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Through the UKF and URTSS, the approximated posterior densities needed for the EM

algorithm are

p xt ∣ YN 𝒩 mt ∣ N
s , Pt ∣ N

s , (21a)

p xt, xt − 1 ∣ YN

𝒩
mt ∣ N

s

mt − 1 ∣ N
s

,
Pt ∣ N

s Pt ∣ N
s 𝒢t − 1

T

𝒢t − 1Pt ∣ N
s Pt − 1 ∣ N

s
.

(21b)

Further details about the unscented approach and the U-EM scheme can be found in [8],

[14]. Note that since the motion model demonstrated in (1) is linear, we could use the

Kalman Filter (KF) for the propagation step in the motion model as well. To maintain

generality, throughout this paper we use the UKF.

IV. Demonstration and Analysis

In order to demonstrate and compare performance of the EM-based algorithms, we turn to

physical simulation where the ground truth is known. We note that the use of simulations to

validate algorithms is well-established in the SPT community [21]. We simulated SPT

datasets according to the optical parameters and other fixed constants shown in Table I.

These values were chosen to represent common experimental settings found in many SPT

experiments. When using U-EM, the tuning parameters for the UKF were set to (α, κ, β) =

(1, 0, 2).

The observation model was chosen to simulate the pixel-dependent noise characteristics on

the sCMOS chip of a Hamamatsu ORCA Flash 4.0 camera, following the approach

described in [9]. Typical images of a fluorescent particle’s trajectory, a single frame of the

image sequence, and the gain and variance of the sCMOS pixels are shown in Fig. 2.

A. Estimation with a fixed data length

In this case, we focus on a typical case with a fixed image length of N = 100. We simulate

100 sample paths and corresponding image sequences and analyze them using SMC-EM and

U-EM. 10 EM iterations were run under each EM based method (see Fig. 3 showing the

evolution of the parameter estimates as a function of the EM iteration).

The overall mean and standard deviation of the estimated parameters are summarized in

Table II. These results indicate that both U-EM and SMC-EM have good performance. As

the number of particles used in SMC-EM grows, the RMSE, parameter estimation variance,

and parameter estimation bias all decrease. However, this comes at a cost in computation

time.

Correspondingly, the overall mean and standard deviation of the estimated position are

summarized in Table III where performance is determined using the Root Mean Square
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Error (RMSE) between the true particle position and the mean of the smoothed distribution

p(xt | YN) across an entire trajectory. In the table, SMC-EMM denotes an SMC-EM scheme

using M sampled particles. As expected, these results show that the performance of SMC-

EM depends strongly on the number of particles used. All schemes, however, show very

good performance with a resolution far below the diffraction limit. These same results are

shown as boxplots in Fig. 4.

A typical example of a trajectory estimation result by SMC-EM and U-EM shown in Fig. 5.

For space reasons, only results in x are shown; results in y are similar.

B. Computational complexity

Generally, the basic time complexity of SMC-EM is 𝒪 ENM2  compared to 𝒪(EN) for U-

EM, where E is the total number of EM iterations, N is the image length, and M is the

number of particles. It is clear that U-EM has a significant computational advantage. This

reduction in complexity comes, of course, at the cost of generality in the posterior

distribution describing the position in the particle at each time point since the UKF-URTSS

approximates this distribution as a Gaussian while the particle-based approaches can

represent other distributions [14].

Of course, complexity is a coarse metric; the actual computation time is also important. As

part of this work, we explored the bottlenecks in computation and found that the main

limitation was the calculation of the double integrals in the observation model (4).

Therefore, we replaced the direct execution by a table lookup approach which guarantees an

error < 10−3 for computing λp,t. To improve the SMC performance, we took advantage of

parallel processing in the Matlab environment. The calculations were carried out on a 2.3

GHz Intel Core i5 running Mac OS 10.14.4. Fig. 6 shows the corresponding improvement in

the runtime of the two SPT methods. Note that it takes only two seconds for U-EM to

complete an analysis run with 100 images.

C. Estimation as a function of data length

In the SPT setting, the number of image frames available depends on a variety of factors

including the frame rate, the intensity of the excitation, and the type of fluorescent label

used. Data sets can range from the 10’s to 1000’s of frames. In this work, we explored

different data lengths, from N = 10 to 1000 on log spacing. For each N, 100 datasets were

simulated with parameter settings as Table I.

The parameter estimation and localization performance by U-EM, SMC-EM100, and SMC-

EM500 are shown in Fig. 7. In this work, 10 EM iterations are enough for estimation

convergence. Due to space limitations, only the results of RMSEx are presented here; results

of RMSEy are similar. As expected, as the number of images increases, the final estimates

have lower variance and bias for the parameters and lower RMSE. For SMC-EM, more

images mainly contributes to a reduced variance, while the larger number of sampled

particles mainly contributes to a closer median estimate.
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V. Conclusions

In this paper we described the application of two EM-based methods, SMC-EM and U-EM,

to SPT data analysis, focusing on Ornstein-Uhlenbeck motion and sCMOS cameras. Our

results indicate that U-EM has a significant advantage over SMC-EM in terms of

computation time but that, with increasing number of particles in the Monte Carlo methods,

SMC-EM provides more accurate estimation. We also explored the impact of data length on

estimation performance with results showing that increasing the amount of data reduces both

bias and variance. For future work, we plan to extend the application to 3-D SPT scenarios.
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Fig. 1:
Generic EM-based framework for simultaneous localization and parameter estimation
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Fig. 2:
(top) Typical (left) trajectory and (right) acquired image in the simulations. (bottom) Camera

readout noise Nbgd = 10, G = 100.
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Fig. 3:
Boxplot of estimates as a function of EM iteration for (top) U-EM and (bottom) SMC-

EM100.
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Fig. 4:
Boxplot of RMSE by U-EM and SMC-EM of (left, blue) x and (right, red) y.
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Fig. 5:
Typical trajectory estimation result.
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Fig. 6:
Runtime of different EM-based methods on single dataset at Nbgd = 10, G = 100 with image

length of 100.
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Fig. 7:
Boxplot of final estimation by (top row) U-EM, (middle row) SMC-EM100, and (bottom

row) SMC-EM500.
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TABLE I:

Parameter settings

Symbol Parameter Values

D Diffusion coefficient 0.01 μm2/s

A Stiffness coefficient 1.0s−1

Δt Image period 100 ms

δt Shutter period 10 ms

P Number of pixels per squared image 25

Δx Length of unit pixel 100 nm

Δy Width of unit pixel 100 nm

λ Emission wavelength 540 nm

NA Numerical aperture 1.2

G Peak intensity gain (signal) 100

u velocity term 0.01 μm

Nbgd Background noise 10
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TABLE II:

Parameter estimation with 100 images

Method D (μm2/s) A (s−1)

U-EM 0.008514 ± 0.00072991 1.01 ± 0.28134

SMC-EM50 0.0080737 ± 0.00096272 0.99224 ± 0.2702

SMC-EM100 0.0086592 ± 0.00087748 1.0164 ± 0.28005

SMC-EM500 0.0092505 ± 0.00091714 1.0466 ± 0.29636
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TABLE III:

Localization performance with 100 images

Method RMSEx (nm) RMSEy (nm)

U-EM 8.6558 ± 0.9979 8.9193 ± 1.1069

SMC-EM50 13.6751 ± 2.0489 13.4994 ± 1.8195

SMC-EM100 10.6292 ± 1.3278 10.7201 ± 1.3692

SMC-EM500 7.5029 ± 0.7495 7.6169 ± 0.7535
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