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Abstract— Recently, many cooperative distributed multi-
agent reinforcement learning (MARL) algorithms have been
proposed in the literature. In this work, we study the effect
of adversarial attacks on a network that employs a consensus-
based MARL algorithm. We show that an adversarial agent
can persuade all the other agents in the network to implement
policies that optimize an objective that it desires. In this sense,
the standard consensus-based MARL algorithms are fragile to
attacks.

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) is a branch
of reinforcement learning (RL) [1], where multiple decision-
makers learn a policy that is optimal in the context of
competitive, cooperative, or mixed objectives [2], [3]. A
recent success story of MARL in popular parlance include
its performance in the video game Starcraft II by training
an agent which outperforms the world’s best human players
[4]. In this paper, we focus on MARL for cooperative agents.
Potential applications in this stream have been proposed for
long for diverse fields such as sensor networks [5], robotics
[6], and traffic control [7].

Early formulations of MARL assumed that the agents
share a common reward and focused on decentralized
decision-making. The sample efficiency in the training of
a multi-agent network in this setting is significantly im-
proved by establishing communication between agents [8].
Nonetheless, the centralized reward is often infeasible due
to overwhelming communication requirements and complex
network topology, which motivated the development of co-
operative distributed MARL with decentralized knowledge
of rewards. In this setting, each agent has a local utility
function and views only its own reward. The problem is still
cooperative in the sense that the agents wish to maximize
the sum of all utility functions. In this problem, the agents
must communicate not only to improve the sample efficiency
but also to become aware of the other agents’ performance.
Only by propagating information over the entire network, the
agents can achieve a common objective, e.g., to maximize
team-average returns. The ability to learn a policy that
maximizes the common objective in a partially observable
environment can be facilitated by consensus algorithms as
presented in [9], whereby the agent’s rewards (and possibly
actions) remain unknown to the rest of the network and must
not be directly communicated between agents to ensure their
privacy.

M. Figura, K. C. Kosaraju, and V. Gupta are with the Department of
Electrical Engineering at the University of Notre Dame, Notre Dame, IN,
46556 USA, {mfigura,kkosaraj,vgupta2}@nd.edu.

Consensus algorithms are generally devised for distributed
systems to find agreement on signal values over networks
[10]. These algorithms find applications in many fields in-
cluding sensor networks [11], coordination of vehicles [12],
or even blockchain [13]. In practice, consensus algorithms
must be robust to faults that arise from relatively frequent
occurrences of interrupted communication links or corrupted
signals [14]. Therefore, the convergence of resilient con-
sensus algorithms was rigorously studied under different
considerations for the nature of adversarial attacks [15],
graph topology [16], [17], or frequency of communication
[18]. These research efforts naturally complement studies of
the influence of adversarial attacks on network performance.
A simple yet powerful result from the analysis of linear
consensus [11] states that the topology of a consensus matrix
determines the limiting value for the consensus updates. In
the presence of a single malicious agent, which does not
apply consensus updates, the limiting value coincides with
the adversary’s value.

In the consensus MARL algorithm in [9, Algorithm 2],
every agent estimates the team-average reward and value
function using linear approximations and exchanges param-
eters with other agents through a consensus protocol. Inter-
estingly, this scheme guarantees the asymptotic convergence
to the team-average optimal policy even with simultaneous
actor, critic, and consensus updates over time-varying com-
munication graphs. Furthermore, the algorithm retains the
convergence property even with sparse data transmission for
strongly connected graphs [19].

In this paper, we study the effects of adversarial attacks
on the consensus MARL algorithm [9, Algorithm 2] with
discounted rewards in the objective function. The attacks
we consider are different from the commonly studied data
poisoning attacks in ML or RL, which seek to understand
if changing the data or rewards by an external agent can
degrade the performance of RL algorithms [20]. Here, we
consider a MARL setting where a participating agent itself is
malicious. Specifically, we ask whether a single adversarial
agent can either prevent convergence of the algorithm, or
even worse, lead the other agents to optimize a utility
function that it chooses. We show that the answer to this
question is in the affirmative by designing a suitable attack
and analyzing the convergence of the algorithm under it.

Specifically, we take under the scope networks with a
single malicious agent, i.e., with an adversary that can com-
promise the consensus and critic updates and transmits the
same signal values to its neighbors. We show that when the
malicious agent greedily attempts to maximize its own well-

ar
X

iv
:2

10
3.

06
96

7v
1 

 [
ee

ss
.S

Y
] 

 1
1 

M
ar

 2
02

1



defined objective function, all other agents in the network end
up maximizing the adversary’s objective function as well. We
provide a proof of asymptotic convergence analogous to [9].
Our study motivates the development of resilient consensus
MARL algorithms.

The paper is structured as follows. We provide a back-
ground of the networked Markov decision process along with
the agents’ objectives in Section 2. In Section 3, we state
all assumptions in a compact form, present the consensus
MARL algorithm, and provide the convergence analysis.
Section 4 is dedicated to numerical simulations.

Notation: We let 1 denote the vector of ones. The
operator ⊗ represents the Kronecker product. The cardinality
of a set C is denoted by |C|.

II. BACKGROUND

A. Networked Markov decision process

We consider a networked Markov decision process (MDP)
given as a tuple (S, {Ai}i∈N ,P, {Ri}i∈N ,G), where N =
{1, . . . , N}, S is a set of states, P is a set of transitional
probabilities, γ ∈ [0, 1) is a discount factor, G represents a
graph, and Ai and Ri are a set of actions and rewards of
agent i, respectively. The graph G = (N , E) is defined by a
set of vertices N associated with the agents in the network
and a set of edges E ⊆ N ×N . The global state and action
are denoted by s and a, respectively, s′ denotes the state
at the next time step, and the superscript i denotes a signal
of agent i. We let ri(s, a, s′) : S × A × S → Ri ⊂ R
denote the individual reward of subsystem i, p(s′|s, a) :
S × S × A → P ⊂ R the joint transitional probability, and
πi(ai|s) : S × Ai → (0, 1) the policy of subsystem i. The
overall network policy can be written as a stacked vector of
individual policies, π(a|s) = [π1(a1|s)T , . . . , πN (aN |s)T ]T .
In case we need to explicitly specify a signal value at time t,
we use subscript t, i.e., rit+1(st, at, st+1). An important
consideration in this work is that agent i, i ∈ N , receives the
private reward rit+1 along with the observation of the global
state st and action at at each step in training.

We let π(a|s; θ) = [π1(a1|s; θ1)T , . . . , πN (aN |s; θN )T ]T

denote the network policy parameterized by θ, where
πi(ai|s; θi) is a parameterized policy of agent i. Further, we
distinguish between reward signals by making the following
definitions:

1) average individual reward at (s, a):

r̂i(s, a) =
∑
s′

p(s′|s, a)ri(s, a, s′)

2) average individual reward under global policy
π(a|s; θ):

r̂iθ(s) =
∑
a

π(a|s; θ)r̂i(s, a)

3) average individual reward at all state-action pairs
(s, a) ∈ S ×A:

R̂i = [r̂i(s, a), s ∈ S, a ∈ A]T ∈ R|S|·|A|

4) average individual reward under global policy π(a|s; θ)
at all states s ∈ S:

R̂iθ = [r̂iθ(s), s ∈ S]T ∈ R|S|.

We also define team-average rewards r(s, a, s′) =
1
N

∑N
i=1 r

i(s, a, s′), r̂(s, a) = 1
N

∑N
i=1 r̂

i(s, a), r̂θ(s) =
1
N

∑N
i=1 r̂

i
θ(s), R̂θ = 1

N

∑N
i=1 R̂

i
θ ∈ R|S|, and R̂ =

1
N

∑N
i=1 R̂

i. Furthermore, we define the estimated network
reward function at (s, a) as r̄(s, a;λ), where λ are the
function parameters.

B. Objective

We let N+ and N− denote the set of cooperative agents
and adversaries, respectively, and note that N = N+ ∪N−.
The objective of agents i ∈ N+ is to maximize a team-
average objective function given as

max
θ
J+(θ) = max

θ
E
[ ∞∑
t=0

1

N

N∑
i=1

γtrit+1|s0 = s
]
. (1)

The cooperative agents are unaware of the presence of an
adversarial agent that seeks to maximize a different objective
function. We define the objective function for i ∈ N− as

max
θ
J−(θ) = max

θ
E
[ ∞∑
t=0

γtrit+1|s0 = s
]
. (2)

It is important to note that the adversarial agent can com-
promise the rewards rit+1, i ∈ N−, to incentivize its
malicious behavior. Furthermore, once the agents establish
communication the adversary can spread false information
about the performance of the entire network embedded in
the compromised rewards rit+1. This may eventually lead
to incentivizing a bad behavior in the cooperative agents
as well, regardless of whether the maximized objective is
(1) or (2). In Section III, we show that the entire network
maximizes the adversarial agents’ objective in (2) when
the adversarial agent ignores signals transmitted by the
cooperative agents.

III. MULTI-AGENT ACTOR-CRITIC ALGORITHM UNDER
ADVERSARIAL ATTACKS

In this section, we present assumptions on the network and
signals, define the consensus MARL algorithm, state main
theorems concerning the convergence of the actor and critic,
and prove that the adversarial agent persuades the remaining
agents in the network to maximize its individual objective
in (2) despite their initial agreement to maximize the team
objective in (1).

We formally define true action-value functions of the
cooperative agents and the adversary under policy π(a|s)
in the respective order as follows

Qiπ(s, a) = Eπ
[ ∞∑
t=0

1

N
γt
∑
k∈N

rkt+1

]
, i ∈ N+

Qiπ(s, a) = Eπ
[ ∞∑
t=0

γtrit+1

]
, i ∈ N−



where j ∈ N−. Further, we define the true state value
functions as

V iπ(s) =
∑
a

π(a|s)Qiπ(s, a), i ∈ N .

We will approximate V iπ(s) using a parameterized state-value
function V (s; vi).

Remark. It is required that all agents use the same basis
functions (or neural networks) so that their parameter values
vi can eventually converge to a consensus value. This limita-
tion can be overcome by considering gossip-based algorithms
[21]. However, the convergence analysis for gossip-based
algorithms is rather challenging.

A. Assumptions

In this subsection, we state assumptions needed for the
convergence of the consensus MARL algorithm which we
introduce later in the next section. The assumptions are
similar to [9].

Assumption 1. The policy πi(ai|s; θi) > 0 for any i ∈ N ,
θi ∈ Θi, s ∈ S, ai ∈ Ai. Also, πi(ai|s; θi) is continuously
differentiable with respect to θi. For any θ ∈ Θ, we let
Pθ(st+1|st) =

∑
at∈A P (st+1|st, at)π(a|s; θ) denote the

transition matrix of the Markov chain {st}t≥0 induced by
policy π(a|s; θ). The Markov chain {st}t≥0 is irreducible
and aperiodic under any π(a|s; θ).

Assumption 2. The update of the policy parameter θit
includes a local projection operator, Γi : Rmi → Rmi , that
projects any θit onto a compact set Θi. Also, we assume that
Θ = ΠN

i Θi is large enough to include at least one local
minimum of J(θ).

Assumption 3. The instantaneous reward rit+1(st, at, st+1)
is uniformly bounded for any i ∈ N and t ≥ 0.

Assumption 4. The sequence of random matrices
{Ct}t≥0 ⊆ RN×N ⊆ RN×N satisfies

1) Ct is row stochastic, i.e., Ct1 = 1, and ct(i, j) = 1
for i = j ∈ N−. There exists a constant η ∈ (0, 1)
such that, for any ct(i, j) > 0, we have ct(i, j) ≥ η.

2) Ct respects the communication graph Gt, i.e.,
ct(i, j) = 0 if (i, j) /∈ Et.

3) The spectral norm of E[CTt (I − 11T /N)Ct] belongs
to [0, 1).

4) Given the σ-algebra generated by the random variables
before time t, Ct is conditionally independent of rit+1

for any i ∈ N .

Assumption 5. For each agent i, the state-value function
and the team reward function are both parameterized by
linear functions, i.e., V (s; v) = vTϕ(s) and r̄(s, a;λ) =
λT f(s, a), where ϕ(s) = [ϕ1(s), . . . , ϕL(s)] ∈ RL and
f(s, a) = [f1(s, a), . . . , fM (s, a)] ∈ RM are the features
associated with s and (s, a), respectively. The feature vectors
ϕ(s) and f(s, a) are uniformly bounded for any s ∈ S ,
a ∈ A. Furthermore, let the feature matrix Φ ∈ R|S|×L have
[ϕl(s), s ∈ S]T as its l-th column for any l ∈ [L], and the

feature matrix F ∈ R|S|·|A|×M have [fm(s, a), s ∈ S, a ∈
A]T as its m-th column for any m ∈ [M ]. Both Φ and F
have full column rank.

Assumption 6. The step sizes αv,t and αθ,t
satisfy

∑
t αv,t =∞,

∑
t αθ,t =∞,

∑
t α

2
v,t+α2

θ,t <∞,
αθ,t = o(αv,t), and limt→∞ αv,t+1α

−1
v,t = 1.

Assumption 7. The set N− contains exactly one element,
i.e., there is one malicious agent with a well-defined objective
specified in (2).

We note that Assumption 4.3 is satisfied when the com-
munication graph G is connected in the mean. To simplify
the convergence analysis in Section III.C, we assume that
there is only one adversary that is learning using compro-
mised rewards and does not perform consensus updates. The
latter leads to unbalanced consensus updates in the entire
network. We note that more general adversarial attacks are
possible, e.g., there may be multiple adversarial agents in
the network that may perform arbitrary parameter updates.
Nonetheless, the narrow scope of attacks presented in this
work is sufficient to demonstrate the fragility of the vanilla
consensus MARL algorithm.

B. MARL algorithm

In this subsection, we introduce the consensus MARL
algorithm. We let ∆i denote an estimated network TD error
estimated by agent i. We noted earlier in Section III that
every agent maintains parameters vi which describe the
network value function approximation V (s, vi). Further, we
recall that the rewards ri(s, a, s′) remain private but the
agents are allowed to estimate the network reward function.
Intuitively, estimating the network reward function is a nec-
essary step since the agents try to maximize the team-average
objective in (1). We let dθ(s) denote a stationary distribution
of the Markov chain {st}t≥0 under policy π(a|s; θ). If the
rewards were mutually observable among the agents, they
would minimize the weighted mean square error

argmin
λ

∑
s∈S,a∈A

dθ(s)π(a|s; θ)
[
r̄(s, a;λ)− r̂(s, a)

]2
. (3)

The optimization problem in (3) can be recast into a dis-
tributed optimization problem, which has the same stationary
points, given as follows

argmin
λ

1

N

N∑
i=1

∑
s∈S,a∈A

dθ(s)π(a|s; θ)
[
r̄ − r̂i

]2
. (4)

since 1
N

∑
i

(
r̄(s, a;λ) − r̂i(s, a)

)
= r̄(s, a;λ) − r̂(s, a).

Hence, the agents can individually perform gradient steps
to update the parameters λi based on their true rewards
ri(s, a, s′). By communicating via a consensus protocol,
they further gain information about the encoded rewards of
the other agents. The estimation and communication of the
network reward function parameters λi and network value
function parameters vi provide the agents with the ability
to update their policy to benefit the team. The consensus
actor-critic algorithm, a version of [9, Algorithm 2] with



Algorithm 1: Consensus MARL algorithm

Initialize parameters θi0, λi0, λ̃i0, vi0, ṽi0, ∀i ∈ N ;
Initialize s0, {αv,t}t≥0, {αθ,t}t≥0, t← 0;
Repeat until convergence
for i ∈ N do

Observe state st+1, action at, and reward rit+1;
Update
λ̃it ← λit + αv,t

(
rit+1 − r̄t+1(λit)

)
∇λr̄t+1(λit);

δit ← rit+1 + γV (st+1; vit)− V (st; v
i
t);

∆i
t ← r̄t+1(λit) + γV (st+1; vit)− V (st; v

i
t);

Update critic ṽit ← vit + αv,tδ
i
t∇vV (st; v

i
t);

Update actor θit+1 ← θit + αθ,t∆
i
tψ
i
t;

Send λ̃it, ṽ
i
t to the neighbors over Gt;

Take action ait+1 ∼ πi(ait+1|st+1; θit+1);
end
for i ∈ N do

Consensus step
λit+1 =

∑
j∈N ct(i, j)λ̃

j
t , vit+1 =

∑
j ct(i, j)ṽ

j
t ;

end
Update iteration counter t← t+ 1

discounted returns is given in Algorithm 1. We note that the
algorithm is the same for all agents but the adversary omits
the consensus step. Furthermore, the action taken by the full
network at can be assumed unobservable if the estimated
rewards are independent of the actions, i.e., r̄(s, a;λi) =
r̄(s;λi). In the following subsection, we provide the conver-
gence analysis for Algorithm 1.

Remark. The scope of this work can be easily extended
to [9, Algorithm 1], where agents approximate state-action
value function parameters. For such an algorithm, the global
action at must be observable by all agents in the network.

C. Convergence analysis

In this subsection, we proceed with the convergence anal-
ysis. First, we show that the critic V (s; vi) and network
reward function r̄(s, a;λi) converge to a fixed point for all
i ∈ N while the policy π(a|s; θ) remains fixed. Then, we
prove the full convergence of the actor updates that occur
on a slower timescale. We write the stationary distribution
of Markov chain dθ(s) for all states s ∈ S as a matrix
Ds
θ = diag[dθ(s), s ∈ S]. Similarly, we write the distribution

of all state-action pairs (s, a) as a matrix Ds,a
θ = diag[dθ(s)·

π(a|s; θ), s ∈ S, a ∈ A]. For brevity, we use shorthands
ϕt = ϕ(st) and ft = f(st, at). Finally, we define the
consensus value 〈zt〉 = 1

N

∑
i z
i
t and the disagreement vector

z⊥,t = zt − 1⊗ 〈zt〉.

Theorem 1. Under assumptions 1 and 3-7, for any policy
π(a|s; θ), with the updates of {vit} in Algorithm 1, we have
limt v

i
t = vθ and limt λ

i
t = λθ for i ∈ N almost surely.

Furthermore, vθ and λθ are the unique solutions to

FTDs,a
θ (R̂j − Fλθ) = 0 (5)

ΦTDs
θ

(
R̂jθ + γPθΦvθ − Φvθ

)
= 0, (6)

where j ∈ N−.

Proof. We let zt = [(z1t )T , . . . , (zNt )T ]T ∈ R(M+L)N ,
where zit = [(λit)

T , (vit)
T ]T . Furthermore, we define

bt = rt+1 ⊗
[
fTt φTt

]T
and At = I ⊗ A′t, where

A′t

[
−ftfTt 0

0 φt(γφt+1 − φt)T
]

. We let Fzt = {z0, Yτ , τ ≤
t} denote a filtration where Yτ = {sτ , aτ , rτ , Cτ−1} is a
collection of random variables. The iterations of Algorithm 1
can be written in a compact form as follows

zt+1 = (Ct ⊗ I)
(
zt + αv,t(Atzt + bt)

)
= (Ct ⊗ I)

[
zt + αv,t

(
h(zt, Yt) +Mt+1

)]
where h(zt, Yt) = E(Atzt + bt|Fzt ) and Mt = Atzt + bt −
E(Atzt+bt|Fzt ). To prove Theorem 1, we need to show that

1) Lemma 1: the parameters λt and vt remain bounded
for all t ≥ 0,

2) Lemma 2: the adversary’s parameters asymptotically
converge, i.e., λjt → λθ and vjt → vθ, j ∈ N−,

3) Lemma 3: the agents’ parameters asymptotically con-
verge to the consensus value 〈λt〉 and 〈vt〉.

We take advantage of the rich convergence analysis in [9] to
prove the lemmas.

Lemma 1. Under assumptions 1 and 3-6, the sequence {zt}
satisfies supt ||zt|| <∞ almost surely.

Proof. The proof is given in [9, Appendix C]. The only
difference in our work is that in the absence of the consensus
step the updates of zit, i ∈ N , asymptotically follow the ODE
żit = Ā′tz

i
t + b̄it where

Ā′t =

[
−FTDs,a

θ F 0
0 ΦTDs

θ(γPθ − I)Φ

]
(7)

b̄it =
[
(FTDs,a

θ R̂i)T (ΦTDs
θR̂

i
θ)
T
]T
. (8)

The discount factor satisfies γ ∈ [0, 1) and the stochastic
matrix Pθ has positive eigenvalues that are less than or
equal to 1. Therefore, the matrix ΦTDs,a

θ (γPθ − I)Φ has
eigenvalues with strictly negative real parts, which implies
that the ODE żit = Ā′tz

i
t + b̄it has an asymptotically stable

equilibrium. Hence, supt ||zt|| <∞ almost surely.

Lemma 2. Under assumptions 1, 3, and 5-7, limt→∞ zjt =
zθ, j ∈ N−, almost surely. Furthermore, zθ = [λTθ , v

T
θ ]T is

a unique solution to (5) and (6).

Proof. We recall that the adversarial agent does not per-
form the consensus step. Using the findings in Lemma
1, we can immediately conclude that żjt = Ā′tz

j
t + b̄jt

is the limiting ODE, with A′t given in (7) and b̄jt =[
(FTDs,a

θ R̂j)T (ΦTDs
θR̂

j
θ)
T
]T

. The ODE has a unique
asymptotically stable equilibrium zθ = [λTθ , v

T
θ ]T that sat-

isfies (5) and (6).

Lemma 3 (Appendix B.4, Step 1 in [9]). Under assump-
tions 1 and 3-7, the disagreement vector z⊥,t satisfies
limt→∞ z⊥,t = 0 almost surely.



To complete the proof of Theorem 1, we recall that
• limt→∞(zjt − zθ) = 0 for j ∈ N− a.s. (Lemma 2)
• limt→∞(zit − 〈zt〉) = 0 for i ∈ N a.s. (Lemma 3).

Therefore, limt→∞(〈zt〉−zθ) = 0 almost surely where zθ =
[λTθ , v

T
θ ]T satisfies (5) and (6).

Having proved the critic and network reward convergence
under a fixed policy π(a|s; θ), we proceed to make a state-
ment about the convergence of the actor updates on the
slower timescale.

Theorem 2. [9, Theorem 4.10] Under assumptions 1-7, the
policy parameter θit converges almost surely to a point in the
set of asymptotically stable equilibria of

θ̇i = Γ̂i
[
Est∼dθ,at∼πθ (∆t,θ · ψit,θ)

]
for i ∈ N , (9)

where Est∼dθ,at∼πθ (∆t,θ · ψit,θ) = Est∼dθ,at∼πθ
[
(fTt λθ +

γϕt+1vθ − ϕtvθ)∇θi log πi(ait|st; θi)
]
.

We note that the policy π(a|s; θ) converges to an equilib-
rium where the estimated network TD error ∆t,θ is equal to
zero. Since ∆t,θ is a function of the parameterized network
reward function r̄(s, a;λ) and value function V (s; v), the
policy π(a|s; θ) does not converge to the true optimal policy.
The error between π(a|s; θ) and the true optimal policy
that maximizes (2) can be reduced by selecting appropriate
models for r̄(s, a;λ) and V (s; v).

In the next section, we present an example in which a
group of agents employs Algorithm 1 to learn an optimal
policy and is subject to a malicious attack from a single
adversarial agent.

IV. NUMERICAL SIMULATIONS

In this section, we assess the performance of Algorithm 1
through numerical simulations using nonlinear function ap-
proximation. We also compare our results against the de-
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Fig. 1. Cumulative team-average rewards per episode for the adversary-
free and attacked network. The comparison shows that the former performs
significantly better

Fig. 2. Final network states in a simulation with no adversary (left) and
with an adversary (right) after training for 200 episodes. Blue, yellow, and
brown cells correspond to the cooperative agents’, adversary’s, and desired
positions, respectively. All agents reach their desired positions when the
network is adversary-free, whereas only the adversary finds its desired
position when it attacks the network.

centralized actor-critic algorithm in [9]. The code for these
experiments can be found in [22].

We consider a network of agents N = {1, 2, 3, 4, 5}
in a grid-world of dimension (6 × 6). The position of
agent i is described by the tuple (xi, yi) ∈ Si, where
Si = [0, . . . , 5]2. We note that the tuples (0, 0) and (5 , 5)
correspond to the top-left and bottom-right corners of the
grid, respectively. The state of the grid-world is given as
s = [(xi, yi), i ∈ N ] ∈ S where S = S1 × . . . × S5. The
cardinality of S is |S| = 365 (≈ 60.5 million states). Agent i,
i ∈ N , takes actions from the set Ai = {0 : Left, 1 :
Right, 2 : Up, 3 : Down, 4 : Stay}. If an action is to
bring the agent to an infeasible state, then the agent remains
in the same state. The set of actions of the network is given
as A = A1 × . . .×A5, whose cardinality is |A| = 55.

The goal of each cooperative agent, i ∈ N+ = {2, 3, 4, 5},
is to maximize the objective in (1), whereas the adversary
i ∈ N− = {1} attempts to maximize (2). The rewards of
agent i, i ∈ N , are given as follows

ri(si) = −|xi − xides| − |yi − yides| − qi,

where qi denotes the number of neighboring agents that
agent i collides at the current time step. For simplicity, we
consider that the communication graph G is fully connected
and the consensus matrix C in the adversary-free scenario
has elements c(i, j) = 1/5 for i ∈ N+, j ∈ N .

In both scenarios, we trained the agents for 200 episodes.
Final states of a simulation of the grid-world after training are
shown in Fig. 2. The agents’ positions in the grid-world were
randomly initialized in each training episode that was set to
terminate after 1000 steps or when the agents have reached
their desired positions. The actor πi(ai|s, θi), critic V (s, vi),
and global reward functions r̄(s, λi) were approximated
using artificial neural networks with two hidden layers. In
Fig. 1, we compare the true cumulative team-average returns
and cumulative estimated rewards obtained by the network
in each episode. The estimated reward function converged
in both scenarios but the convergence rate was slower in
the presence of the adversary. The accumulated rewards per
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Fig. 3. True cumulative rewards per episode obtained by each agent in the network. Blue and red color depict the performance of adversary-free network
and the attacked network, respectively. The adversary quickly learns an optimal policy because it acts greedily with respect to the rest of the network.

episode of each agent are depicted in Fig. 3. We can see
that all agents learn a near-optimal policy when there is
no adversary in the network. The adversary indeed harms
the network, i.e., it learns a near-optimal policy but the
remaining agents in the network perform poorly compared
to the adversary-free scenario.

V. CONCLUSION AND FUTURE WORK

In this paper, we showed that the general consensus
MARL algorithm originally proposed in [9] is not robust
to adversarial attacks. We studied a well-defined malicious
attack whereby a single adversarial agent attempts to com-
promise the objective function of a network of agents. We
showed in the analysis that the network policy upon conver-
gence locally maximizes the adversary’s objective function
under this specific malicious attack. Our work naturally
raises the question of whether we can develop consensus-
based MARL algorithms that are resilient to general ad-
versarial attacks. Such attacks may include compromised
rewards, arbitrary parameter updates, and arbitrary changes
in the policy. There are many results on resilient consensus
algorithms in the literature but it is unclear if the theoretical
analysis can carry over to RL algorithms. The unique chal-
lenge for resilient consensus MARL is to provide robustness
for the functions jointly estimated by the network of agents
while the rewards remain private.
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