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Abstract— We propose a new framework to design con-
trollers for high-dimensional nonlinear systems. The con-
trol is designed through the iterative linear quadratic reg-
ulator (ILQR), an algorithm that computes control by iter-
atively applying the linear quadratic regulator on the local
linearization of the system at each time step. Since ILQR
is computationally expensive, we propose to first construct
reduced-order models (ROMs) of the high-dimensional non-
linear system. We derive nonlinear ROMs via projection,
where the basis is computed via balanced truncation (BT)
and LQG balanced truncation (LQG-BT). Numerical experi-
ments are performed on a semi-discretized nonlinear Burg-
ers equation. We find that the ILQR algorithm produces
good control on ROMs constructed either by BT or LQG-
BT, with BT-ROM based controllers outperforming LQG-BT
slightly for very low-dimensional systems.

Index Terms— Model/controller reduction, iterative learn-
ing control, large-scale systems, distributed parameter sys-
tems, fluid flow systems.

I. INTRODUCTION

H IGH-dimensional nonlinear models are ubiquitous in
science and engineering, arising, e.g., during semi-

discretization of partial differential equations (PDEs), or in
large-scale circuits and biological models. Real-time control
and filtering for these systems remains challenging. On the one
hand, using linearization and subsequently linear controllers,
such as the linear quadratic regulator (LQR), leads to subop-
timal control for nonlinear systems. On the other hand, while
nonlinear controllers can produce better control, they quickly
become computationally intractable in high dimensions. The
use of nonlinear reduced-order models (ROMs) is a viable
alternative in these applications.

We propose a new framework to design controllers for
high-dimensional nonlinear systems. The approach combines
system-theoretic model reduction to obtain nonlinear ROMs
and the iterative linear quadratic regulator (ILQR) control [1].
ILQR computes local linearizations at every time step, and
combines it with a modified, discrete-time LQR algorithm
to find the optimal controller and the corresponding nominal
trajectory. The next iteration then uses the new trajectory
to recompute the local linearizations and repeat the process,
resulting in the iterative nature of ILQR.
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The ILQR algorithm has been applied to a wide range
of very low-dimensional problems such as quadrotor UAV
with cable-suspended loads [2], [3], lower limb exoskeleton
models [4], and robotic arm models [1]. Moreover, several
extensions to ILQR have been proposed. An iterative LQG
method is developed in [5], and [6] extends ILQR to systems
with non-quadratic cost functions and apply it to differential-
drive robots and quadrotor helicopters in environments with
obstacles. The authors in [7] propose a way of learning local
linearization of dynamics from image inputs and tests it on
problems like planar systems (navigation), inverted pendulum,
and cart-pole balancing. In addition, [8] proposes constrained
iterative LQR to handle the constraints in ILQR and applies
it to on-road autonomous driving motion planning. However,
while these extensions further expand the range of problems
that ILQR can be applied to, none of these extensions ad-
dresses the problem that ILQR is computationally intractable
for high-dimensional systems. This results from the running
time of each iteration in ILQR increases quadratically with the
number of dimensions.

Model reduction provides a mathematical and system-
theoretic framework to reduce the dimensionality of models,
see [9], [10], [11] for an overview. Here, we are interested in
designing the controller using the nonlinear ROM, and using
that very control on the original high-dimensional system.
One of the most popular system-theoretic model reduction
technique for linear open-loop systems is the balanced trun-
cation (BT) method [12]. It finds a state-space transformation
in which the controllability and observability Gramians are
equal and diagonal, and then discards the states of the system
that are hard to control and hard to observe. LQG balanced
truncation (LQG-BT) [13] is a modification to BT; it produces
ROMs that are suitable for closed-loop systems [14], [15],
[16], [17]. The LQG-BT algorithm does take the matrices of
the control cost function into account in that it solves the LQG
Riccati equations instead of the Lyapunov equations. In this
work, we compare the performance of ILQR controllers based
on nonlinear ROMs, which we compute via BT and LQG-BT
model reduction. Our numerical testbed is the semi-discretized
high-dimensional Burgers equation.

This paper is organized as follows. Section II briefly in-
troduces the ILQR algorithm, presents algorithmic complexity
results, and the special case of quadratic-in-state systems. Sec-
tion III presents BT and LQG-BT model reduction. Section IV
numerically investigates the performance of the BT and LQG-
based controllers. Section V offers conclusions and an outlook
for future work.
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II. ITERATIVE LINEAR QUADRATIC REGULATOR
We define the nonlinear control problem in Section II-A.

Then, in Section II-B we introduce the ILQR method, first
developed in [1], which extends LQR to nonlinear systems. In
Section II-C we derive a computational cost analysis of ILQR,
and in Section (II-D) we specifically analyze quadratic-in-state
systems in combination with ILQR.

A. Nonlinear Control Problem
We consider the nonlinear control problem of minimizing a

quadratic cost subject to a nonlinear dynamical system:

min
u0,u1,...,uN−1

J(x0:N ,u0:N−1)

s.t. xk+1 = f (xk,uk).
(1)

where xk ∈ Rn is the system state at time step k, uk ∈ Rm

is the control input at time step k, N is the number of time
steps, x0:N = {x0,x1, . . . ,xN} and u0:N−1 = {u0,u1, . . . ,uN−1}
denote the sequence of states and controls, respectively, and
f :Rn×Rm→Rn is a differentiable function in both arguments
that maps the current state and control to the future state. The
cost function is assumed in quadratic form

J(x0:N ,u0:N−1)= (xN−x∗)>Q f (xN−x∗)+
N−1

∑
k=0

(x>k Qxk+u>k Ruk),

(2)
where x∗ ∈Rn is the target state. The symmetric positive semi-
definite matrix Q f ∈Rn×n defines the final state cost, and the
symmetric positive semi-definite matrix Q ∈ Rn×n defines the
intermediate state cost, while the positive definite matrix R ∈
Rm×m defines the control cost.

B. The ILQR Algorithm
The ILQR algorithm provides a solution for the nonlinear

control problem in (1). The iterative algorithm starts with a
nominal control sequence u0:N−1 and nominal trajectory x0:N
that results from that input. The algorithm then improves
u0:N−1 at each iteration so to minimize (2) while using local
linearizations at every time step. We refer to [1] for details.
ILQR iteratively computes a local linearization

δxk+1 = Akδxk +Bkδuk (3)

given a nominal control sequence u0:N−1 and corresponding
trajectory x0:N , where δxk and δuk denote the deviation from
the nominal trajectory, while Ak = Dx f (xk,uk) and Bk =
Du f (xk,uk) are the Jacobians of f with respect to x and u,
respectively. The algorithm then uses the local linearization in
a modified LQR algorithm to compute a local optimal control,
which is

δuk =−Kkδxk−Kk
vvk+1−Ku

k uk, (4)

where Kv
k = (B>k Sk+1Bk + R)−1B>k and Ku

k = (B>k Sk+1Bk +
R)−1R, and where

Kk = (B>k Sk+1Bk +R)−1B>k Sk+1Ak

Sk = A>k Sk+1(Ak−BkKk)+Q

vk = (Ak−BkKk)
>vk+1−K>k Ruk +Qxk.

Observe that to compute Sk and vk we need Sk+1 and vk+1,
yielding a backward-in-time iteration. In addition, we have
that SN = Q f , vN = Q f (xN − x∗). This control is then used to
compute the nominal trajectory in the next iteration, and the
process proceeds until convergence. Algorithm 1 summarizes
the ILQR algorithm. We terminate the algorithm when the
relative difference of cost between two consecutive iterations
is small, |Jold− J|/Jold ≤ tol.

Algorithm 1: ILQR Algorithm

1 Input: Nonlinear term f (xk,uk), initial state x0, target
x∗, initial control sequence u0:N−1, number of time
steps N, matrices in cost function Q, Q f , R,
convergence threshold tol;

2 Output: Control u0:N−1, number of ILQR iterations l;
3 l = 0, SN = Q f , δx0 = 0;
4 xk+1 = f (xk,uk), ∀k = 0,1, . . . ,N−1;
5 Jold = 1, J = 1+2tol;
6 while |Jold− J|/Jold > tol do
7 Jold = J;
8 J = 0;
9 vN = Q f (xN− x∗);

10 xold
1:N = x1:N ;

11 for k← 0 to N−1 do
12 Ak = Dx f (xk,uk), Bk = Du f (xk,uk)
13 end
14 for k← N−1 to 0 do
15 Kk = (B>k Sk+1Bk +R)−1B>k Sk+1Ak;
16 Kv

k = (B>k Sk+1Bk +R)−1B>k ;
17 Ku

k = (B>k Sk+1Bk +R)−1R;
18 Sk = A>k Sk+1(Ak−BkKk)+Q;
19 vk = (Ak−BkKk)

>vk+1−K>k Ruk +Qxk;
20 end
21 for k← 0 to N−1 do
22 δuk =−Kkδxk−Kv

k vk+1−Ku
k uk;

23 uk+1 = uk +δuk;
24 xk+1 = f (xk,uk);
25 δxk+1 = xold

k+1− xk+1;
26 J = J+ x>k+1Qxk+1 +u>k+1Ruk+1;
27 end
28 J = J+ x>N Q f xN , l = l +1;
29 end

C. Computational Cost of ILQR
In each iteration, Algorithm 1 completes three portions.

First, we obtain the linearizations (step 11-13); second, we
compute Kk,Kv

k ,K
u
k ,Sk,vk (step 14-20); third, we compute the

control increment (δu)0:N−1 and the new trajectory x0:N (step
21-27). Linearizations are obtained in N Jacobian calls if it
is known analytically (e.g., for polynomial models). If we
need to approximate the Jacobian numerically, then we have
to march the system equation once for each dimension of
state and control, which requires evaluating f (xk,uk) at total
of N(n + m) times. The second and third portion require
matrix multiplication and inversion. State-of-the-art algorithms



of those operations have complexity O(n2.4)[18], whereas
classical methods scale as O(n3), so the complexity of the
second and third pass is at best O(N(n2.4 +m2.4)).

Proposition 1: The complexity of the lth iteration of the
ILQR Algorithm 1 is O(N(n2.4 +m2.4)), where n is the state
dimension, m is the number of controls, and N is the number
of time steps.

The previous result analyzes a single iteration of the ILQR
algorithm. We note that the number of iterations of the ILQR
algorithm l varies significantly, depending on the structure of
the nonlinear function f (xk,uk), as we see next.

Proposition 2: When applied to a discrete-time (DT) LTI
system, the ILQR algorithm converges in one iteration. The
resulting control is the same as the output of DT-LQR1.

D. ILQR for Quadratic-in-State Systems

The Euler equations in specific volume form describe a
purely quadratic system and are commonly used in aerospace
applications. Other models, such as Navier-Stokes and Burgers
equations are nearly quadratic for small viscous terms. Thus,
we analyze the ILQR algorithm specifically for quadratic-in-
state systems of the form:

xk+1 = G(xk⊗ xk)+Buk, (5)

where G ∈ Rn×n2
, B ∈ Rn×m and ⊗ denotes the Kronecker

product, defined as x⊗ x = [x(1)k x>k , . . . ,x
(n)
k x>k ]

> ∈ Rn2
.

Proposition 3: Let Q = 0 in the cost equation (2) (penalty
only on the final state). Suppose the initial state is x0 = 0, and
the initial control sequence is u0:N−1. Then the ILQR algorithm
applied to the quadratic system (5) takes at least N iterations
to converge, where N is the number of time steps.

Proof: Since x0 = 0 and initial control uk = 0,k = 1,2, . . .,
the initial trajectory of the system (5) is stationary: xk = 0 for
k = 0,1, . . . ,N− 1. Likewise, in the local linearization Ak =
Dx(G(xk⊗ xk)+Buk) = G(xk⊗ In + In⊗ xk), therefore, Ak = 0
in all local linearizations and Bk = Du(G(xk⊗xk)+Buk) = B.
We first analyze the behavior of the ILQR algorithm in the first
iteration. There, except SN , all of Sk = 0, since Ak = Q = 0.
Therefore, with the exception of step N−1, we have K = 0,
Kv = R−1B> and Ku = I. Therefore (Ak−BkK) = 0 ∀k, which
means that all vk = 0 except vN . Therefore, δuk = 0 except
δuN−1. In particular, δuN−1 = (B>Q f B+R)−1B>Q f x∗. As a
result, only uN−1 is updated in the first iteration. Similarly,
we find that only uN−2 and uN−1 are updated in the second
iteration, and so on. It takes N iterations before u0 gets
updated; thus, it takes at least N iterations for ILQR algorithm
to converge.

The previous theorem points to a computational challenge.
If it takes O(N) iterations to converge and since in each iter-
ation the time complexity is O(N) with respect to the number
of time steps (see Proposition 1) the total time complexity
is O(N2). For stiff problems and long simulation times this
becomes intractable. To address this problem, it may be helpful
to use a coarse time step on the first few iterations and then use
finer timer step later to speed up convergence. For example,

1Refer to, e.g., [19, Thm. 6.28] for DT-LQR control.

say N = 10 for the first few iterations, then all uk can be
updated in 10 iterations, and we can later switch to N = 1000.
This strategy can be thought of as using the output from coarse
ILQR to initialize fine-grain ILQR. Clearly, the use of ROMs
also speeds up the algorithm since the time needed for each
iteration is reduced significantly.

III. SYSTEM-THEORETIC MODEL REDUCTION

We present two system-theoretic model reduction tech-
niques: balanced truncation [12] in Section III-A, and LQG-
BT [13] in Section III-B. Both methods are defined for
continuous-time LTI systems ẋ = Ax + Bu, y = Cx where
y ∈ Rp is the output and the system matrices are A ∈ Rn×n,
B ∈ Rn×m and C ∈ Rp×n. We use these methods for discrete-
time nonlinear systems as follows. First, we linearize the
nonlinear systems and then convert the system from discrete-
time to continuous-time using a bilinear Tustin transformation.
We then use BT and LQG-BT to compute the state-space
transformations, and use those transformations to reduce the
nonlinear systems. The control inputs keep the system around
the equilibrium/linearization point. Thus, using these methods
to obtain the projection matrices for the nonlinear ROM is
more appropriate than in the open-loop nonlinear setting. More
ROM details are given in Section IV-B. Both concepts are for
infinite-time horizon. There are finite-time BT methods [20],
yet we found the infinite-time BT method to outperform the
finite-time BT on our test problems.

A. Computing the Balanced Truncation Basis

Balanced truncation computes a state-space transformation
for stable systems in such a way that the controllability and
observability Gramians of the ROM are equal and diagonal,
e.g., only the easy-to-control and easy-to-observe states are
kept in the ROM. The controllability Gramian P, and the
observability Gramian Q, satisfy the Lyapunov equations

AP+PA>+BB> = 0, QA+A>Q+C>C = 0.

Applying the transformation x = T x̃ to the LTI system yields
˙̃x = Ãx̃+ B̃u, ỹ = C̃x̃ where Ã = T−1AT , B̃ = T−1B,C̃ = CT .
The Gramians of the transformed system are P̃ = T−1PT−>

and Q̃ = T>QT . We want T such that P̃ = Q̃ = Σ, hence

Σ
2 = P̃Q̃ = T−1PT−>T>QT = T−1PQT.

Therefore, T can be obtained by computing the eigenvectors of
PQ and eigenvalues σ2

i in Σ2 = diag(σ2
1 , . . . ,σ

2
n ). To ensure

P̃ = Q̃, proper scaling of the eigenvectors is required. The
complete balanced truncation method for stable systems in
an efficient implementation is given in Algorithm 2. This
implementation only computes the leading r columns of Tr,
and Tl and is therefore numerically more stable and efficient.

B. Computing the LQG-Balanced Truncation Basis

LQG-BT [13] applies BT to closed-loop (stabilized) sys-
tems, and therefore also applies to unstable systems where,
however, (A,B) is stabilizable and (A,C) is detectable. It



Algorithm 2: Balanced truncation algorithm
Input: Matrices A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n,

ROM dimension r
Output: Transformation matrices Tr,Tl

1: Solve AP+PA>+BB> = 0 for P = RR>

2: Solve QA+A>Q+C>C = 0 for Q = LL>

3: r = min(r, rank(L), rank(R))
4: U,Σ,V = svd(L[:,1 : r]>R[:,1 : r])
5: Tr = R[:,1 : r]V Σ

− 1
2

6: Tl = Σ
− 1

2 U>L[:,1 : r]>

balances the unique positive definite solutions P,Q of the LQG
algebraic Riccati equations

AP+PA>−PC>CP+BB> = 0,

A>Q+QA−QBR−1B>Q+C>C = 0.

LQG-BT follows the same steps as Algorithm 2, except at
Steps 1–2 it uses the solutions to the LQG AREs. As a
byproduct, we directly obtain LQR or LQG controllers.

IV. NUMERICAL RESULTS: BURGERS EQUATION
Burgers equation has been widely used in modeling of fluids

and traffic flows, and as a numerical testbed for nonlinear
model reduction and control [21], [22], [23], [24].

A. PDE Model and Semi-Discretized Model
We consider a 1D Burgers equation with the setup as in

[25]. The PDE model is

ż(ξ , t) = εzξ ξ (ξ , t)−
1
2
(z2(ξ , t))ξ +

m

∑
k=1

χ[(k−1)/m,k/m](ξ )uk(t)

for t > 0 and where ξ is the spatial variable, uk(t) is the
distributed control, and m is the dimension of control, z ∈
H1

per(0,1), which means that the system has periodic bound-
ary conditions. Moreover, z(ξ ,0) = z0(ξ ) = 0.5sin(2πξ )2 for
ξ ∈ [0,0.5] and zero otherwise. The function χ[a,b](x) is the
characteristic function over [a,b]. Thus, the spatial domain
is divided into m equidistant intervals, and each control is
applied on one corresponding interval. When discretized with
linear finite elements, and after an inversion with the mass
matrix, the semi-discretized system is a nonlinear ODE which
is quadratic in the state, and linear in the control:

ẋ = Ax+G(x⊗ x)+Bu, y =Cx, (6)

where G ∈ Rn×n2
, and initial condition x(0) = x0. We choose

the following parameters for our numerical experiments: n =
101 states, m = 5 controls, and viscosity ε = 5× 10−3 to
make the nonlinear quadratic term dominant. The system is
simulated for t f = 5s, and the time interval is divided into
N = 500 time steps. The trajectory is computed using the
backward Euler method, which is implemented using the
Levenberg-Marquardt algorithm. The output matrix C = In, the
state cost matrices Q = Q f =C>C, and the input cost matrix
is R = 103× Im, where In is the n×n identity matrix.
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Fig. 1: Normalized singular values of the matrix L>R. For
balanced truncation, those are the Hankel singular values.

B. BT and LQG-BT Reduced-Order Models

We linearize (6) around the zero equilibrium and use the lin-
earized matrices Alin,B,C in the BT or LQG-BT Algorithm 2
to compute the transformations Tr,Tl . The linearized matrix
Alin is stable. We then project the full-order model (FOM) in
(6) to obtain

ẋr = Arxr +Gr(xr⊗ xr)+Brur, yr =Crxr (7)

where Ar = TlATr, Br = TlB, Cr =CTr, Gr = TlG(Tr⊗Tr) and
xr(0) = Tlx0. Fig. 1 shows the normalized singular values of
the matrix L>R in the balancing procedure (see step 4 in
Algorithm 2) for both BT and LQG-BT. For the standard BT
algorithm, those are also known as the Hankel singular values.
We observe that the first 20 Hankel singular values decay fast,
and all Hankel singular values except the first one come in
pairs. In contrast, the normalized singular values in the LQG-
BT decay much more slowly, and only level off at r > 60.
Similar to the Hankel singular values, these singular values
except the first one come in pairs. The fact that the singular
values in the BT algorithm decay much faster indicates that it
is likely that BT outperforms LQG-BT in open-loop simulation
accuracy, as when we truncate the transform matrix we are
discarding dimensions that have lower associated singular
values.

C. Performance of ROM-based ILQR Controllers

We use the ROMs to compute controllers uBT
r and uLQGBT

r
via the ILQR Algorithm 1 with tol=3× 10−5. We note
that the Jacobians of (7), which are used to obtain the
local linearization of the system in the ILQR algorithm, are
Dxr ẋr = Ar +Gr(xr⊗ Inr + Inr ⊗ xr) and Dur ẋr = Br, where nr
is the number of dimensions of the state xr in the ROM.
The availability of the Jacobians in explicit form significantly
speeds up the computational routine, and should be used
whenever available, c.f. Proposition 1.

Fig. 2 shows the ROM cost J(xr,ur) computed as in (2) yet
with state xr, controls ur and cost matrix Qr = Q f ,r = C>r Cr,
versus the iterations of the ILQR algorithm. Moreover, the
figure shows the FOM cost J(x,ur) from (2) when the ROM
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Fig. 3: Norm of ILQR control ‖u‖2 computed using the two
nonlinear ROMs with r = 5.

controller is used for the FOM (thin horizontal lines). Both
ROMs had dimension r = 5. Note that the ILQR algorithm
converges monotonically for both models terminating requir-
ing 170 iterations with the LQG-BT model and 223 iterations
with the BT model. With the final controllers the cost function
evaluated for the FOM, J(x,ur), is 68.9 for BT and 63.6 for
LQG-BT showing a slightly better performance of LQG-BT.
The norm of the controls obtained from ILQR is shown in
Fig. 3, and Fig. 4 shows the corresponding output. Due to
the periodic boundary conditions and the large penalty on the
control, the state shows a low-magnitude periodic behavior.

Fig. 5 shows the open-loop behavior of the system when
excited with the initial condition x0 and no inputs. The initial
condition gets convected in a nonlinear fashion to the right.
In contrast, the controlled systems with the ROM-based ILQR
controllers are shown in Fig. 6a for BT and Fig. 6b for LQG-
BT. In both cases, the control signal (Fig. 3) reduces the initial
condition significantly, showing the efficacy of the control.

Finally, while the above results were obtained for r = 5,
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Fig. 4: Norm of outputs ‖y‖2 in the closed-loop FOM, with
the ILQR controller computed using the two nonlinear ROMs
with r = 5.
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Fig. 5: FOM simulation: initial condition x0 and zero input.

Table I gives an overview of results for different dimensions r
of the nonlinear ROMs. We note that while there is an anomaly
at r = 9 for the BT-ROM-based controller, in general, BT-ROM
controllers seem to outperform the LQG-BT ROM controllers,
evidenced by a lower number of iterations, as well as FOM
cost, which appears to be a result of the slow singular value
decay of the LQG-BT singular values in Fig. 1.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a new control framework for high-dimensional
nonlinear systems by combining the iterative linear quadratic
regulator (ILQR) framework and system-theoretic model re-
duction. As shown in the numerical experiments, both standard
balanced truncation model reduction and LQG balanced trun-
cation allowed us to compute well-performing controllers from
ROMs with about 95% reduction of model order compared
to the full-order model. Further work may be done by using
nonlinear system-theoretic model reduction, such as [26], [27],
[28], which despite being open-loop techniques, can provide
more accurate ROMs for nonlinear systems. One would also
need to investigate the observed correlation between larger
state dimensions and increased iteration numbers for ILQR to
understand scalability of ILQR. Lastly, convergence of ILQR
for increasing N remains an open problem.
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Fig. 6: FOM simulation: initial condition x0, controlled by uBT
r

and uLQGBT
r with r = 5.

TABLE I: Comparison of cost of ROM controllers on FOM,
J(x,ur), on ROM, J(xr,ur), and number of iterations of ILQR
for increasing dimension of the ROM.

LQG-BT LQG-BT BT BT LQG-BT BT
r J(xr,ur) J(x,ur) J(xr,ur) J(x,ur) iter. iter.
2 56.8 197.3 85.9 245.0 89 58
3 71.2 136.6 44.5 101.8 58 278
4 45.8 89.8 46.6 83.0 170 277
5 47.4 63.6 53.8 68.9 170 222
6 50.5 69.0 44.3 47.7 1328 966
7 50.8 61.3 43.9 46.5 1208 861
8 54.2 63.3 43.5 45.7 3647 930
9 53.3 59.1 272.7 272.1 9070 101

10 53.8 58.8 51.5 51.2 2395 2687
11 60.4 60.2 48.8 48.7 7927 4165
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