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Gaussian Process (GP)-based Learning Control of Selective Laser Melting Process

Farshid Asadi, Alaa Olleak, Jingang Yi, and Yuebin Guo

Abstract—Selective laser melting (SLM) is one of emerging
processes for effective metal additive manufacturing. Due to
complex heat exchange and material phase changes, it is
challenging to accurately model the SLM dynamics and design
robust control of SLM process. In this paper, we first present
a data-driven Gaussian process based dynamic model for
SLM process and then design a model predictive control to
regulate the melt pool size. Physical and process constraints
are considered in the controller design. The learning model and
control design are tested and validated with high-fidelity finite
element simulation. The comparison results with other control
design demonstrate the efficacy of the control design.

I. INTRODUCTION

Metal additive manufacturing (AM) builds three-
dimensional parts by melting metal powders layer-by-layer
using laser or other heating sources. Selective laser melting
(SLM) is one of the popular metal AM processes. Real-time
feedback control of metal AM is an enabling tool for
reliable, robust, high-quality process [1]. Although repetitive
feature is used for control of metal AM [1], few work exist
for real-time control of SLM due to its complex process
features and lack of enabling, effective and reliable sensing
techniques. The goal of this paper is to develop a data-driven
SLM process modeling and control design.

Control of metal AM has been reported in past decade.
For example, built on repetitive nature of the AM process,
iterative learning control is an effective way to improve
the fabrication of the metal AM processes (e.g., [2], [3]).
The dynamic models for directed energy deposition (DED)
processes are mainly built on mass conversation and energy
balance of the melt pool (e.g., [4], [5]). These physics-
based model become complex for modeling SLM process
because of dynamic behavior of the powder melt pool, non-
uniform heat dissipation from the melt pool to the surround-
ing materials, and various process parameters and scanning
patterns. The recent work in [6] built a simplistic physics-
based model for real-time track-by-track control of SLM.
The effect of previous scanning track is considered in the
next track control. Several important assumptions are made
for the melt pool geometry to derive the model using the
energy balance principle. Finite element (FE) method (e.g.,
[7]) and multi-scale multi-physics models (e.g., [8], [9]) are
used to obtain high-fidelity simulation for SLM process. It is
however, impossible to use these models to design real-time
process control due to their high computational costs. The
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recent work in [10], used data obtained from FE analysis
to derive a linear model of the process. In their work, the
authors used a repetitive control algorithm to control melt
pool width for a multi-track case in simulated FE software.

Surrogate models are developed to optimize the SLM
process parameters for stable melt pool and process windows
of the laser power and velocity maps [11]–[14]. SLM powder
material characterization and process properties (e.g., melt
pool geometry, porosity, etc.) are also reported by using the
Gaussian process (GP) models [11], [12] and it is thus attrac-
tive to integrate these development into the real-time control
design. However, these data-driven models do not incorporate
temporal information and therefore cannot directly be applied
to capture dynamics of the SLM process. In this paper, we
extend the GP models to capture the dynamics feature of the
SLM process and propose a learning-based real-time process
control.

GP dynamics model (GPDM) and model predictive control
(MPC) was proposed and used in various applications [15]–
[17]. In this paper, we take advantages of the GP learning
model of the SLM dynamics and develop an optimization-
based process control. The data-driven GP model is built on
the calibrated FE simulation with limited experimental data.
The main contribution of the work lies in the data-driven GP
model and the design of real-time MPC control of the stable
melt pool in SLM.

II. DATA-DRIVEN SLM PROCESS MODELS

A. SLM Process Dynamics

SLM is a powder bed fusion (PBF) process where the
powder particles absorb the energy delivered by the moving
laser beam, start to melt, and form a melt pool. Fig. 1(a)
illustrates the experimental setup of a typical SLM process.
The laser beam movement is controlled by mirrors that direct
the beam in the x and y directions at high speeds and the
laser beam is shot on powder particles layers. During a SLM
process, a thin layer of materials powder is distributed over
the solid substrate by the recoater. Under the laser beam
scanning, a desired pattern is fused to the substrate. For
perfect bonding, the melt pool must be deeper than the
powder layer thickness and wider than hatch spacing (i.e.,
the distance between center lines of two adjacent tracks).
After the entire layer is scanned according to the scanning
strategy, the next powder layer is added and the process is
repeated until the entire part is built. Fig. 1(b) shows one
layer scanning SLM process and Fig. 1(c) illustrates the
multiple layer building structure.

It was reported that over one hundred parameters affect
the quality of parts manufactured by SLM, among which
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(a) (b) (c)

Fig. 1. (a) SLM process experimental setup. (b) Rectangular SLM scanning strategy. (c) Layer-by-layer configuration for SLM process.

the most important parameters are laser power and scanning
speed. Furthermore, residual heat effect due to the subsequent
scanning tracks might result in high melt pool size variations
over the entire layer. Thus, real-time process monitoring and
feedback control are needed to achieve a stable and consistent
melt pool sizes. Process monitoring can be conducted through
fast thermal imaging by using CCD camera, pyrometer, and
light sensitive diodes, e.g., [18]. These sensing suites can be
used to provide information about the temperature distribu-
tion, and melt pool size, and therefore to develop a feedback
control enhancing the process behavior. In this work, a single
layer with multi bidirectional tracks are considered for SLM
modeling and control.

B. Gaussian Processes Modeling

GP modeling is used to obtain data-driven model of the
SLM process dynamics. We here present a short summary
of the GP models and readers can refer to [19] for further
details. GP is a powerful technique to derive analytical
models from relatively small data set. We consider a noisy
observation of the process as

y = f(x) + η, (1)

where y ∈ R is a scalar output observation, x ∈ Rn is an
n-dimensional independent variable, f(·) : Rn → R is the
underlying unknown model, and η ∼ N (0, σ2

n) is zero mean
Gaussian observation noise with variance σ2

n. Furthermore,
we assume that f(·) has a Gaussian probability distribution
prior. Without loss of generality, f(·) is considered as a Gaus-
sian process with the (zero) mean and covariance function

f(x) ∼ GP(0, k(x, x′)), (2)

where k(x,x′) : Rn × Rn → R is a positive definite
covariance function. In this work, a squared exponential
function is used with the following form

k(x,x′) = σ2
f exp

(
− (x−x′)TL−1(x−x′)

2

)
, (3)

where σf and L = diag (l1, . . . , ln), li > 0, i = 1, . . . , n,
are hyper parameters to be determined.

Having m observation pairs (yi,xi), i = 1, . . . ,m, and
the assumption of Gaussian prior over f(·), we construct the

following joint distribution of training data set and prediction
pair as[

Y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nIm K(X,x∗)
K(x∗,X) K(x∗,x∗)

])
, (4)

where Y =
[
y1, . . . , ym

]T
and X =

[
x1, . . . ,xm

]T
are

training data sets, x∗ and f∗ are prediction pair, and K(·, ·)
are corresponding covariance given as follows.

K(X,X) =

k(x1,x1) . . . k(x1,xm)
...

. . .
...

k(xm,x1) . . . k(xm,xm)

 ∈ Rm×m,

K(x∗,X) = [k(x∗,x1) · · · k(x∗,xm)] = KT (X,x∗) ∈
R1×m, and K(x∗,x∗) = k(x∗,x∗).

Having the joint distribution (4), we use Bayesian rule to
calculate posterior distribution of f∗ as a function of x∗,
conditional on training data set Y and X as

f∗|X,Y ,x∗ ∼ N
(
f̄∗, cov(f∗)

)
, (5)

where mean f̄∗ = K(x∗,X)
(
K(X,X) + σ2

nIm
)−1

Y
and covariance function cov(f∗) = K(x∗, x∗) −
K(x∗,X)

(
K(X,X) + σ2

nIm
)−1

K(X,x∗). We then
write the marginal likelihood probability for the training
data set as

log p(Y |X,Θ) = −1

2
Y TK−1Y Y − 1

2
log |KY |−

n

2
log(2π),

where KY = K(X,X) + σ2
nIm, Θ = {σf , σn,L} is

the hyper-parameter set, and |KY | denotes the determinant
of KY . Maximizing marginal likelihood with respect to Θ
would generate the appropriate hyper parameters.

C. GP-based SLM Process Dynamics

We consider the GP model for the SLM dynamics. For
the SLM process, one of the main performance metrics
is the consistent melt pool cross sectional area, denoted
as x(t) at time t. Among many process parameters, laser
power and scanning speed are the most influential process
control parameters [7]. Therefore, we consider laser power
and scanning speed, denoted as p(t) and v(t) respectively,
as control inputs for the SLM dynamics. Additionally, it is
observed that substrate initial temperature affects the process
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(a) (b)

Fig. 2. (a) SLM process FEA overview. (b) Melt pool area extraction from thermal solution.

states such as cross sectional area [6]. As a result, surface
temperature, denoted as T (t) at time t, of the selected
scanning point before laser beam hits, is considered as a
measurable disturbance to the process dynamics 1. This
treatment is similar to that in [6]. Therefore, SLM process
dynamics is formulated in discrete time as follows

xk+1 = f(xk, Tk, pk, vk), (6)

where xk, Tk, pk, and vk are the melt pool cross sectional
area, surface temperature of melt pool surrounding, laser
power, and laser scanning speed at the kth step, respectively,
k ∈ N.

GP is used to estimate f in (6) using training data set.
To train the GP models, process data sets are necessary and
in many cases, experiments are needed to collect these data
sets. However, running SLM experiments is expensive and in
many cases, high-fidelity numerical simulation such as finite
element analysis has been extensively used as an alternative
means to study SLM processes.

D. Finite Element Analysis

Finite Element (FE) analysis is widely used to simulate and
predict the thermal history during SLM process. In this work,
FE models are developed to provide information about the
melt pool size and temperature history to build the GP model
and validate the control design. At the ith node in the FE
model, the addition of heat by the laser beam is represented
using the volumetric heat source considering the Gaussian
profile for the beam shape, that is, the heat flux is calculated
as

Qi =
6
√

3apk
r2scπ
√
π
e
−3

[(
∆xi
rs

)2
+
(

∆yi
rs

)2
+
(

∆zi
c

)2
]
, (7)

where ∆xi, ∆yi, and ∆zi are the distances between the
ith node and laser beam center at the kth step, a is the
absorptivity, pk is the laser power at the kth step, rs is the
laser beam radius, and c is the penetration depth. For com-
putational efficiency and accuracy, the adaptive remeshing
framework in [20] along with tetrahedral mesh are utilized,

1At each sampling time, temperature of next laser spot (plus laser beam
nominal radius) is used for this purpose.

where a fine mesh of average size 25µm is used at the
high temperature gradient regions (e.g., melt pool). Fig. 2(a)
illustrates the mesh configuration during scanning the first
track. The implicit Ansys® MAPDL® solver is used to solve
the thermal problem. The movement of the laser beam is
simulated by multiple time steps, where the single step
represents laser movement distance. Fig. 2(b) illustrates the
melt pool area and temperature distribution in the FE model.

III. SLM PROCESS CONTROL

Linear time varying MPC is used in the present work for its
constraint handling capability and relative low computational
cost. Considering the SLM dynamics (6), we denote the GP
estimate of nonlinear function f as f̄GP and the control input
vector uk = [pk vk]T ∈ R2. The discrete-time linearized
system is then given in the following form,

xk+1 = Adxk + Bduk, (8)

where Ad and Bd are calculate as

Ad =
∂f̄GP

∂x

∣∣∣
(xk,uk,Tk)

, Bd =
∂f̄GP

∂u

∣∣∣
(xk,uk,Tk)

,

and Tk is the surface temperature of melt pool surrounding
at the kth step.

The MPC problem is formulated as a constrained opti-
mization and at the kth step, the formulation is given as

min
U

H−1∑
i=0

(
Qx2k+i + uT

k+iRuk+i

)
+Qfx

2
k+H , (9a)

s.t. xi+1 = Adxi + Bdui, (9b)
xl ≤ xi ≤ xu, pl ≤ pi ≤ pu, vl ≤ vi ≤ vu, (9c)
xl ≤ xk+H ≤ xu, i = k, . . . , k +H − 1, (9d)

where U = {uk, . . . ,uk+H} is the control input set
and H is the state prediction horizon. In (9), xl (xu), pl
(pu), and vl (vu) are the lower (upper) bounds for the
melt pool cross sectional area, laser power, scanning speed,
respectively. MPC control bounds should be chosen based
on the optimal parameters of the process to ensure adequate
adhesion between melted powder and the substrate and also
to avoid keyhole formation [21].
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TABLE I
PROCESS PARAMETERS USED IN IN625 METAL SLM SIMULATION.

Parameter p (W) v (mm/s) Hatch space (mm) rs (µm) a c (µm)

Value 250 800 0.1 50 0.4 3

Although the MPC control design is built on the GP model
f̄GP , the validation of the control performance is through
the FE simulation. The use of controller with FE models
was previously implemented using COMSOL® Multiphysics
in [10]. While COMSOL® and MATLAB® can be integrated
through LiveLink®, this is not an option with Ansys®. In this
work, the temperature solution is written by Ansys® after
each step is solved in batch mode. The Python framework,
which is integrated and implemented between simulations
steps, is responsible for melt pool area calculation and
passing the temperature values at location ahead of the melt
pool to the MPC controller. The controller updates the laser
power and the FE solver proceeds with these updates for
the following simulation step. The process is repeated until
scanning the entire powder layer is complete. Detailed results
will be demonstrated in the next section.

IV. SIMULATION RESULTS

A. GP Model Performance

We take the IN625 metal SLM process in [6] as an example
to demonstrate the GP model training and validation. The
IN625 thermal properties are taken from [6] and the value
of the process parameters are shown in Table I. The implicit
Ansys® APDL® solver is used to solve the thermal problem.
The simulation step time is ∆T = 50 µs.

In order to collect representative data for training the GP
model, four single track and five double track simulations are
conducted with various combinations of scanning speed and
laser power profiles and different hatch spaces (for double
track simulations). Table II lists these simulation experiments
and their configurations. In all of the test cases, each track
length is 5 mm and the power and scanning speed profiles
are constrained within optimal process parameters for SLM
process (e.g., [21]). The scanning speed and laser power,
along with melt pool cross sectional area and scanning
point initial temperature, are recorded at sampling time ∆T .
As an example, Fig. 3 shows the laser power p(t) and
scanning speed v(t), cross sectional area x(t) and melt pool
temperature profiles for Case #9.

From all nine cases FE simulation, a total of 1649 data
sets were collected, among which 100 data sets were used for
the GP training and the rest of 1549 data points are used for
model validation. Fig. 4(a) shows the comparison of the GP
model prediction and the FE simulation results. The average
of the prediction error of the GP model is around 2.06 % for
the melt pool cross sectional area. Furthermore, coefficient
of determination R2 = 99.5% is achieved on the test set.
To demonstrate the prediction capability of the GP model,
we conduct model-based forward simulation using the GP

model. In this test, the GP model is used to predict the melt
pool area over time for Case #2 in Table II. Fig. 4(a) shows
the comparison results between the GP model prediction and
the FE simulation. It is clear that the GP model predicts the
FE simulation results closely.

B. MPC Performance

Using the GP model, the MPC is implemented by only
considering the laser power as the control input with constant
scanning speed v = 800 mm/s. The values of the MPC design
parameters are listed in Table III. To show the performance
of the MPC controller, a 4 × 10 mm track test is designed.
The MPC controller is used to update the laser power in
FE simulation to maintain constant melt pool cross sectional
area over all tracks. Also, a differential plus direct feedback
from the initial temperature is added to the MPC command.
The challenge in multi-track SLM process is the high initial
temperature after first track is completed; see Fig. 3(c). The
increased initial temperature leads to increased melt pool
cross sectional area and therefore, feed forward control of
the process is inefficient and closed-loop control is needed.
Fig. 5 shows the transition of the melt pool area and laser
power profiles under the MPC design. Open-loop perfor-
mance (under constant laser power input) is also included
for comparison purpose.

Despite the oscillation in the closed-loop response, it can
be seen that the MPC successfully attenuates melt pool
overshoot in start of new tracks, that is, at around 13, 26, 39
ms in Fig. 5(a). Also, as shown in Fig. 5(b), the power level
decreases significantly at the beginning of each new track.
This is due to energy accumulation of multiple tracks. These
results agree with these reported in [6] that used the same
material and feedback signal in their work. Furthermore, after
the sudden drop at the location of each new track, the gradual
increase of the laser power along each individual track is
also in accordance with the experiments in [6]. This gradual
increase happens due to the exponential drop of initial
temperature along each new track; see Fig. 3(c). It is obvious
that under the MPC closed-loop control, the variation of the

TABLE II
FE SIMULATION SUMMARY FOR GP MODEL TRAINING

Case No. Power Scanning speed Hatch space (mm)

Single track

# 1 Constant Constant N/A

# 2 Sinusoidal Constant N/A

# 3 Constant Sinusoidal N/A

# 4 Sinusoidal Sinusoidal N/A

Double track

# 5 Constant Constant 0.1

# 6 Constant Constant 0.15

# 7 Constant Constant 0.05

# 8 Sinusoidal Profile 0.1

# 9 Profile Profile 0.1
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(a) (b) (c)

Fig. 3. FE simulation profiles and results for Case #9 for GP construction. (a) Laser power p(t) and scanning speed v(t) profiles. (b) Melt pool cross
sectional area x(t). (c) Surface temperature T (t) of the melt pool surrounding.

(a) (b)

Fig. 4. (a) Comparison results between the trained GP model prediction and the SE simulation using validation data set. (b) Comparison results of the
GP-based model prediction over time and the FE simulation of the melt pool cross sectional area for Case #2 profile.

TABLE III
VALUES OF THE MPC DESIGN PARAMETERS

Parameter pl/pu (W) ∆pl/∆pu (W) xl/xu (mm2) Q R Qf H

Value 0/350 −350/350 0/0.5 1 0.1 20 20

TABLE IV
CONTROL PERFORMANCE

Set point Max overshoot Max undershoot Steady state |e|avg
0.09 30% 36.37% ±8.16%

melt pool cross sectional area profiles shows consistently
stable results. Table IV further summarizes the closed-loop
performance. Comparing with the control performance in [6,
Table 5, five track case], the overshoot of the response under
the MPC is 10 % higher, the undershoot is however reduced
by 40 %. The max overshoot and undershoot are calculated
as Amax,min

Aset point
. The average steady state error is also calculated

as root mean square error (RMSE) between melt pool area
and the set point. The computational burden of the control

algorithm is really important in SLM process, due to high
speed nature of the SLM process. The proposed algorithm
takes on average 1ms to be computed. This result is achieved
in python, run on a core i5® laptop with 4 GB ram. This
ensures that the algorithm can be run on real time devices
with required control frequency. Note that the simulation
results in the paper are done with higher sampling frequency
due to limitations in the FEA time length.

V. CONCLUSION AND FUTURE WORK

In this paper, a data driven GP model was proposed for the
SLM process. The modeling development was also used in
MPC framework to regulate the melt pool cross sectional
areas in multi-track SLM scanning fabrication. The main
challenge in multi-track scanning scheme was the melt pool
area due to the high initial temperature of substrate generated
by previous scans. We used high-fidelity FE simulation that
has been validated by experiments (see [20]) to generate
the training data sets for the GP models. The GP model
and the MPC performance were demonstrated to successfully
maintain a stable, consistent melt pool cross sectional area
during multi-track scanning process. Comparison with the
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(a) (b)

Fig. 5. Control performance comparison under MPC and constant power inputs. (a) Melt pool area x(t) profiles. (b) Input laser power p(t).

existing feed forward SLM control was also presented. We
are currently trying to implement the proposed GP model
and real-time control on an SLM machine experimentally.
Inclusion of other real-time sensing and laser scanning speed
control is also among the ongoing research directions.
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