
Bounded-Rational Pursuit-Evasion Games

Yue Guan∗ Dipankar Maity† Christopher M. Kroninger‡ Panagiotis Tsiotras§

ABSTRACT

We present a framework that incorporates the idea of bounded rationality into dynamic stochastic
pursuit-evasion games. The solution of a stochastic game is characterized, in general, by its (Nash)
equilibria in feedback form. However, computing these Nash equilibrium strategies may require ex-
tensive computational resources. In this paper, the agents are modeled as bounded rational entities
having limited computational resources. We illustrate the framework by applying it to a pursuit-
evasion game between two vehicles in a stochastic wind field, where both the pursuer and the evader
are bounded rational. We show how such a game may be analyzed by properly casting it as an iter-
ative sequence of finite-state Markov Decision Processes (MDPs). Leveraging tools and algorithms
from cognitive hierarchy theory (“level-k thinking”) we compute the solution of the ensuing discrete
game, while taking into consideration the rationality level of each agent. We also present an online
algorithm for each agent to infer its opponent rationality level.

1 Introduction

Pursuit-evasion games are a special class of dynamic games introduced in the 60s [1–4], which capture a wide range
of diverse behaviors amongst dynamic adversarial agents. An extensive amount of literature exists on the topic; some
notable examples include [3–11]. However, most of these prior works [3,5,9,10,12,13] are concerned with finding the
equilibrium strategy(s) of the game, which requires the assumption that all agents are rational [14]. The assumption of
perfect rationality is considered to be too strong and perhaps unrealistic for many applications [15, 16]. Furthermore,
finding the equilibrium of a game is, in general, computationally expensive [17, 18]. To address these issues, we
study pursuit-evasion games (PEGs) with agents that are not perfectly rational, but rather bounded rational. The
idea of bounded rationality [19] was introduced in the economics community to address the issue that most agents
do not adhere to the paradigm of maximum utility theory that assumes perfectly informed, rational agents. Several
manifestations of bounded rationality exist in the literature, but in this paper we will adopt the one that makes use of
the model of cognitive hierarchies (CH) [20] and level-k thinking [21]. Under this notion, the agent no longer seeks
the (Nash) equilibrium, but instead seeks a best response to some (believed or inferred) strategy of its opponent(s)
according to an assumed level-k responding structure.

In this work, we formulate a PEG involving bounded-rational agents in a stochastic environment (e.g., UAVs in
a wind field). Specifically, we want to address how, in an air-combat scenario, an agent should optimally respond if
its opponent(s) is not perfectly rational. We start by considering a continuous-time PEG with continuous state-space,
finite control/action set, perfect state observation, and stochastic unbounded noise. Building upon the Markov Chain
approximation method [22], we then construct a series of finite-state, discrete-time PEGs as an approximation to the
original continuous time, continuous state-space problem. We subsequently introduce the level-k thinking framework
to solve this discrete PEG in order to capture the bounded rational properties of the players. In the level-k framework,
each agent is assumed to best respond to the strategy of its opponent(s). This leads to an iterative decision process
for both the pursue and the evader. The iterative process begins with “level-0” pursuer(s) and evader(s), who have no
prior assumptions about their opponents, or the structure of the game, and merely act randomly; i.e., they implement
a random policy where each action is taken equally likely. The “level-k” pursuer(s) and evader(s) presume that their
∗PhD Candidate, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0150, USA. Email:

yguan44@gatech.edu
†Postdoctoral Fellow, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0150, USA.

Email: dmaity@gatech.edu
‡Research Scientist, Combat Capabilities Development Directorate, Army Research Laboratory, Aberdeen Proving Ground,

MD, 21005-5066, USA. Email: christopher.m.kroninger.civ@mail.mil
§David & Andrew Lewis Chair and Professor, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA

30332-0150, USA. Email: tsiotras@gatech.edu, AIAA Fellow.

ar
X

iv
:2

00
3.

06
95

4v
1 

 [
ee

ss
.S

Y
] 

 1
6 

M
ar

 2
02

0



opponent(s) are of “level-(k-1)”, and they respond accordingly based on this assumption. The notion of rationality is
captured through the parameter k; the higher the value of k, the higher the level of rationality of the agent and the
higher this iterative process proceeds. Consequently, and in order to capture the notion of bounded rationality [21,23],
each agent has a maximum level beyond which it cannot operate (different agents may have different maximum
levels). Under this framework, the computational complexity of finding the optimal policy for a participating agent is
significantly reduced [23], since the game can be cast as sequence of single-sided Markov-Decision-Process (MDP)
problems [21] for each agent, each one of which can be solved efficiently [24].

One challenge in this framework is that in order to pick the optimal policies, each agent needs to know the
rationality level of its opponent(s). To perform such an inference, we adopt an inference algorithm based on the
observed agent trajectories [21]. The algorithm assumes that both agents’ rationality levels are fixed, and then lets
the agents use a maximum likelihood estimator to update their beliefs regarding their opponent’s rationality level. We
then generalize this inferring algorithm to the case where the opponent’s perceived rationality level is fixed, while each
agent adapts its rationality level based on its belief about its opponent’s rationality level.

This work applies the framework of cognitive hierarchy [20] to PEGs and utilizes the concept of the agent’s
rationality level. The main contribution of this paper is the detailed derivation of a comprehensive and implementable
method to find solutions to stochastic PEGs involving bounded rational agents. The proposed method first discretizes
the continuous PEGs in a way that ensures the convergence of the optimal solution of the discretized game to that of
the original continuous-state game. In addition, we show that if level-k thinking is applied to encode bounded rational
decision-making of the agents, the discrete PEGs can be solved efficiently using value iteration of the corresponding
one-sided MDP problems for each agent. The (optimal) policy adopted by an agent depends not only on its own
(bounded) rationality level but also on the rationality level of its opponent(s). As a result, estimating or inferring
the rationality level of the opponents is also of great interest. Therefore, we also propose an inferring algorithm that
updates the agents’ beliefs about the rationality level of their opponent(s) during the game. The effectiveness of the
proposed approach is demonstrated using a two-dimensional two-agent PEG in a stochastic wind field, in which the
two agents’ rationalities are bounded by different maximum levels.

The rest of the paper is organized as follows. Section 2 presents the formulation of the pursuit-evasion game in a
stochastic environment and applies the Markov Chain approximation method to discretize the problem [22]. Section 3
introduces the level-k thinking framework and Section 4 presents algorithmic methods for solving this problem. This
is followed by Section 5 that discusses the proposed inferring algorithms, and Section 6 that presents an illustrative
example of a pursuit-evasion game in a stochastic wind field, with two bounded-rational agents. Finally, the paper is
concluded in Section 7 with a summary of the results and some possible extensions for future work.

2 Problem Formulation

We start by introducing a pursuit-evasion game which evolves in a stochastic environment (wind field) in continuous
time. Under certain assumptions, the game can be discretized into a competitive Markov Decision Process (cMDP).
The connection between the cMDP and an associated standard one-sided MDP problem is addressed.

2.1 Continuous-Time PEG

Let us consider a two-agent pursuit-evasion differential game in which the pursuer and the evader are indexed by
i = 1 and i = 2, respectively. In what follows, we will also use the index −i to denote the opponent of agent
i. As the names of the agents suggest, the pursuer tries to capture the evader, while the evader tires to evade the
pursuer. Without loss of generality, we henceforth assume that i = 1 is the pursuer and i = 2 is the evader. For
simplicity, we assume that the game evolves in a two-dimensional compact domain C ⊂ R2, and the position (state)
of an agent at time t is denoted by pi(t) = [pix(t), piy(t)]T ∈ R2, for i = 1, 2. We define the state of the game
as the joint positions of the two agents. Specifically, at a given time t ≥ 0, the state of the game is represented as
s(t) =

[
p1(t)T, p2(t)T

]T ∈ S = C × C ⊂ R4.

2.1.1 Wind Field and Game Dynamics

The game is played in the presence of a stochastic wind field, which will be modeled by a variant of a Wiener process.
The only knowledge the agents have regarding the stochastic wind field is the mean and standard deviation of the wind
velocity. The dynamics of the agents are governed by stochastic differential equations (SDE) as follows

dpi =

[
vi cos θi + wx(pi)
vi sin θi + wy(pi)

]
dt+ dW i

t (p
i), i = 1, 2, (1)



where wx(pi) denotes the mean wind velocity in the x-direction at pi, while wy denotes the mean wind veloc-
ity in the y-direction. In (1) dW i

t (p
i) is a two-dimensional Wiener process with the following properties: a)

E[dW i
t (p)dW i

t (p)
T] = σ2

w(p)I2 5 ; b) At any location p ∈ R2, the Wiener increments are independent at different
time instances, E[dW i

t (p)dW i
τ (p)T] = 0 for all τ 6= t; c) At any time t, the wind disturbance is spatially uncorrelated,

i.e., E[dW i
t (p)dW i

t (q)
T] = 0 for p 6= q 6. For brevity, we will denote the joint action (θ1, θ2) ∈ Θ by θ, and write

dW i
t instead of dW i

t (p
i). We will also write for brevity bi(pi, θi) =

[
vi cos θi + wx(pi), vi sin θi + wy(pi)

]T
.

The action set for each agent contains a collection of a finite number of possible choices for the desired heading
angles θ1 and θ2. Specifically, it will be assumed that the agent i moves along the direction of its heading angle
θi ∈ Θi = {0, π/2, π, 3π/2} at a fixed speed vi ≥ 0. The joint action space for both the players is denoted as
Θ = Θ1 ×Θ2. The dynamics of the state of the game can then be re-written as

ds =

[
b1(p1, θ1)
b2(p2, θ2)

]
dt+

[
dW 1

t

dW 2
t

]
= b(s, θ) dt+ dWt, (2)

where b(s, θ) = [b1(p1, θ1)T, b2(p2, θ2)T]T, and dWt = [dW 1
t
T
, dW 2

t
T

]T.

The solution of the SDE in (2) is a stochastic process {s(t); t ≥ 0} such that

s(t) =s(0) +

∫ t

0

b(s(τ), θ(τ))dτ +

∫ t

0

dWτ (3)

, Φ(s(0), t, θ[0,t], dW [0,t]), (4)

where the last term in equation (3) is treated as the usual Itô integral [26], θ[0,t] = {θ(τ); τ ∈ [0, t]} is the joint action
history, and dW [0,t] is the realization of the wind field in the interval [0, t].

2.1.2 Terminal Conditions of the Game: Crash, Capture and Evasion

We define three terminating conditions (the boundaries) for the PEG.

• We first consider the scenario when agents may crash into obstacles or may crash on the boundary of the set
C. Let the closed set O ⊂ C denote the obstacle-region in C. Then, agent i crashes into an obstacle or the
boundary of the set ∂C, if at some time t > 0

dist
(
pi(t), O ∪ ∂C

)
= 0, (5)

where the distance of a point p from a set M is dist(p,M) , infm∈M ‖p−m‖2. We define two boundaries
and their union in the state space corresponding to the cases where either agent crashes as

∂Sicrsh =
{
s ∈ S : dist

(
pi(t), O ∪ ∂C

)
= 0
}
, i = 1, 2

∂Scrsh = ∂S1
crsh ∪ ∂S2

crsh.

• Capture is considered successful when the distance between the two agents at some time instance t > 0 is
less than a prescribed positive value ρ, while neither of the agent crashes. That is, for a successful capture at
time t > 0, the following two conditions are simultaneously satisfied

dist
(
p1(t), p2(t)

)
≤ ρ,

dist
(
pi(t), ∂Scrsh

)
> 0, for i = 1, 2.

(6)

The capture condition defines a boundary in the state space as follows:

∂Scap =
{
s ∈ S : dist

(
p1(t), p2(t)

)
≤ ρ
}
\ ∂Scrsh.

• Evasion is considered to be successful when the evader enters a closed, non-empty evading region E ⊂ R2

without being captured, while neither of the agents crashes. In other words, evasion is successful, if at some

5For simplicity, in this paper we will assume σw(p) = σw for all p.
6In case the wind disturbance is spatially correlated, then E[dW i

t (p)dW
i
t (q)

T] = h(p, q), where h(p, p) = σ2
w(p)I2, and

h(p, q) ≥ 0 for p 6= q. A popular choice for random field models in geostatistics is h(p, q) = exp(−γ‖p− q‖)I2 for some γ > 0
[25].



time t > 0, the following conditions are simultaneously satisfied

dist
(
p2(t), E

)
= 0,

dist
(
p1(t), p2(t)

)
> ρ,

dist
(
pi(t), Scrsh

)
> 0, for i = 1, 2.

(7)

Similarly, the boundary for evasion is defined as

∂Sevs =
{
s ∈ S : dist

(
p2(t), E

)
= 0
}
\
(
∂Scrsh ∪ ∂Scap

)
.

The boundary of the state space ∂S is defined by the three (disjoint) terminal conditions (5), (6) and (7) as

∂S = ∂Scrsh ∪ ∂Scap ∪ ∂Sevs.

When the process {s(t); t ≥ 0} hits the boundary ∂S, the game terminates and the outcome of the game is determined
by which of the boundaries (∂Scrsh, ∂Scap, ∂Sevs) is reached by the process.

To this end, we define the interior of the state space S = C × C of the PEG game as So = S \ ∂S. Without loss
of generality, we assume that the game starts at some initial condition s(0) ∈ So.

2.1.3 Admissible Strategies and Rewards

An admissible policy (or strategy) for an agent at time t is a measurable mapping from the observation history
({s(τ); τ ∈ [0, t]}) to a probability distribution over its action set. It is well known that, with full state informa-
tion, the best Markov policy performs as well as the best admissible strategy [26, 27]. A Markov policy depends only
on the current state s(t) and not on the entire history {s(τ); τ ∈ [0, t]}. The Markov policy of agent i is represented
by the measurable function µi(·, ·) : So×Θi → R+, which denotes the probability distribution that the agent i places
over the action space Θi at some state s, i.e., µi(s, θi) denotes the probability of choosing action θi ∈ Θi at state s.
Consequently, for all s ∈ So,

∑
θi∈Θi µi(s, θi) = 1. The set of all such policies for agent i will be denoted by Πi.

Similarly, we denote the joint policy (µ1, µ2) of both agents as µ and the set of all such policies by Π. Let us define
the first exit time Tµ under the joint policy µ as

Tµ = inf
{
t : s(t) /∈ So, s(t) = Φ(s(0), t, θ[0,t],W [0,t]),

where P(θi(τ) = a) = µi
(
s(τ), a

)
for τ ∈ [0, t]

}
.

Therefore, Tµ is a random variable that reflects the first time a successful capture, or evasion, or crash occurs.
Specifically, Tµ is the first time the process hits the boundary ∂S of the state space S.

We define the terminal reward for the pursuer at the terminal state s(Tµ) ∈ ∂S as

g1(s(Tµ)) =



1, if s(Tµ) ∈ ∂Scap, i.e., successful capture occurs,
−1, if s(Tµ) ∈ ∂Sevs, i.e., successful evasion occurs,
−1, if s(Tµ) ∈ ∂S1

crsh \ ∂S2
crsh, i.e., only the pursuer crashes,

1, if s(Tµ) ∈ ∂S2
crsh \ ∂S1

crsh, i.e., only the evader crashes,
0, if s(Tµ) ∈ ∂S1

crsh ∩ ∂S2
crsh, i.e., both agents crash.

(8)

In addition, we assume a zero-sum game formulation, and we define the terminal reward for the evader by

g2(s(Tµ)) = −g1(s(Tµ)). (9)

This work formulates the PEG as a game of type, where we use the win-rate as the performance index of the
agents, instead of other metrics such as capture time. As a result, only the terminal reward is included and no running
reward is introduced. An extension to include running reward (such as fuel cost or time) into the formulation requires
a minor modification of the proposed framework and will be addressed elsewhere.

The expected reward-to-go function for agent i under the joint policy µ = (µ1, µ2) ∈ Π and initial state s0 is J iµ,
defined as

J iµ(s0) = J iµ1,µ2(s0) = Es0,µ
[
gi
(
s(Tµ)

)]
, i = 1, 2, (10)

where the conditional expectation is given by

Es0,µ
[
·
]

= E
[
· |s(t) = Φ(s0, t, θ

[0,t],W [0,t]),P(θi(τ)) = µi(s(τ), θi(τ)) for all τ ∈ [0, t]
]
.



In the PEG setting, gi(·) incorporates the reward for either a successful capture, evasion, or crash. Both agents try to
maximize their own expected reward functions by choosing their respective policies µi. Specifically, for a given initial
state s0, the optimization problem can be written as

sup
µ1∈Π1

J1
µ1,µ2(s0),

sup
µ2∈Π2

J2
µ1,µ2(s0).

Since the game is zero-sum, the two reward-to-go functions satisfy J1
µ1,µ2(s0) = −J2

µ1,µ2(s0) for all joint policies
(µ1, µ2) ∈ Π and all states s0 ∈ So. As a result, by defining Jµ1,µ2(s0) = J1

µ1,µ2(s0), the previous optimization
problem can be rewritten as

sup
µ1∈Π1

inf
µ2∈Π2

Jµ1,µ2(s0) = inf
µ2∈Π2

sup
µ1∈Π1

Jµ1,µ2(s0). (11)

Having defined the continuous PEG, in the next section, we will discuss the discretization of this PEG such that the
optimal solution of the discretized PEG converges to the optimal solution of the continuous PEG as the discretization
step is reduced to zero.

2.2 Markov Chain Approximation

In this section, we introduce the Markov Chain Approximation Method (MCAM) [22], which will be used to discretize
the controlled stochastic process in (2) into a discrete-state, discrete-time competitive Markov Decision Process [24].
In the specific case of a pursuit-evasion game, we refer to the discretized process as the discrete Pursuit-Evasion Game
(dPEG).

A two-agent zero-sum cMDP (equivalently, dPEG) is a tupleM = (S,Θ1,Θ2, P,G) where S is the finite set of
states, Θi is the action set of agent i, and P (·|·, ·, ·) : S×S×Θ1×Θ2 → R≥0 is a function that denotes the transition
probabilities satisfying

∑
s′∈S P (s′|s, θ1, θ2) = 1 for all s ∈ S and all θi ∈ Θi, i = 1, 2. The mapping G : S → R

is the terminal reward function. Without loss of generality, we assume the pursuer (agent 1) maximizes G, while the
evader (agent 2) minimizes G. Suppose we start at time 0 at an initial state s0 ∈ S. At time n ≥ 0, the current state is
sn, and we apply a joint control θn ∈ Θ to arrive at the next state sn+1 according to the transition probability function
P . The result is a controlled Markov Chain {sn;n ∈ N0 = N ∪ {0}} [22]. Notice that such a chain depends on the
choice of the initial state s0 and the control sequence picked by both agents {θin : n ∈ N0, i = 1, 2} . Up to any
time N > 0, the observed chain is denoted as s[0,N ] = {sn;n ≤ N} and is generated by the joint action sequence
θ[0,N−1] = {θn, n ≤ N − 1}. The chain s[0,N ], the control sequence θ[0,N−1], and the initial state s0 are also referred
to as the trajectory of M under the given sequence of controls and the initial state. In the following, we present a
method (Markov Chain Approximation) to obtain an equivalent cMDP from the PEG defined in Section 2.1.

Given a PEG defined by the dynamics (2) with the terminal rewards as in (8), we adopt a spatio-temporal dis-
cretization scheme to reduce the problem to a finite-state cMDP. We start by discretizing the compact region C into
a grid-like environment with grid-size h > 0 (see Fig. 1). The discretization size h is a user-defined parameter that
determines the coarseness of the discretization. In Fig. 1, the shaded red and gray areas correspond to evasion areas
and obstacles respectively, and the orange and blue markers represent the positions of the pursuer and the evader. Let
us define the set Ch = {ch,1, . . . , ch,N} denoting the elementary squares of the grid, so that we can always properly
cover the compact set C with Ch, namely, C ⊆ Ch. The cardinality of Ch, which is N , depends on the grid-size h.
However, due to the compactness of C, the cardinality of Ch is always finite for any h. Note that each ch,j ∈ Ch
represents a unique square of size h in R2. Let coh,j be the interior of the square cell represented by ch,j . We extend the
notion of obstacles and boundaries fromC toCh in the following way. The cell ch,j is labeled as an obstacle cell if and
only if coh,j ∩O 6= ∅. The cell ch,j is labeled as a boundary cell if and only if coh,j ∩∂C 6= ∅. Similarly, if coh,j ∩E 6= ∅,
then ch,j is labeled as an evasion cell. We will say that agent i is in cell ch,j if and only if pi(t) ∈ coh,j . If an agent
is located on the common boundary of two cells (for example pi(t) ∈ ch,j ∩ ch,k), it is assigned to one of the cells
(j or k) based on a prior assignment rule. Having designed Ch, we define the discretization in S as Sh = Ch × Ch,
i.e., each element of Sh represents the discretized joint-state of the players. Each sh ∈ Sh denotes a hypercube of side
length h in R4. Analogous to coh,j , we define the interior of the hypercube sh by soh. We now define

∂Sih,crsh = {sh ∈ Sh : soh ∩ ∂Sicrsh 6= ∅},
∂Sh,crsh = ∂S1

h,crsh ∪ ∂S2
h,crsh,

∂Sh,cap = {sh ∈ Sh \ ∂Sh,crsh : soh ∩ ∂Scap 6= ∅},
∂Sh,evs = {sh ∈ Sh \ (∂Sh,crsh ∪ ∂Sh,cap) : soh ∩ ∂Sevs 6= ∅},

(12)



and finally ∂Sh = ∂Sh,crsh ∪ ∂Sh,cap ∪ ∂Sh,evs.

Figure 1: Example of a discretization of the two-dimensional space. On the left is the continuous space, and on the
right is the discretized space.

The Markov Chain approximation method approximates the continuous zero-sum PEG using a sequence of
cMDPs {Mh}, whereMh = (Sh,Θ

1,Θ2, Ph, Gh), and where Sh = Ch × Ch as defined earlier. Note that Θi is the
original action set for i = 1, 2. For each h > 0, let s[0,N ]

h = {snh;n ≤ N} be a controlled Markov Chain onMh until
it hits ∂Sh.

We associate each state s ∈ So in the original continuous space with a non-negative interpolation interval ∆th(s),
known as the holding time [22]. For each elementary hypercube sh ∈ Sh, the centroid of sh is denoted as α(sh), and
satisfies

sup
s∈sh
‖α(sh)− s‖ ≤ h/2.

Let us also define ∆snh = α(sn+1
h ) − α(snh). Since the mapping α is bijective, with a slight abuse of the notation,

we use sh to denote both the cell and its centroid. For brevity, we denote ∆tnh to be the holding time at state snh , i.e.,
∆th(snh). Furthermore, we also define tnh =

∑n−1
0 ∆tnh for n ≥ 1 and t0h = 0. In addition, we define the discretized

terminal cost Gh in a similar manner as in (8):

Gh(sh) =



1, if sh ∈ ∂Sh,cap,
−1, if sh ∈ ∂Sh,evs,
−1, if sh ∈ ∂S1

h,crsh \ ∂S2
h,crsh,

1, if sh ∈ ∂S2
h,crsh \ ∂S1

h,crsh,

0, if sh ∈ ∂S1
h,crsh ∩ ∂S2

h,crsh or sh ∈ Soh.

(13)

2.3 Discrete PEG

Let Ωh be the sample space ofMh, let θnh = (θ1,n
h , θ2,n

h ) be the joint action at time n for the controlled Markov Chain.
The holding times ∆tnh and the transition probabilities Ph are chosen to satisfy the local consistency property [22],
with respect to (2), which are given by the following conditions.

1. For all sh ∈ Sh, limh→0+ ∆th(sh) = 0.



2. For all sh ∈ Sh and all joint controls θ ∈ Θ:

lim
h→0+

EPh
[∆snh|snh = s, θnh = θ]

∆th(s)
= b(s, θ)

lim
h→0+

CovPh
[∆snh|snh = s, θnh = θ]

∆th(s)
= σwσ

T
w

lim
h→0+

sup
N∈N0, s

[0,N]
h ∈Ωh

‖∆snh‖2 = 0.

As the chain {snh;n ∈ N0} is a discrete-time process, we use an approximate continuous-time interpolation [22]
to approximate the continuous-time process in (2). We define the continuous-time interpolation sh(·) of the chain
{snh;n ∈ N0} and the continuous-time interpolation θh(·) of the action sequence {θnh ;n ∈ N0} under the holding time
function ∆th as follows: sh(τ) = snh , and θh(τ) = θnh for all τ ∈ [tnh, t

n+1
h ).

There are more than one ways to construct such a locally consistent Markov Chain [22]. For our specific problem,
we follow the construction found in [22] that splits the control inputs from agent 1 (pursuer) and agent 2 (evader).
Specifically, given the dynamics of the PEG as in (2), we rewrite the drift term as

b(s, θ) = [b1(s, θ), b2(s, θ), b3(s, θ), b4(s, θ)]T.

Let us define the unit vectors in the four-dimensional state space as

e1 = [1 0 0 0]T, e2 = [0 1 0 0]T, e3 = [0 0 1 0]T, e4 = [0 0 0 1]T.

We then define the quantity Qh(s) as

Qh(s) = hmax
θ∈Θ
{|b1(s, θ)|+ |b2(s, θ)|+ |b3(s, θ)|+ |b4(s, θ)|}+ 4 σ2

w,

and define the interpolation interval as

∆th(s) =
h2

Qh(s)
. (14)

Notice that ∆th(s) goes to zero as h → 0, for all s ∈ Sh. The transition probabilities of the cMDP that
approximates the original PEG can be calculated via

Ph(s± hej |s, θ) = (
σ2
w

2
+ hb±j )/Qh(s),

Ph(s|s, θ) = 1−
4∑
j=1

Ph(s+ hej |s, θ)−
4∑
j=1

Ph(s− hej |s, θ),

Ph(s′|s, θ) = 0, if s′ 6= s± hej and s′ 6= s,

(15)

where b+ = max{b, 0} and b− = max{−b, 0}, and, s + hej is the state s′ such that α(s′) = α(s) + ej . One can
verify that the transition probabilities defined in (15) are locally consistent with (2). We will use the cMDP defined by
Mh = (Sh,Θ

1,Θ2, Ph, Gh) to approximate the original continuous-time PEG.

Under the previous discretization scheme, any advantage an agent might have in terms of its speed is now trans-
lated into a probabilistic advantage, as shown in (15). Specifically, one can verify from the construction of these
probabilities (Ph depends on v1, v2 through bi(s, θ)) that with the same wind field present, the agent with a higher
speed is more likely to end up in the cell that it intends to visit than the agent with a lower speed, as a direct conse-
quence of (15). Also, an agent with larger speed will be able to visit a larger number of neighboring cells.

As stated in [22], local consistency implies the convergence of the continuous-time interpolations of the trajec-
tories of the controlled Markov Chain to the trajectories of the stochastic dynamical system described in (2), and the
convergence of optimal reward-to-go functions of discrete cMDPs to that of the original problem.

The definition of a policy forMh is analogous to that defined in Section 2.1. Similarly to the previous discussion,
a (randomized) policy for agent i is a mapping µih : Sh ×Θi → R+, such that for all s ∈ Sh,

∑
θi∈Θi µih(s, θi) = 1.

The set of all such policies is denoted by Πi
h. Let us use the notation Ph(s′|s, µ1

h, µ
2
h) to denote Ph(s′|s, µ1

h, µ
2
h) ,∑

θ1∈Θ1,θ2∈Θ2 Ph(s′|s, θ1, θ2)µ1
h(s, θ1)µ2

h(s, θ2). To this end, given a joint policy µh = (µ1
h, µ

2
h) and the initial state

s0 ∈ Sh, the reward-to-go from s0 due to µh is

Jh,µh
(s0) = EPh

[
Gh
(
sIhh )

)]
, (16)



where the EPh
denotes the conditional expectation under Ph given s0

h = s0, and {snh;n ∈ N0} is the sequence of states
of the controlled Markov Chain under the policy µh, and Ih is the termination time defined as Ih = min{n : snh ∈
∂Sh} 7. Notice that, although not expressed explicitly, the reward-to-go of the cMDP defined in (16) is dependent
on both agents’ policies µih (i = 1, 2) through Ph and sIhh . Therefore, the optimization problems for both agents are
given by

sup
µ1
h∈Π1

h

inf
µ2
h∈Π2

h

Jh,µ1
h,µ

2
h
(s0) = inf

µ2
h∈Π2

h

sup
µ1
h∈Π1

h

Jh,µ1
h,µ

2
h
(s0).

If the policy of the evader, µ2
h, is given, we can define the value function or the optimal reward-to-go for the

pursuer (the maximizer), denoted by V 1
h,µ2

h
, as

V 1
h,µ2

h
(s) = sup

µ1
h∈Π1

h

Jh,µ1
h,µ

2
h
(s), for s ∈ Sh. (17)

Similarly, given the policy of the pursuer, µ1
h, the value function for the evader (the minimizer), denoted by V 2

h,µ1
h
,

satisfies
V 2
h,µ1

h
(s) = inf

µ2
h∈Π2

h

Jh,µ1
h,µ

2
h
(s), for s ∈ Sh. (18)

In general, for a given opponent policy µ−ih , an optimal policy, if it exists, is denoted by µi,∗h , and satisfies

Jh,µi,∗
h ,µ−i

h
(s) = V i

h,µ−i
h

(s) for all s ∈ Sh. (19)

In later sections, we will show that if the opponent’s policy is given, the optimal policy of the agent and the corre-
sponding value function do exist for the discretized cMDP and we will also discuss the methods to find them.

3 Level-k Thinking

As discussed in the introduction, under the framework of level-k thinking, an agent best responds to a given policy of
its opponent. Consider the cMDPMh constructed as shown in the previous section. Let us assume that the agent i
knows the policy of its opponent µ−ih . Then, the transition probabilities in (15), the expectation operator in (16), and
the value functions in (17) and (18) will only depend on the agent i’s policy µih. The cMDPMh is now a standard
one-sided MDP. Similar to the previous definition of cMDP, given the opponent’s policy µ−i, the MDP for agent i is
a tupleMi

h,µ−i = (Sh,Θ
i, Ph, Gh). The definition of each element in the tuple from Section 2.2.2 can be adapted

to this context with minor changes. Given the policy of the evader µ2, let us consider the MDP for the pursuer (the
maximizer), denoted by M1

h,µ2 . To calculate the value function at a state s ∈ Sh, we solve the following Bellman
equation:

V 1
h,µ2

h
(s) = sup

µ1∈Π1
h

{
EPh

[V 1
h,µ2

h
(s′)|s, µ1

h]
}

= sup
µ1∈Π1

h

{∑
s′∈S

Ph
(
s′|s, µ1

h, µ
2
h

)
V 1
h,µ2

h
(s′)
}
.

(20)

For the evader, the Bellman equation is similar but with an inf operator instead of a sup operator. We will discuss
how to solve (20) numerically via value iteration in Section 4. For now, let us assume that (20) can be solved by some
algorithm given the opponents’ policies µ−ih , and the algorithm will find a unique value function V i

h,µ−i
h

and an optimal

policy µi,∗h .

In what follows, the superscript k ∈ {0, 1, 2, ..} within a parenthesis will denote the level of rationality. As we
always consider the discrete-state MDPMh, we henceforth drop the subscript h for notational brevity.

The premise of level-k thinking is that, if µ−i,(k) is a level k strategy for the opponent of agent i, we can define
the level-k MDP for agent i asMi,(k) =Mi

µ−i,(k−1) . The level k + 1 strategy for agent i at state s is then defined as

µi,(k+1)(s) ∈ arg max
µi,(k+1)∈Πi

∑
s′∈S

P
(
s′|s, µi,(k+1)(s), µ−i,(k)(s)

)
V iµ−i,(k)(s

′), (21)

7The termination time is well-defined, since the generated cMDP does not have any recurrent states.



which is precisely the best response of agent i to its opponent’s strategy µ−i,(k) (and hence it depends on µ−i,(k)). We
therefore write (21), equivalently, as

µi,(k+1) ∈ BestResponse(µ−i,(k)). (22)

Notice that if µi,(k+1) is the best response to µ−i,(k), and µ−i,(k+2) is the best response to µi,(k+1), then it is not
necessarily true that µ−i,(k) = µ−i,(k+2). Therefore, if agent i starts with some strategy of level k, say µi,(k), then
the agent might expect that its opponent will choose the best-response strategy µ−i,(k+1). In fact, agent i can compute
µ−i,(k+1) since it has knowledge of P and V −i

h,µi,(k) . Having computed µ−i,(k+1), agent i will change its strategy to

µi,(k+2), which is the best response to µ−i,(k+1).

Lemma 3.1. Given a two-player cMDP solved under the level-k thinking framework, if µi,(K+2) = µi,(K) for
an agent i at some finite level K, then the two agents reach a Nash equilibrium by applying the strategy pair(
µi,(K), µ−i,(K+1)

)
.

Proof. By the construction of level-(k) strategies in (21), we know that

µi,(K+2) ∈ BestResponse(µ−i,(K+1)),

µ−i,(K+1) ∈ BestResponse(µ−i,(K)).

Since µi,(K+2) = µi,(K), we have the following fixed point property:

µi,(K) ∈ BestResponse(µ−i,(K+1)),

µ−i,(K+1) ∈ BestResponse(µ−i,(K)).

The strategy pair
(
µi,(K), µ−i,(K+1)

)
then corresponds to a Nash equilibrium, by definition.

Remark 3.2. Suppose no constraint of maximum level is imposed, the level-k iterative process terminates at some
level K if the condition µi,(K+2) = µi,(K) is satisfied for some i ∈ {1, 2}.
Remark 3.3. Lemma 3.1 ensures that any converging level-k strategy is a Nash Equilibrium. However, in general,
there is no guarantee that the previous iterative level-k construction will convergence. Furthermore, in case of multiple
Nash equilibria, one cannot comment on which equilibrium the level-k framework will converge.

In practice, an agent with limited computational resources (e.g., a human) can continue this process only up to
a certain level kmax. Clearly, before termination of the algorithm, the best response to a level-k strategy µ−i,(k) is,
by definition, µi,(k+1) and not necessarily the NE strategy µi,∗. We want to emphasize the fact that the NE strategy
µi,∗ is only optimal when the opponent plays µ−i,∗. If agent i is certain that its opponent is unable to compute µ−i,∗

due to being bounded rational and plays strategy µ−i,(k) for some k ∈ {0, . . . , kmax}, then there is an incentive for
agent i to play a strategy other than µi,∗ to maximize its own reward. Specifically, if it is the case that −i will play its
highest level strategy, i.e., µ−i,(k

−i
max), then agent i must play µi,(k

−i
max+1), which is the best response to µ−i,(k

−i
max) and

not necessarily µi,∗.

In the following, we will elaborate on how a level-k strategy is constructed. For now, recall from the previous
discussion that a level-k strategy is built upon a level k − 1 strategy of the opponent. To initialize the level-k strategy
construction, we first define the policies µi,(0) of the level-0 agents (we will refer these policies as the level-0 policies)
as

µi,(0)(θi, s) =
1

|Θi|
for all θi ∈ Θi, s ∈ S, (23)

where |Θi| denotes the cardinality of the action set Θi which is |Θi| = 4 in our case. We can view this level-0 policy
as a uniform distribution over the action set Θi. Namely, the level-0 pursuer and level-0 evader pick a heading from
their action spaces uniformly. Such a choice reflects the idea that a level-0 agent is unable to play any other action
than one at random, and it does not care about optimality. The level-1 agents are given the level-0 policies, and they
calculate their best response to their opponent’s level-0 policy via (20). Specifically, V i,(1)

µ−i,(0) , i.e., the reward for agent

i, given that its opponent uses stratregy µ−i,(0), can be computed from the fixed point of the Bellman eqaution

V
i,(1)

µ−i,(0)(s) = sup
µi,(1)∈Πi

{∑
s′∈S

P
(
s′|s, µi,(1), µ−i,(0)

)
V
i,(1)

µ−i,(0)(s
′)
}
, (24)

with corresponding strategy µi,(1). For notational simplicity, we will drop the subscript µ−i,(k) on the value functions
and denote V i,(k)

µ−i,(k−1) as V i,(k) instead.



This process of building policies level-after-level continues until the prescribed maximum rationality level
kimax ≥ 1 is achieved. In general, the level-k policy for agent i is calculated via

V i,(k
i)(s) = sup

µi,(ki)∈Πi

{∑
s′∈S

P
(
s′|s, µi,(k

i), µ−i,(k
i−1)

)
V i,(k

i)(s′)

}
, (25)

where i ∈ {1, 2} and ki ∈ {1, 2, . . . , kimax}.
Note that, in order to calculate the policy µi,(k), for k ∈ {1, . . . , kimax} from (21), agent i one needs to calculate not
only its own policy µi,(k

i) but also its opponent’s policy µ−i,(k
i−1), for all ki ∈ {1, . . . , kimax-1}. For example, if the

pursuer wants to calculate µi,(k
i) for ki = 1, 2, 3, it first needs to calculate the best response to µ2,(0) as its level-1

pursuit policy µ1,(1). To calculate µ1,(2), which is the best response to µ2,(1), the pursuer needs to calculate the level-1
evasion policy of the evader, µ2,(1); similarly, to calculate µ1,(3), it needs to calculate µ2,(2) first, and so on.

In summary, at level-k, we choose one optimizing agent in the group, while fixing all other agent’s levels to
k − 1, and then let the chosen agent compute its best response. After all agents in the group have computed their best
responses at level k, we move on to level (k + 1), and we iteratively build the structure of the rationality levels for
each agent until the agent’s maximum rationality level is reached.

By assuming such a structure, we have reduced the cMDPs into a series of one-sided MDPs. For each one-sided
MDP,Mi,(k) the optimization is only over a single agent’s policy and hence plenty of efficient numerical algorithms
exist to solve for the optimal policy [28]. In the following section, we will use the well-known value iteration algorithm
to compute the best responses at each level k.

4 Algorithmic Solutions

At this point, notice that given the opponent’s strategy µ−i,(k
i−1), the optimal level ki strategy for agent i can be found

by an iterative method such as policy iteration or value iteration [28]. For the sake of completeness, in this section we
discuss such an iterative method to solve (25). In the following discussion, we will use the subscript m to denote the
iteration index. Following this notation, the value iterations for (25) are given by

V
i,(ki)
m+1 (s) = sup

µi,(ki)∈Πi

{∑
s′∈S

P
(
s′|s, µi,(k

i), µ−i,(k
i−1)

)
V i,(k

i)
m (s′)

}
for s ∈ Soh,

V i,(k
i)

m (s) = Gih(s) for s ∈ ∂Sh and for all m.

(26)

It has been shown that there exist at least one pure policy [24] that solves (25). That is, there is an optimal policy
µi,(k

i), such that at each state s ∈ Sh, there exists θi ∈ Θi and µi,(k
i)(s, θi) = 1. In other words, agent i can always

deterministically pick a heading angle at a given state s, while still attaining the optimal reward-to-go. As a result, we
can define the class of pure policies by the map ψi : Sh ×Θi → {0, 1}, where for all s ∈ Sh, one has∑

θi∈Θi

ψi(s, θi) = 1. (27)

Let the set Ψi consisting of all such admissible pure policies. One immediately observes that Ψi ⊂ Πi. We can
significantly reduce the size of the search space in (25) by replacing a general mixed policy µi in with pure policy ψi,
which yields

V
i,(ki)
m+1 (s) = max

ψi,(ki)∈Ψi

{∑
s′∈S

P
(
s′|s, ψi,(k

i), µ−i,(k
i−1)

)
V i,(k

i)
m (s′)

}
for s ∈ Soh,

V i,(k
i)

m (s) = Gih(s) for s ∈ ∂Sh and for all m,

(28)

where ki ≥ 1. As the action space is assumed to be finite, solving the value iteration in (28) at iteration m+1 becomes
a problem of finding the heading angle at each state s that maximizes the expected future rewards, given the value
function V i,(k

i)
m from the previous iteration. With the policy of the opponent known, we can re-write (28) as

V
i,(ki)
m+1 (s) = max

θi∈Θi

{∑
s′∈S

Pµ−i,(ki−1)

(
s′|s, θi

)
V i,(k

i)
m (s′)

}
for s ∈ Soh,

V i,(k
i)

m (s) = Gih(s) for s ∈ ∂Sh and for all m.

(29)



Notice that the iteration in (29) does not have a discount factor due to the absence of a running reward in (10). The
presence of a discount factor is essential to prove the convergence of value iteration in infinite horizon MDPs [29].
However, with the transition probability of the controlled Markov Chain obtained from the Markov Chain approxima-
tion method, we have that no recurrent states exists for our problem except from the absorbing boundary states (the
terminal states) defined in (12). It can then be shown that for this specific case the value functions V i,(k

i)
m in (29)

converge to the actual value function V i,k
i

defined in (25) as the iteration step m→∞ [28].

5 Inferring the Opponent’s Level

As discussed in the previous section, agent i can compute its level-k best response if it has knowledge of the opponent
strategy µ−i,(k−1). In Section 3, we argued that agent i can play its best strategy if it knows the level of the opponent
is k−i, and is able to compute µi,(k

−i+1). In real world situations, it is not always possible to know the opponent’s
rationality level exactly, and hence, the agent must infer the rationality level of its oppenent(s) based on the opponent(s)
prior behavior. Below we propose an online algorithm to estimate the opponent’s rationality level at each time based
on the history of the game. The algorithm uses a maximum likelihood inferring algorithm utilizing the idea presented
in [30].

To this end, let us consider the one-sided MDP for agent i at level-k defined asMi,(k). In a game setting without
explicit communication between the agents, agent i can only estimate its opponent’s level by observing the trajectory
of the states of the system. The proposed inferring algorithm provides a maximum likelihood estimator (MLE) of the
opponent’s level k−i, given agent i’s level ki and an observed trajectory till the current time s[0,N ] = {s0, s1, ..., sN}.

5.1 Fixed Level Model

We first make the assumption that both agents set their levels at the beginning of the game and do not change their
levels over subsequent stages. Suppose the maximum rationality level of agent i is kimax. Based on the discussion
in the Section 3, agent i should also have access to its opponent’s policies till level-(kimax − 1). We denote the set
of the opponent’s level that agent i has access to as K−i,(kimax-1) = {0, 1, ..., kimax-1}. Given that agent i plays at
level ki and the game starts at initial state s0, suppose that the agent i observes a trajectory from stage t0 to tN as
s[0,N ] = {s0, ..., sN}. Assuming that the opponent plays at level k−i ∈ K−i,(kimax-1), the probability of observing the
specific trajectory s[0,N ] is

P(s[0,N ]|ki, k−i) = P(s[0,N ]|µi,(k
i), µ−i,(k

−i)) =

N−1∏
n=0

Ph

(
sn+1|sn, µi,(k

i), µ−i,(k
−i)
)
. (30)

The estimate of the opponent’s level can then be selected as the maximum likelihood estimator

k̂−i ∈ arg max
k−i∈K−i,(ki

max−1)

P
(
s[0,N ]|k−i, ki

)
. (31)

One can easily extend this algorithm to infer the opponent’s level from a moving observation window of length
w + 1. Suppose a trajectory s[N−w,N ] from stage tN−w to tN is observed, then the conditional probability in (30) is
changed to

P(s[N−w,N ]|ki, k−i) = P(s[N−w,N ]|µi,(k
i), µ−i,(k

−i)) =

N−1∏
n=N−w

Ph

(
sn+1|sn, µi,(k

i), µ−i,(k
−i)
)
. (32)

The rest of the algorithm stays the same.

5.2 Dynamic Level Model

In the previous section the agents were required to keep their rationality levels fixed, and hence the agents were not
allowed to change their rationality levels during the game. To make the interactions between the agents more realistic,
we now let the agents adapt their levels based on their observations. To this end, suppose the opponent’s level k−i
remains constant over time. We let agent i adapt its rationality level based on its belief about the rationality level of its
opponent. We also assume that the agent always plays one level higher than its opponent without, however, exceeding
its maximum rationality level, kimax. Let us pick the observation window to have length w+ 1 and let the current stage



to be tN . Denote the observed trajectory from stage tN−w to stage tN as s[N−w,N ] = {sN−w, ..., sN} and let the
levels played by agent i over these stages denoted as ki,[N−w,N ] = {kiN−w, · · · , kiN}. The probability of observing
the specific s[N−w,N ] with a fixed k−i is

P(s[N−w,N ]|ki,[N−w,N ], k−i) =

N−1∏
n=N−w

Ph

(
sn+1|sn, µi,(k

i
n), µ−i,(k

−i)
)
. (33)

Then

k̂−iN ∈ arg max
k−i∈K−i,(ki

max−1)

P
(
s[N−w,N ]|k−i, ki,[N−w,N ]

)
, (34)

can be selected as the maximum likelihood estimator of opponent’s level at stage tN . At the next stage tN+1, agent i
would then play at level min{k̂−iN + 1, kimax}.

6 Numerical Example

In this section, we illustrate the theory via a numerical example. We consider a two-player pursuit-evasion game on
a 18×18 discretized world, namely the lattice indexed as Lh = {1, 2, ..., 18}4. The mean velocity of the wind is
generated randomly, while the wind covariance is set to σw = 0.4 with no spatial correlation. The starting positions
of the agents, the evasion states and the obstacles are shown in Fig. 2. We use the MCAM to discretize the state space
to obtain the grid shown in Fig. 2. The terminal reward is assigned according to the function Gh defined in (8). Both
agents have the same speed v1 = v2 = 1 and the same action set Θ1 = Θ2 = {0, π2 , π,

3π
2 }.

Figure 2: Continuous (left) and grid (right) space representations: starting positions and evade states.

We assume that the level-0 agents pick their headings such that they will not cause an immediate crash, while
choosing their action uniformly randomly. We construct the level-k thinking hierarchy and calculate the policies of
both agents for different rationality levels. We then simulate the resulting policies at some selected level pairs over
1500 games. To illustrate the results, we use two tables to present the win percentages of the selected scenarios.

In Tables 1 and 2, we fix one agent to be level-2 while varying the level of the other agent. In both tables, the
highest winning rates are attained at level 3. This result is expected, since level 3 policies are by definition the best
responses to the level-2 policies. It can also be observed that after level 5 the performance only varies slightly, since
the policies at high levels do not differ much from each other.

Table 1: Pursuer win percentages against level-2 evader. Results are for 1500 simulated games.

k2 = 2 k1 = 1 k1 = 2 k1 = 3 k1 = 4 k1 = 5 k1 = 6
Pursuer Wins 48.5 47.6 51.7 50.9 51.2 51.1
Due to Capture 36.4 38.2 45.3 43.1 42.7 42.9



Table 2: Evader win percentages against level-2 pursuer. Results are for 1500 simulated games.

k1 = 2 k2 = 1 k2 = 2 k2 = 3 k2 = 4 k2 = 5 k2 = 6
Evader Wins 47.5 52.4 53.8 52.9 53.2 53.1
Due to Evasion 35.6 42.2 45.3 44.5 44.7 44.2

In Fig. 3 two sample trajectories are shown. The first trajectory depicts a level-3 evader against a level-2 pursuer.
One observes the “deceiving” behavior of the evader: it first moves towards evasion state #2 (on the right), which
tricks the level-2 pursuer to also go right and take the shorter route beneath the obstacles for defending the evade
state #2. The evader then suddenly turns left and goes to the evade state #1 (on the left). When the evader reveals its
true intention of evading at evasion state #1, it is too late for the pursuer to capture the evader. The second trajectory
depicts a successful capture. Different from the previous scenario, the level-3 pursuer has perfect information about
the policies of the level-2 evader, as a result it can predict well what the evader will do in the next time step. The
pursuer then simply acts accordingly to maximize the probability of a successful capture. It is also noteworthy that the
stochastic wind field does disrupt the trajectories of the agents. For example, at point A in Fig. 3(a), the evader intends
to go left directly to the evasion state but is instead pushed upward due to the stochastic wind field.

(a) (b)

Figure 3: Sample trajectories of agents playing fixed rationality levels. The first game is won by the evader; the second
is won by the pursuer. (a) Level-2 Pursuer vs. level-3 Evader; (b) Level-3 Pursuer vs. level-2 Evader.

The following color maps present an example of the outcomes from the static inferring algorithm introduced
in Section 5. The vertical axis represents the rationality levels of the opponents, and the x-axis represents the time
instances. The color depicts the (normalized) conditional probability of the corresponding level.



(a)

(b)
Figure 4: Examples of inference results. (a) A level-3 Evader’s inference of a level-2 Pursuer; (b) A level-2 Pursuer’s
inference of a level-3 Evader.

In Fig. 4(a), the level-3 evader can infer the rationality level of the level-2 pursuer with certain confidence.
However, in Fig. 4(b), the level-2 pursuer has some trouble inferring the level-3 evader accurately. As discussed
earlier, at high levels the policies of the agents are almost the same at most states, which means, for example, that a
level-4 pursuer and a level-3 pursuer may take the same action in certain regions of the state space. In Fig. 4(b), from
time instances 37 to 49, the two agents may have entered such a region, where the policies of the level-3 pursuer and
the level-4 pursuer are the same. This phenomenon makes the inferring process challenging at high rationality levels,
in general. However, since the policies of both the pursuer and the evader become similar at high levels, even picking
a wrong level does not harm performance significantly. Finally, we present in Fig. 5 the outcome of the dynamic level
model introduced in Section 5, in which each agent always plays one level higher than the inferred level of its opponent
without exceeding its maximum rationality level. One may notice some significant oscillations at the beginning of the
game, but eventually, the pursuer starts to play at its highest level, and the evader plays at one level higher accordingly
till the game terminates.

Figure 5: Example of dynamic level model. Evader has maximum rationality level of 3 and Pursuer has 5.



7 Conclusions

In this work we have studied a classical pursuit evasion game in a stochastic environment where the agents are bounded
rational. We provide a framework to incorporate the notion of bounded rationality in decision-making for stochastic
pursuit-evasion problems through Markov chain approximation followed by a k-level thinking framework. Bounded
rational agents do not compute the Nash equilibrium, but they rather compute their level-k strategy based on an iterative
algorithm, which constructs the level-k strategy from level-(k− 1) strategy. A bounded-rational agent with maximum
rationality level kmax can employ a strategy of any level k = 0, 1, · · · , kmax. However, the optimal rationality level
k∗ should be determined by the opponent’s corresponding rationality level, and hence, it is crucial for an agent to
be able to infer its opponent’s rationality level. We propose two algorithms (fixed and dynamic) that assist the agent
with inferring its opponent’s rationality level. Through simulation results we have demonstrated the behavioral and
statistical outcomes of the game. In particular, we have demonstrated how an agent playing at a higher rationality
level may be able to deceive another agent of lower rationality level. As part of future work, it may be of interest to
investigate this framework in a team game setup and study the implications of different rationality levels on the overall
performance of the team.

References

[1] R. Isaacs, Differential Games. New York: John Wiley and Sons, 1965.

[2] W. Willman, “Formal solutions for a class of stochastic pursuit-evasion games,” IEEE Transactions on Automatic
Control, vol. 14, no. 5, pp. 504–509, 1969.

[3] Y. Ho, A. Bryson, and S. Baron, “Differential games and optimal pursuit-evasion strategies,” IEEE Transactions
on Automatic Control, vol. 10, pp. 385–389, October 1965.

[4] R. Behn and Yu-Chi Ho, “On a class of linear stochastic differential games,” IEEE Transactions on Automatic
Control, vol. 13, pp. 227–240, June 1968.

[5] T. Basar and G. Olsder, Dynamic Noncooperative Game Theory: Second Edition. Classics in Applied Mathe-
matics, Society for Industrial and Applied Mathematics, 1999.

[6] A. V. Balakrishnan, Stochastic Differential Systems I. Springer-Verlag, 1973.

[7] J. P. Hespanha, H. J. Kim, and S. Sastry, “Multiple-agent probabilistic pursuit-evasion games,” in Proceedings
of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), vol. 3, pp. 2432–2437 vol.3, Dec
1999.

[8] S. D. Bopardikar, F. Bullo, and J. P. Hespanha, “On discrete-time pursuit-evasion games with sensing limita-
tions,” IEEE Transactions on Robotics, vol. 24, pp. 1429–1439, Dec 2008.

[9] J. Shinar and S. Gutman, “Three-dimensional optimal pursuit and evasion with bounded controls,” IEEE Trans-
actions on Automatic Control, vol. 25, pp. 492–496, June 1980.

[10] W. Lin, Z. Qu, and M. A. Simaan, “Nash strategies for pursuit-evasion differential games involving limited
observations,” IEEE Transactions on Aerospace and Electronic Systems, vol. 51, pp. 1347–1356, April 2015.

[11] R. Vidal, O. Shakernia, H. J. Kim, D. H. Shim, and S. Sastry, “Probabilistic pursuit-evasion games: theory,
implementation, and experimental evaluation,” IEEE Transactions on Robotics and Automation, vol. 18, no. 5,
pp. 662–669, 2002.

[12] J. P. Hespanha, M. Prandini, and S. Sastry, “Probabilistic pursuit-evasion games: a one-step nash approach,” in
Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), vol. 3, pp. 2272–2277
vol.3, Dec 2000.

[13] W. Willman, “Formal solutions for a class of stochastic pursuit-evasion games,” IEEE Transactions on Automatic
Control, vol. 14, no. 5, pp. 504–509, 1969.

[14] R. B. Myerson, Game theory - Analysis of Conflict. Harvard University Press, 1997.

[15] H. A. Simon, “Models of bounded rationality,” Organization Studies, vol. 6, no. 3, pp. 308–308, 1985.

[16] T. Gilovich, D. Griffin, and D. Kahneman, Heuristics and Biases: The Psychology of Intuitive Judgment. Cam-
bridge University Press, 2002.

[17] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou, “The complexity of computing a Nash equilibrium,” in
Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC ’06, (New York, NY,
USA), pp. 71–78, ACM, 2006.



[18] A. W. Starr and Y. C. Ho, “Nonzero-sum differential games,” Journal of Optimization Theory and Applications,
vol. 3, pp. 184–206, Mar 1969.

[19] D. Kahneman, “Maps of bounded rationality: Psychology for behavioral economics,” American Economic Re-
view, vol. 93, pp. 1449–1475, December 2003.

[20] C. F. Camerer, T.-H. Ho, and J.-K. Chong, “A cognitive hierarchy model of games,” The Quarterly Journal of
Economics, vol. 119, pp. 861–898, 08 2004.

[21] T.-H. Ho and X. Su, “A dynamic level-k model in sequential games,” Management Science, vol. 59, pp. 452–469,
Feb. 2013.

[22] H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time. Berlin,
Heidelberg: Springer-Verlag, 1992.

[23] J. Li, G. Kendall, and R. John, “Computing Nash equilibria and evolutionarily stable states of evolutionary
games,” IEEE Transactions on Evolutionary Computation, vol. 20, pp. 460–469, June 2016.

[24] J. Filar and K. Vrieze, Competitive Markov Decision Processes. Berlin, Heidelberg: Springer-Verlag, 1996.
[25] E. Isaaks and R. Srivastava, Applied Geostatistics. Oxford University Press, 1989.
[26] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications. Hochschultext / Universitext,

Springer, 2003.
[27] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, Springer

New York, 2014.
[28] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1. Belmont, MA: Athena Scientific, 1995.
[29] A. J. Kleinman and H. J. Kushner, “Linear programming in a markov chain,” Oper. Res., vol. 10, pp. 702–710,

Oct. 1962.
[30] W. Yoshida, R. J. Dolan, and K. J. Friston, “Game theory of mind,” PLOS Computational Biology, vol. 4, pp. 1–

14, 12 2008.


	1 Introduction
	2 Problem Formulation
	2.1 Continuous-Time PEG
	2.1.1 Wind Field and Game Dynamics
	2.1.2 Terminal Conditions of the Game: Crash, Capture and Evasion
	2.1.3 Admissible Strategies and Rewards

	2.2 Markov Chain Approximation
	2.3 Discrete PEG

	3 Level-k Thinking
	4 Algorithmic Solutions
	5 Inferring the Opponent's Level
	5.1 Fixed Level Model
	5.2 Dynamic Level Model 

	6 Numerical Example
	7 Conclusions

