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Structure-preserving Model Reduction of Parametric Power Networks∗

Bita Safaee1 and Serkan Gugercin2

Abstract— We develop a structure-preserving parametric
model reduction approach for linearized swing equations where
parametrization corresponds to variations in operating con-
ditions. We employ a global basis approach to develop the
parametric reduced model in which we concatenate the local
bases obtained via H2-based interpolatory model reduction.
The residue of the underlying dynamics corresponding to the
simple pole at zero varies with the parameters. Therefore, to
have bounded H2 and H∞ errors, the reduced model residue
for the pole at zero should match the original one over the
entire parameter domain. Our framework achieves this goal
by enriching the global basis based on a residue analysis. The
effectiveness of the proposed method is illustrated through two
numerical examples.

I. INTRODUCTION

Power networks are naturally modeled as second-order

dynamical systems [15], [24], [29], [32]. In the case of

large-scale networks, monitoring, analysis and control of

resulting second-order systems become exceedingly difficult

due to unmanageable computational demands. To tackle this

predicament, we apply model reduction in which the goal

is to construct a lower dimensional model that preserves the

physically meaningful second-order dynamics and provides

a high-fidelity approximation of the input/input behaviour.

There is a plethora of model reduction approaches for

second-order dynamical systems, see, e.g., [3], [13], [5], [33],

[25], [31], [14], for model reduction of general second-order

systems, and see, e.g., [22], [15], [16], [26], [37] with a focus

on network dynamics.

In this paper, we focus on parametrically varying power

networks where the parameter variations correspond to dif-

ferent operation conditions. This leads to the parametric

model reduction (PMOR) framework [8], [11], [19], [30].

The goal of PMOR is to find a parametric reduced model that

can approximate the original model with acceptable fidelity

over a wide range of parameters. PMOR eliminates the need

for performing a separate reduction at each parameter value

(operating condition) and therefore plays an important rule in

control, design, optimization and uncertainty quantification.

To form our parametric reduced-order structure-preserving

(second-order) power network model we employ a global

basis approach where the model reduction basis is con-

structed by concatenation of local bases for selected param-

eter samples. We obtain the local bases using second-order
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interpolatory H2-optimal methods [34], [35]. Since the full-

order dynamics has a pole at zero with a parametrically

varying residue, the parametric reduced model needs to retain

this residue in order to have bounded H2 and H∞ error

norms for whole parameter domain. Based on a detailed

residue analysis, we establish the subspace conditions on the

model reduction basis to guarantee this property and explain

the algorithmic implications.

The remainder of this paper is organized as follows:

Section II presents nonlinear model of the swing equations

as well as its corresponding non-parametric and paramet-

ric second-order linear approximations. In Section III, we

describe the parametric reduction method via interpolatory

model reduction bases. Section IV presents our main theoret-

ical results for subspace conditions to guarantee parametric

residue-matching together with computational details. Sec-

tion V illustrates the feasibility of our approach via numerical

examples followed by conclusions in Section VI.

II. NETWORK SWING MODEL

A power network can be represented by a connected graph

G = (V , E) with buses as nodes V = {1, . . . , n} and

transmission lines as edges E ⊆ V × V . Generally, a bus

can host different combinations of generators and loads, or

it may even be a simple junction node. Assume that each

bus hosts a generator. We can model the active power Pij

flowing from bus (node) i to bus j along the transmission

line (i, j) ∈ E as

Pij =
EiEj

χij

sin(δi − δj), (1)

where δi is the phase angle, Ei is the peak voltage magni-

tude, and χij > 0 is the line reactance. This model ignores

the line resistances. The swing equation for a single generator

i results from Newton’s second law and is given by

Miδ̈i +Diδ̇i = Pmech
i − P elec

i , i ∈ {1, . . . , n}, (2)

where Mi > 0 is the rotor moment of inertia, Di > 0 is

a damping constant, and Pmech
i and P elec

i are the input

mechanical power and output electrical power for the ith

generator, respectively. Combing (1) and (2) leads to the

swing equations of an electric power grid [12], [29], [32]

Miδ̈i +Diδ̇i +
∑

j∈Vi

EiEj

χij

sin(δi − δj) (3)

= Pmech
i − P load

i = Pnet
i , ∀i ∈ V ,

where the set Vi ∈ V refers to those buses connected to bus

i in G, P load corresponds to the portion of the electric power

consumed at bus i and Pnet
i is the net power input at bus i.
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Assuming small angle differences (δi− δj ≃ 0) and unity

voltage magnitudes (Ei = 1), we can rewrite (1) as

Pij ≃ bij(δi − δj), (4)

where bij =
1

χij
is the suseptance between the nodes (i, j) ∈

E . Define δ = [δ1, δ2, . . . , δn]
T ∈ IRn. Then, the original

dynamics in (3) can be linearized as

Σ :=

{
Mδ̈(t) +Dδ̇(t) + Lδ(t) = Bu(t),

y(t) = Cδ(t),
(5)

where M = diag(M1,M2, . . . ,Mn) ∈ IRn×n and D =
diag(D1, D2, . . . , Dn) ∈ IRn×n are the diagonal matrices

of inertia and damping coefficients, and L ∈ IRn×n is the

susceptance Laplacian matrix (L = LT ≥ 0) whose (i, j)th
entry is given by

[L]i,j :=





−bij , if (i, j) ∈ E ,∑
(i,j)∈E

bij , if j = i,

0, otherwise.

(6)

Moreover u = [Pnet
1 . . . Pnet

n ]T ∈ IRn, B ∈ IRn×n

is the identity matrix, and C ∈ IRq×n yields the output

of the system. By defining the new state variable x =
[δT δ̇T ]T ∈ IR2n, one can equivalently represent the second-

order dynamic (5) in its first-order form

ẋ = Ax+ Bu, y(t) = Cx (7)

with A =

[
0 I

−M−1L −M−1D

]
∈ IR(2n)×(2n), B =

[
0

M−1B

]
∈ IR(2n)×n, and C =

[
C 0

]
∈ IRq×(2n),

where I ∈ IRn×n is the identity matrix. Due to the simple

zero eigenvalue of L, A has one eigenvalue at zero and

2n−1 eigenvalues in the left-half plane. Thus (5) is a stable

dynamical system, not asymptotically stable [15].

A. Linearized parametric model

In practice, matrix L is not constant due to variations, for

example, in peak voltage magnitudes Ei. Therefore, to allow

variations, we will view Ei as a parameter that can vary and

write it simply as pi. This leads to the parametric power

network model that appears as

Miδ̈i(t; p)+Diδ̇i(t; p) +
∑

j∈νi

pipj
χij

sin(δi(t; p)− δj(t; p))

= Pnet
i , ∀i ∈ V (8)

with the corresponding linear model
{
Mδ̈(t; p) +Dδ̇(t; p) + L(p)δ(t; p) = Bu(t),

y(t; p) = Cδ(t; p),
(9)

where p =
[
p1 p2 . . . pn

]T
∈ Ω ⊆ IRn is the parame-

ter vector, the matrix L(p) will now vary with p, and allows

for variation in operating conditions. The parametric matrix

L(p) can be written as

L(p) = PLP , (10)

where P = diag(p) = diag(p1, . . . , pn) ∈ IRn×n is diagonal

and L is as defined in (6). Note that pi = 1 for i = 1, . . . , n
recovers the non-parametric problem. We will allow pi’s vary

around this nominal value, i.e., pi ∈ (1−α, 1+α) where 0 <
α < 1; thus P stays invertible for every p ∈ Ω. Choosing,

e.g., α = 0.15, corresponds to allowing a 15%variation in

peak voltage magnitudues.

III. STRUCTURE-PRESERVING PARAMETRIC REDUCED

MODELS FOR LINEARIZED SWING EQUATIONS

We seek to develop a reduction framework such that

not only it preserves the structure, but also the parametric

reduced model serves with acceptable accuracy as a surrogate

model over diverse operating conditions. Since it is crucial

that the reduced model preserves the physically-meaningful

second-order structure, instead of transferring the second-

order dynamics to the first-order form, as in (7), and applying

model reduction there, we will directly reduce the second-

order dynamics (9). In other words, our goal is to find a

reduced parametric system

Mrδ̈r(t; p) +Dr δ̇r(t; p) + Lr(p)δr(t; p) = Bru(t)
yr(t; p) = Crδr(t; p),

(11)

where Mr, Lr(p), Dr ∈ IRr×r, B ∈ IRr×n and C ∈ IRq×r

with r ≪ n such that the yr(t; p) ≈ y(t; p) for a wide range

of inputs u(t) over the parameter range of interest.

Since M and D are symmetric positive definite, and

L(p) is symmetric positive semi-definite, one should preserve

these structures in the reduced model. We achieve this using

Galerkin projection: construct a model reduction basis V ∈
IRn×r and the reduced-order matrices in (11) using

Mr = V TMV, Dr = V TDV, Lr(p) = V TL(p)V, (12)

Br = V TB, and Cr = CV.

Accuracy of the structure-preserving reduced model (11)

with the form (12) clearly depends on the choice of V . We

describe this choice next.

A. Interpolatory model reduction bases

There are numerous ways to choose the model reduction

basis V for reducing parametric dynamical systems; see, for

example, [1], [8], [11], [19], [30] and the references therein.

For the parametric structured second-order dynamical sys-

tem (9), we will employ the structure-preserving parametric

interpolatory model reduction framework from [2], which

extended the interpolatory model reduction framework for

parametric systems [4] to the structured setting. For recent

extensions of structured interpolatory model reduction to

special classes of nonlinear systems, see [9], [10].

Transfer functions of the full-order parametric model (9)

and reduced one (11) are, respectively, given by

H(s, p) = C(s2M + sD + L(p))−1B, and (13)

Hr(s, p) = Cr(s
2Mr + sDr + Lr(p))

−1Br. (14)

Note that both H(s, p) and Hr(s, p) are q×n matrix-valued

rational functions in s. The goal, in parametric interpola-

tory model reduction, is to choose V such that Hr(s, p)



interpolates H(s, p) at selected points in the frequency s
and parameter p. Since H(s) is matrix-valued, one enforces

interpolation only along the selected directions: Let p(i) be

a parameter point of interest. And let {σ
(i)
1 , . . . , σ

(i)
ri } ∈ IC

be the frequency interpolation points with the corresponding

tangent directions {b
(i)
1 , . . . , b

(i)
ri } ∈ ICn for the parame-

ter sample p(i). Assume we have m parameter samples

{p(1), . . . , p(m)}. Then, the goal is to construct V such that

H(σ
(i)
j , p(i))b

(i)
j = Hr(σ

(i)
j , p(i))b

(i)
j (15)

for j = 1, 2, . . . , ri and i = 1, 2, . . . ,m.

Define K(s, p) = s2M + sD+L(p). For i = 1, 2, . . . ,m,

construct the local interpolation basis V (i) ∈ ICn×ri corre-

sponding to the parameter sample p(i) using

V (i) = [K(σ
(i)
1 , p(i))−1Bb

(i)
1 , . . . ,K(σ(i)

ri
, p(i))−1Bb(i)ri

]

and concatenate the local bases to construct the global basis:

V = orth
([
V (1) V (2) . . . V (m)

])
∈ IRn×r, (16)

where “orth” refers to an orthogonal basis so that V TV = Ir.
Realness of V is guaranteed by choosing the interpolation

points and tangent directions in conjugate pairs. Then, the

reduced model (11) obtained as in (12) using V from (16)

satisfies the interpolation conditions (15); see [1], [2].

Quality of the reduced model will depend on the choice of

interpolation points and tangent directions. In this paper, we

choose them, and thus the local bases V (i), using interpola-

tory optimal H2 model reduction. In other words, for every

p(i), we construct the local basis V (i) to minimize/reduce

the H2-distance

‖H(·, p(i))−Hr(·, p
(i))‖H2

= (17)
( 1

2π

∫ ∞

−∞

‖H(ıω, p(i))−Hr(ıω, p
(i))‖2Fdω

) 1
2

,

where ı2 = −1 and ‖ · ‖F denotes the Frobenius norm.

Optimal H2 model reduction is a heavily studied topic,

In the case of unstructured linear dynamical systems, i.e.,

Hr(s) = Cr(sIr −Ar)
−1Br, the optimal reduced model in

the H2-norm is a bitangential Hermite interpolant to H(s) at

the mirror images of the reduced poles [2], [18]. The Iterative

Rational Krylov Algorithm (IRKA) [18] and it variants, e.g.,

[7], [20], [36], have been successfully applied in this setting

to construct optimal interpolation points and directions. Since

we require the reduced-model to have the second-order form,

we employ the structured version of IRKA, namely the

Second Order IRKA (SOR-IRKA) [34], [35] to construct the

local bases V (i). SOR-IRKA produces a reduced-model that

satisfies only a subset of optimal interpolation conditions at

the cost of preserving structure. Since the underlying system

has a pole at zero in our case, we will modify SOR-IRKA

further. This will be explained in detail in Section IV-B. For

other work on H2-based model reduction of second-order

systems, see, e.g., [6], [26], [37].

Remark 3.1: As opposed to developing locally optimal

H2 model reduction bases V (i) and concatenating them to

construct the global basis V , following [4] one could intro-

duce a composite error measure (L2 error in the parameter

space and H2 error in the frequency domain). Then, one

can try to construct V directly to minimize this composite

measure. We refer the reader to [4] and more recent works

[17], [21] in this direction for the unstructured setting.

IV. MATCHING THE PARAMETRIC RESIDUE

CORRESPONDING TO THE POLE AT ZERO

Since L(p) = PLP and L1 = 0 where 1 ∈ IRn×1 is the

vector of ones, we obtain L(p)P−1
1 = PL1 = 0. Therefore,

for every p ∈ Ω, L(p) has a simple zero eigenvalue with

the eigenvector υ = P−1
1, and consequently H(s, p) has a

simple pole at zero for every p. This means that H(s, p) is

not an H2-function. However, we can still perform an H2-

based model reduction on H(s, p) as long as we guarantee

that the error system, i.e., H(s, p)−Hr(s, p), stays an H2-

function for every p. This issue has been studied in the non-

parametric case. [15] achieves a bounded H2 error norm

in model reduction of second order networks where the

Galerkin projection is obtained via clustering techniques. In a

more recent work, [37] splits a non-parametric second order

network with proportional damping into an asymptotically

stable system and an average subsystem containing the zero

eigenvalue. Then, the asymptotically stable system is reduced

via interpolatory techniques and then re-combined with the

average system leads to a reduced model with bounded (and

small) H2 error. We also refer the reader to, e.g., [23], [26]–

[28] for the first-order dynamics case.

In reducing the parametric second-order model (9), we

need to enforce that Hr(s, p) retains the zero eigenvalue and

its parametric residue for every p ∈ Ω so that the error

stays bounded over the whole domain. Next, we establish

the subspace conditions on the model reduction basis V to

achieve this goal.

A. Subspace conditions for matching the parametric residue

For a given a parameter, the next result establishes the

conditions on V to match the residue at zero.

Theorem 4.1: Given the parametric full-order model (9),

let the parametric reduced model (11) be obtained as in (12).

Let p̂ ∈ Ω be a parameter of interest. Define P̂ = diag(p̂)
and υ̂ = P̂−1

1. Then for p̂ ∈ Ω, the reduced model

Hr(s, p̂) retains the simple pole of H(s, p̂) at zero and its

corresponding parameter-dependent residue if υ̂ ∈ span(V ).
Proof: First, we show that Lr(p̂) has a simple zero

eigenvalue. Using υ̂ ∈ span(V ), write V as V =
[
V1 υ̂

]

where V1 ∈ IRn×(r−1) and υ̂ /∈ span(V1). Then, using the

fact L(p̂)υ̂ = 0, we obtain

Lr(p̂) = V TL(p̂)V =

[
V T
1 L(p̂)V1 0

0 0

]
. (18)

Since υ̂ /∈ span(V1), Lr(p̂) has only one simple zero

eigenvalue. Moreover, since M and D are positive definite

and model reduction is performed via a Galerkin projection

as in (12), all the other poles of Hr(s, p̂) have negative real

parts except for this simple pole at zero.



Now we need to show that the parametrically varying

residues of H(s, p̂) and Hr(s, p̂) corresponding to the pole

at zero match. To find the residue of H(s, p̂), we follow

an analysis inspired by [15]. Transform the second-order

dynamic (9) to its equivalent first-order form

ẋ(t; p) = A(p)x(t; p) + Bu(t), y(t; p) = Cx(t; p),

where A(p) =

[
0 I

−M−1L(p) −M−1D

]
, B =

[
0

M−1B

]
,

and C =
[
C 0

]
. (19)

Let A(p) have the Jordan decomposition

A(p) = QΛQ−1 =
[
q1 Q2

] [0
Λ̄

] [
q̃T1
Q̃T

2

]
, (20)

where the Jordan block Λ̄ ∈ IC(2n−1)×(2n−1) contains the

eigenvalues with negative real parts, and q1 ∈ IR2n and

q̃1 ∈ IR2n are, respectively, the right and left eigenvectors

corresponding to zero eigenvalue such that

AT (p)q̃1 = 0, A(p)q1 = 0, q̃T1 q1 = 1. (21)

We note that this decomposition is parameter dependent but

to simplify the notation, we write, e.g., Q instead of Q(p).
At p = p̂, using L(p̂)υ̂ = 0, and (20) and (21), we obtain

q1 =

[
υ̂
0

]
and q̃1 =

1

αD

[
D̂υ̂
Mυ̂

]
, (22)

where αD = υ̂TDυ̂. Using (20), we write

H(s, p̂) = C(sI −A(p))−1B = CQ(sI − Λ)−1Q−1B

=
(Cq1)(q̃

T
1 B)

s
+ CQ2(sI − Λ̄)−1Q̃2B. (23)

Thus, φ0 = (Cq1)(q̃
T
1 B) is the residue of H(s, p̂) for the

pole at zero. Then, substituting q1 and q̃1 from (22), and C
and B from (19) into φ0 = (Cq1)(q̃

T
1 B) yields

φ0 = Cα−1
D

[
υ̂υ̂TD υ̂υ̂TM

0 0

]
B = α−1

D Cυ̂υ̂TB. (24)

Similarly, the residue of the reduced system Hr(s, p̂) corre-

sponding to the pole at zero is obtained as

φ0r = α−1
Dr

CV V T υ̂υ̂TV V TB, (25)

where αDr
= υ̂TV DrV

T υ̂.

Since V V T is an orthogonal projector, if υ̂ ∈ span(V ),
we have V V T υ̂ = υ̂,

αDr
= υ̂TV DrV

T υ̂ = υ̂TV V TDV V T υ̂ = υ̂TDυ̂ = αD,

and thus φ0r = α−1
Dr

CV V T υ̂υ̂TV V TB = φ0.

Theorem 4.1 establishes that if υ̂ = P̂−1
1 ∈ span(V ), for

that parameter value p̂, the residues of H(s, p̂) and Hr(s, p̂)
match for the pole at s = 0. This means that

H(s, p̂)−Hr(s, p̂)

= C(sI −A(p̂))−1B − Cr(sI −Ar(p̂))
−1Br

=
φ0

s
+Ha(s, p̂)−

(
φr0

s
+Har

(s, p̂)

)

= Ha(s, p̂)−Har
(s, p̂),

where Ha(s, p̂) = CQ2(sI − Λ̄)−1Q̃2B as in (23) and

Har
(s, p̂) = CrQ2r (sI − Λ̄r)

−1Q̃2rBr are asymptotically

stable. Therefore, the error system is asymptotically stable

at p̂. We write this result as a corollary.

Corollary 4.1: Assume the set-up of Theorem 4.1. Then,

the error system H(s, p̂)−Hr(s, p̂) is asymptotically stable,

and has bounded H2 and H∞ norms.

B. Algorithmic Implications

Theorem 4.1 and Corollary 4.1 hint at how to construct

V so that the error system is asymptotically stable at a

parameter value of interest. As stated in Section III-A,

for the parameter samples p(i) for i = 1, . . . ,m, we will

construct the local bases V (i) via SOR-IRKA to have local

H2 optimality. However, we will modify SOR-IRKA by

taking into consideration that H(s, p) has a pole at zero for

every p, i.e., H(s, p) is not an H2 function. SOR-IRKA is

an iterative algorithm that corrects the interpolation points in

every step. Due to the pole at zero, SOR-IRKA will drive

one of the interpolation points to zero as it should so that

the pole and residue at zero are matched. This will require

computing the vector K(0, p(i))−1Bb
(i)
0 . However, due to the

pole at zero, K(0, p(i)) is not invertible. Therefore, inspired

by Theorem 4.1, in SOR-IRKA, we will replace this vector

with the zero eigenvector of L(p(i)) and thus the span of V (i)

will contain this eigenvector. Hence, once the global basis V
is constructed as in (16), Theorem 4.1 will guarantee that the

error system H(s, p)−Hr(s, p) is asymptotically stable for

the sampled parameter values p(i) for i = 1, . . . ,m.

To use Hr(s, p) for an unsampled parameter value p̂ and

to still guarantee bounded error, we compute υ̂ = P̂−1
1,

construct the new basis V̂ =
[
V υ̂

]
, and obtain Hr(s, p̂)

as in (12), now using V̂ . Theorem 4.1 will then guarantee a

bounded error at p̂ as well.

The reduction step (12) does not need to be applied from

scratch for every new p̂. For the new basis V̂ , consider M̂r :

M̂r = V̂ TMV̂ =

[
V TMV V TMυ̂
υ̂TMV υ̂TMυ̂

]
. The terms V TMV ,

V TM and MV are calculated only once in the offline stage

using V , and only the vector Mv̂ needs computing for a new

parameter p̂. The situation is similar for the other reduced

quantities except for L̂r(p) due to the nonaffine parametriza-

tion of L(p) = PLP . An affine parametric approximation of

L(p) to allow efficient online computations, via DEIM, for

example, [11], will be studied in a future work.

C. Smaller number of parameters

Now we assume that L(p) is parametrized with a smaller

number of parameters. Let p = [p1 p2 · · · pν ]
T ∈ Ων ⊆ IRν

and consider the parametrization

L(p) = PLP with P = diag(p1In1
, . . . , pνInν

), (26)

where n1 + · · ·+ nν = n and ν < n. This can be viewed as

some of the peak voltage magnitudes Ei varying together.

This structure will drastically simplify the algorithmic con-

siderations from Section IV-B. In (26) we can also set some

pi’s to 1 to allow variations only in a subset set Ei’s.



Proposition 4.1: Consider the parametrization in (26). Let

0q ∈ IRq denote the zero vector and define

ek =
[
0
T
n1+···+nk−1

1
T
nk

0
T
nk+1+···+nν

]T
∈ IRn (27)

for k = 1, 2, . . . , ν. If {e1, e2, . . . , eν} ∈ span(V ), then

Hr(s, p) retains the simple pole at zero and its corresponding

parameter-dependent residue of H(s, p) for every p ∈ Ων .

Proof: For any p̂ ∈ Ων , υ̂ =
[ 1
p1
1n1

· · · 1
pν
1nν

]T
is the eigenvector of L(p̂) corresponding to the zero eigen-

value. Note that υ̂ = 1
p1
e1 + · · · + 1

pν
eν . Therefore, if

{e1, e2, . . . , eν} ∈ span(V ), we have v̂ ∈ span(V ) for every

p̂ ∈ Ων and the desired result follows from Theorem 4.1.

Proposition 4.1 reveals that in the case of the parametriza-

tion (26), adding ν vectors to the span of V will be enough

to match the residue at s = 0 for every p ∈ Ων . Therefore,

augmenting the global basis by a new vector for a given p̂
as explained in Section IV-B is no longer necessary. A fixed

global basis V satisfying {e1, e2, . . . , eν} ∈ span(V ) does

the job for every p ∈ Ων . Note that one needs ν to be modest

so that the reduced dimension stays modest.

1) Algorithmic details for implementing Proposition 4.1:

The global basis V in Proposition 4.1 can result from

any model reduction method of choice. As long as the

vectors {e1, . . . , eν} are added to its span, the result will

hold. We will form V as in (16) where the local bases

result from the modified implementation of SOR-IRKA as

described in Section IV-B. Given the parameter samples

p(i) for i = 1, . . . ,m, let υ(i) denote the eigenvector of

L(p(i)) corresponding to the zero eigenvalue. Our SOR-

IRKA implementation will provide that {υ(1), . . . , υ(m)} ∈
span(V ). As shown in the proof of Proposition 4.1, for any

p̂ ∈ Ων , υ̂ = P̂−1
1 is spanned by ν vectors. We will choose

m ≥ ν different parameter samples, obtaining a linearly

independent set {υ(1), . . . , υ(m)}. Since these vectors are in

the span of V , we will automatically satisfy the subspace

condition in Proposition 4.1. Therefore, our construction of

V via modified SOR-IRKA with m ≥ ν parameter samples

will guarantee bounded H2 and H∞ error for every p ∈ Ων

without explicitly adding the vectors {e1, . . . , eν} to the

model reduction basis V .

V. NUMERICAL RESULTS

We use a linearized model of 2736-bus Polish network

[38] with n = 2736. We focus on a single-input single-

output model with B = CT = [1 0 · · · 0]T ∈ IRn×1

and allow 15% variation in peak voltage magnitudes, i.e.,

0.85 ≤ pi ≤ 1.15 in L(p). Recall that pi = 1 corresponds to

the non-parametric unity voltage magnitude case (Ei = 1).

A. Case 1: two parameters

We consider a parametrization with ν = 2 parameters p1
and p2 as P = diag(p1In

2
, p2In

2
). We pick two random

samples, namely p(1) = [0.9572 0.93399]T and p(2) =
[1.0304 0.9522]T , and apply the modified SOR-IRKA to

obtain local bases V (1) ∈ IRn×20 and V (2) ∈ IRn×20.

An orthogonalization of [V (1) V (2)] leads to the global

basis V ∈ IRn×40, thus a reduced model Hr(s, p) with

Fig. 1. Example V-A: Relative H∞ error over the parameter domain

r = 40. Due to Proposition 4.1 and the discussion in Section

IV-C.1, Hr(s, p) matches the residue at s = 0 and provides

bounded H2 and H∞ error throughout the whole domain

[p1, p2] ∈ Ω2 = [0.85 1.15]× [0.85 1.15]. To illustrate the

accuracy of Hr(s, p), in Figure 1 we show the relative H∞

error over the full parameter space. As the figure illustrates,

the structure-preserving reduced model Hr(s, p) is a high

fidelity approximation to H(s, p) over the full parameter

space with a maximum relative error less than 1.5× 10−2.

B. Case 2: four parameters

In this example, we consider paremetrization via four

parameters p1, p2, p3 and p4 to generate the matrix P such

that P = diag(p1In
4
, p2In

4
, p3In

4
, p4In

4
). We randomly pick

four parameter sample sets:

Sample set p1 p2 p3 p4
p(1) 1.0967 0.8541 0.9399 0.887

p(2) 0.9399 0.9146 1.0377 1.0459

p(3) 0.9522 1.0713 0.9399 0.9572

p(4) 1.0801 0.9399 1.0377 1.1029

Then using these samples, we apply the modified SOR-IRKA

to obtain the local bases V (i) ∈ IRn×20; i = {1, 2, 3, 4} and

a parametric reduced model of order r = 80 (V ∈ IRn×80).
As in the previous example, this reduced model guarantees

bounded error over the whole parameter space. To show the

approximation quality, we pick 200 random samples in the

four-dimensional parameter space, and depict the resulting

relative H∞ error in Figure 2, showing a maximum relative

error less than 10−2 over this sample set.

VI. CONCLUSIONS AND FUTURE WORK

We have developed a structure-preserving parametric

model reduction approach for linearized swing equations

using a global basis approach and H2-based interpolatory

model reduction. We have established the subspace condi-

tions for the model reduction basis so that the error system

is an H2 and H∞ function over the entire parameter space.

The efficiency of our proposed approach has been illustrated

via two numerical examples.

Parameter sampling for constructing the local bases was

not the focus of this work. Any efficient parameter selection
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Fig. 2. Example V-B: Relative H∞ error over 200 samples.

methodology can be incorporated into our framework and

will be considered in a future together with the recent

composite H2 × L2-optimal basis constructions [17], [21].

Extensions to the nonlinear parametric setting is also an

important topic to consider.
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