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Abstract—The stabilization of unstable nonlinear systems and
tracking control are challenging engineering problems due to the
encompassed nonlinearities in dynamic systems and their scale.
In the past decades, numerous observer-based control designs for
dynamic systems in which the nonlinearity belongs to Lipschitz
functions have been proposed. However, most of them only focus
on output feedback and consequently, state feedback design
remains less developed. To that end, this paper is dedicated to the
problem of full-state feedback controller design for discrete-time
Lipschitz nonlinear systems. In addition, we present a simple
iterative method for improving the convergence of the closed-
loop performance. It is later demonstrated that our approach
can be conveniently extended and utilized for output tracking.

I. INTRODUCTION

The problems of tracking and stabilization for nonlinear
systems have been widely studied in the literature over the past
decades. The majority of the research focuses on asymptotic
stabilization of the system with the help of output feedback
or observer-based controllers designed for a class of Lipschitz
nonlinear systems. Some of the noticeable works in this area for
discrete-time systems include [1]–[6]. The general advantages
of output feedback over state feedback controllers has led to
a lack of exploration of state feedback control for discrete-
time nonlinear systems. However, it cannot be denied that the
technique is still efficient under favorable settings, that is, under
the availability of full state information. Therefore, in this paper,
we propose the design of a full-state feedback controller for
stabilization of the said class of systems. In doing so, we
consider that the nonlinearity is a function of both the state
and the inputs rather than only the state as is the case in some
studies, for instance, [1]–[3]. Besides, the proposed controller
is easily extendable for output tracking along with stabilization.

Some developments have been made in the literature for
this particular research direction. For instance, the authors in
[7] present an asymptotic stabilization approach using state
feedback for discrete-time Lipschitz nonlinear systems. A sta-
bilization and tracking-based control method for continuous-
time Lipschitz nonlinear systems is proposed in [8]. In [9],
inspired by [8], the authors propose a state feedback controller
for stabilization and tracking control of discrete-time Lipschitz
nonlinear systems. It is worth noting that most of these studies
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assume that the nonlinearity is only a function of the state. More-
over, their method requires solving bilinear matrix inequalities
(BMIs) which is not possible using the readily available convex
programming solvers. While the controller design in the present
article does make use of BMIs, we propose a simple method
to find a potential feasible solution by solving a series of linear
matrix inequalities (LMIs) instead of a BMI.

Some other studies that explore the idea of state feedback
control in Lipschitz nonlinear systems are [10]–[12] which do
so in a continuous-time setting. While the controllers proposed
in these works cannot be directly implemented for the discrete-
time case, the methodology used for design, specifically in
[12], has inspired the design of the controller presented in
this article. The contributions of this work are twofold: (a)
the development of a full-state feedback control approach for
achieving exponential stability for discrete-time Lipschitz non-
linear systems where the nonlinearity is dependent on both the
states and the inputs. In addition, the proposed framework can
also be easily used for the purpose of output tracking control;
(b) an iterative method is proposed for solving the stabilization
problem as well as maximizing the convergence rate of the
controller by means of successive convex approximation (SCA),
which basically over-approximates the nonconvex terms in the
feasibility problem with a series of LMIs. The remainder of the
paper is structured as follows. In Section II, we present the state-
space representation for the class of Lipschitz nonlinear systems
considered in this paper. While the full-state feedback controller
design for stabilization and output regulation is given in Section
III, the algorithmic procedure for computing the controller gain
and improving the closed-loop convergence rate are presented in
Section IV. Next, numerical examples are presented in Section
V and finally Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the following nonlinear dynamical system

x[k + 1] = Ax[k] +Gf(x[k],u[k]) +Bu[k], (1a)
y[k] = Cx[k], (1b)

where in (1), x ∈ Rn is the state vector, u ∈ Rm is the control
input vector, and y ∈ Rp is the output vector. Matrices A ∈
Rn×n,G ∈ Rn×g,B ∈ Rn×m, andC ∈ Rp×n are assumed to
be known and constant. It is assumed that f : Rn×Rm → Rg is
a Lipschitz function with respect to state x and control input u.
That is, there exist non-negative constants γx ≥ 0 and γu ≥ 0
such that for all x1,x2 ∈ Rn and u1,u2 ∈ Rm

||f(x1,u)− f(x2,u)||2 ≤ γx||x1 − x2||2 (2a)
||f(x,u1)− f(x,u2)||2 ≤ γu||u1 − u2||2 (2b)
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In this paper, we design two types of controllers for discrete-
time nonlinear systems like the one described in (1), one
that stabilizes the output to some arbitrary equilibria, and
another that not only stabilizes the output but also makes it
to converge to a reference point. In the ensuing section, a state
feedback controller is designed for the system defined in (1).
The following lemma is instrumental for the development of
our approach.
Lemma 1. ([13]). Let S : Rn → Rq be a linear mapping such
that S(x) :=

∑n
i=1 xiSi where Si ∈ Sq for i ∈ {1, 2, . . . , n}.

If it holds that S(x) � 0, S(y) � 0 for x,y ∈ Rn, then

−S(y)−1 � −2S(x)−1 + S(x)−1S(y)S(x)−1. (3)

III. FULL STATE FEEDBACK CONTROLLER SYNTHESIS

In this section, we propose a state feedback controller for
the system given in (1). We first consider a regulation problem
with a state feedback controller. The state feedback control law
is designed as follows

u[k] = −Kx[k], (4)

where K ∈ Rm×n is the constant matrix gain chosen such
that the nonlinear discrete-time system (1) is asymptotically
stable. Before we present the proposed approach, the following
assumption is considered throughout the paper.
Assumption 1. There exists an equilibrium point xeq ∈ Rn
for (1) with control law (4) such that

xeq = Axeq +Gf(xeq,ueq) +Bueq, (5)

where ueq = −Kxeq is the input vector at equilibrium.
Let us define e ∈ Rn as e := x− xeq . That is, e represents

the deviation of the state x from its equilibrium xeq . From (1)
and (5) with control law as given in (4), we obtain the following
closed-loop error dynamics

e[k + 1] = (A−BK)e[k] +G∆f [k], (6)

where ∆f [k] := f(x[k],u[k])−f(xeq,ueq). Now, our objec-
tive is to find a computationally amenable way to compute K
such that the system (6) is (at least) asymptotically stable. To
that end, in what follows we present a new sufficient condition
to achieve exponential stability for (6).
Theorem 1. Consider nonlinear discrete-time system (6) with
control law presented in (4). The system in (6) is exponentially
stable if there exist Q ∈ Sn, K ∈ Rm×n, ε, κ, α ∈ R which
solve the following feasibility problem(α− 1)Q+ ε(γx + γuκ)2I ∗ ∗

O −εI ∗
A−BK G −Q−1

 ≺ 0 (7a)

[
−κI K
K> −κI

]
� 0 (7b)

Q � 0, ε ≥ 0, κ > 0, 0 < α < 1. (7c)

Proof. Consider the nonlinear discrete-time system (6). Note
that the term ∆f(·) is equal to

||∆f ||2 = ||f(x,u)− f(xeq,ueq)||2
= ||(f(x,u)− f(xeq,u)) + (f(xeq,u)− f(xeq,ueq))||2
≤ ||f(x,u)− f(xeq,u)||2 + ||f(xeq,u)− f(xeq,ueq)||2

≤ γx||x− xeq||2 + γu||u− ueq||2
= (γx + γu||K||2)||e||2 (8)

To design a stabilizing K, then consider a Lyapunov function
candidate V : Rn → R constructed as

V (e[k]) = e[k]>Qe[k], Q ∈ Sn. (9)

for Q � 0. First, we will show that the condition ∆V (e[k]) +
αV (e[k]) ≤ 0 for 0 < α < 1 leads to exponential stability.
Note that ∆V (e[k]) + αV (e[k]) ≤ 0 for 0 < α < 1 implies

V (e[k + 1]) ≤ (α− 1)V (e[k]). (10)

It can be shown by induction that the inequality (10) leads to

V (e[k]) ≤ (α− 1)kV (e[0]). (11)

for k ∈ N. From (9) and due to Rayleigh inequality, we have

||e[k]||22 ≤ λmin(Q)−1V (e[k]). (12)

Now, from (11) and (12), we obtain

||e[k]||22 ≤ (α− 1)kλmin(Q)−1V (e[0]). (13)

Since V (e[0]) ≤ λmax(Q)||e[k]||22, then from (13) we obtain

||e[k]||2 ≤ (α− 1)
k
2

√
λmax(Q)

λmin(Q)
||e[0]||2, (14)

showing that the system is exponentially stable. Second, it can
be shown that the condition ∆V (e[k]) + αV (e[k]) ≤ 0 for
system (6) is equivalent to

ξ[k]>Ξξ[k] ≤ 0, (15)

where ξ[k] :=
[
e[k]> ∆f [k]>

]>
for all k ∈ N and

Ξ :=

[
(A−BK)>Q(A−BK) + (α− 1)Q ∗

G>Q(A−BK) G>QG

]
.

From (2) and provided that ||K||2 ≤ κ2 for κ > 0, we have

ξ[k]>
[
−(γx + γuκ)2I ∗

O I

]
ξ[k] ≤ 0. (16)

Applying the S-lemma [14] to (15) and (16) for ε ≥ 0, the
following matrix inequality is obtained[

Ψ ∗
G>Q(A−BK) G>QG− εI

]
≺ 0, (17)

where Ψ is defined as

Ψ := (A−BK)>Q(A−BK) + (α− 1)Q

+ ε(γx + γuκ)2I.

By applying the Schur complement towards (17), the matrix
inequality (7a) is established. Finally, applying the Schur com-
plement to the constraint ||K||2 ≤ κ2 for κ > 0 yields (7b).
This completes the proof. �

Note that the above deals with the stabilization of the discrete-
time nonlinear dynamics to an unknown equilibrium. In some
practical situations however, it is desirable to steer some of the
states to follow some reference points. To achieve this, define
an integrator as follows

ey[k + 1] = Eey[k]. (18)

In (18), ey := r −Cx where r ∈ Rp represents the reference
points and the matrixE ∈ Rp×p is a design parameter. It should
be clear that ey denotes the error between the system’s output
and the reference signal. The incorporation of integrator (18)



into the system (1) yields the following augmented dynamics[
x[k + 1]
ey[k + 1]

]
︸ ︷︷ ︸

x̃[k+1]

=

[
A O
EC O

]
︸ ︷︷ ︸

Ã

[
x[k]
ey[k]

]
︸ ︷︷ ︸

x̃[k]

+

[
B
O

]
︸︷︷︸
B̃

u[k]

+

[
G O
O E

]
︸ ︷︷ ︸

G̃

[
f(x[k],u[k])
−r[k]

]
︸ ︷︷ ︸

f̃

.

(19)

Notice that the augmented dynamics (19) share a similar form
to that of (1), which allows the design procedure described
previously to be utilized in order to achieve stabilization and
output regulation. It is worth noting that as the integrator (18)
is comprised of linear dynamics, then thanks to Assumption
1, the solvability of (7) with control structure (4) ensures
output regulation to the reference points r. Based on (14), the
following problem can be used to maximize the stabilization’s
convergence rate

(P1) minimize
Q,K,κ,ε,α,t

t (20a)

subject to (7a), (7b), (7c), Q � tI, t > 0. (20b)

It is clear that either the feasibility problem posed in matrix
inequalities (7) or the optimization problem described in (20) is
difficult to solve since it contains nonconvex terms. In particular,
the existence of matrix Q and its inverse Q−1 in (7a) together
with the bilinear terms in αQ and ε(γx + γuκ)2 constitute the
problem’s nonconvexity.

IV. SOLUTION APPROACH VIA LMIS

The optimization problem P1 and the feasibility problem
described in (7) require us to solve bilinear matrix inequalities
(BMIs) which cannot be solved by means of a standard LMI
solver like MOSEK [15]. On that regard, the following steps
are proposed first to solve feasibility problem described in (7).
Step 1: For a fixed α ∈ (0, 1) and predefined % < 0, solve

minimize
X,Z, ν

ν (21a)

subject to[
(α− 1)X AX −BZ

XA> −Z>B> −X

]
− νI ≺ 0 (21b)

X � 0, % ≤ ν < 0. (21c)

Step 2: For a fixed κ > 0, set Q0 = X−1 and solve

find ε ≥ 0, K, 0 < α < 1 (22a)
subject to(α− 1)Q0 + εγ2κI 0 A> −K>B>

0 −εI G>

A−BK G −Q−10

 ≺ 0 (22b)

[
−κI K
K> −κI

]
� 0, (22c)

where γκ := γx + γuκ.
The rationale behind Step 1 is motivated by the fact that
the matrix Ψ should be negative definite. Indeed, the matrix
inequality Ψ ≺ 0 is equivalent to the following condition

(A−BK)>Q(A−BK) + (α− 1)Q ≺ −ε(γx + γuκ)2I.

Due to ε(γx + γuκ)2 being nonnegative and its value generally
increases as the Lipschitz constants are increasing, the largest
eigenvalue of (A−BK)>Q(A−BK) + (α−1)Q has to be
made sufficiently negative. Since (A−BK)>Q(A−BK) +
(α− 1)Q ≺ 0 is equivalent to[

(α− 1)X AX −BZ
XA> −Z>B> −X

]
≺ 0, (23)

where X = Q−1 and Z = KQ−1. Thanks to the Schur
complement lemma, then the problem described by (21) is
proposed, which bounds the left-hand side of (23).
Remark 1. If the problem described by (22) is feasible for a
fixed κ > 0 and a Q0 � 0, then the system (6) is exponentially
stable with control law (4). If (22) is otherwise infeasible, then
other possible values for κ and Q0 have to be sought and
used until (22) has at least a feasible solution. Unfortunately,
finding a systematic method to find κ and Q0 such that (22)
is feasible—even though the existence of a solution can be
guaranteed—is difficult and beyond the scope of the paper. To
that end, this research direction is left for future research.

Note that the solvability of the problem described by (22)
does not necessarily give a rapid closed-loop stabilization’s
convergence rate. Hence, to improve it, we propose the fol-
lowing approach to optimize the convergence rate, which in
principle, solving P1 by means of successive convex approxi-
mation (SCA), which is pioneered in [16]. The SCA basically
approximates the BMIs with a series LMIs. In doing so, each
of the BMI terms is firstly expressed as a difference between
convex and concave functions. Later, the concave parts are over-
approximated with their first order Taylor approximations. This
approach have been successfully implemented to tackle BMIs
in several applications such as sensor and actuator selection
problem [17] and robust control of power networks [18]. To
proceed with this approach, the nonconvex problem P1 is
transformed into an equivalent problem—provided below.

(P2) minimize
Q,K,κ,ε,α,t,w

t (24a)

subject to(α− 1)Q+ εwI ∗ ∗
O −εI ∗

A−BK G −Q−1

 ≺ 0 (24b)

[
−w γx + γuκ

γx + γuκ −1

]
� 0, (24c)

(7b), (7c), Q � tI, t > 0, w ≥ 0 (24d)

The additional constraint (24c) in P2 above is a consequence
of the over-bounding of the term γx + γuκ with a new scalar
variable w ≥ 0 such that (γx + γuκ)2 ≤ w.

The problem P2 is still highly nonconvex due to the terms
Q−1, αQ and εw. To use the SCA, each of these terms need
to be convexified. First, we decompose the bilinear term αQ as
follows

αQ =
1

4

(
(αI +Q)

>
(αI +Q)− (αI −Q)

>
(αI −Q)

)
.

(25)

Define H(α,Q) := − (αI −Q)
>

(αI −Q). Now, let α̃ and



Q̃ be the points of linearization. Since H(·) is concave, then
its first order Taylor approximation is a global over-estimator.
As such, H(·) can be over-approximated by a linear function
H(α,Q) � H̃(α,Q, α̃, Q̃) where

H̃(α,Q, α̃, Q̃) := (α̃2 − 2α̃α)I + 2α̃Q+ 2αQ̃

Q̃2 − 2α̃Q̃− Q̃Q−QQ̃.
From (25) and H(α,Q) � H̃(α,Q, α̃, Q̃), we thus have

αQ � 1

4

(
(αI +Q)

>
(αI +Q) + H̃(α,Q, α̃, Q̃)

)
. (26)

Second, we decompose the bilinear term εw as follows

εw =
1

4

(
(ε+ w)2 − (ε− w)2

)
. (27)

Let F(ε, w) := −(ε−w)2. Its first order Taylor approximation
can be represented by the following linear function

F̃(ε, w, ε̃, w̃) := ε̃2 + w̃2 − 2ε̃w̃ − 2ε(ε̃− w̃)− 2w(w̃ − ε̃),
where ε̃ and w̃ are the points of linearization. Since F(ε, w) ≤
F̃(ε, w, ε̃, w̃) and from (27), we get

εw ≤ 1

4

(
(ε+ w)2 + F̃(ε, w, ε̃, w̃)

)
. (28)

Based on (26) and (28), the left-hand side of (24b) can be over
approximated by the following matrix inequality
−Q+ 1

4 (αI +Q)
>

(αI +Q)

+ 1
4H̃(α,Q, α̃, Q̃) + 1

4 (ε+ w)2I ∗ ∗
+ 1

4 F̃(ε, w, ε̃, w̃)I
O −εI ∗

A−BK G −Q−1

≺ 0. (29)

Applying the Schur complement twice to (29), we obtain

−Q
+ 1

4H̃(α,Q, α̃, Q̃) ∗ ∗ ∗ ∗
+ 1

4 F̃(ε, w, ε̃, w̃)I
O −εI ∗ ∗ ∗

A−BK G −Q−1 ∗ ∗
1
2 (αI +Q) O O −I ∗
1
2 (ε+ w)2I O O O −I


≺ 0. (30)

Despite we have performed linearization towards the bilinear
terms αQ and εw, the matrix inequality is still nonconvex due
to the term Q−1. However, since Q must be positive definite,
then due to Lemma 1, we obtain

−Q−1 � −2Q̃−1 + Q̃−1QQ̃−1. (31)

As such, from (31) and (30) and implementing a congruence
transformation, one gets

−Q
+ 1

4H̃(α,Q, α̃, Q̃) ∗ ∗ ∗ ∗
+ 1

4 F̃(ε, w, ε̃, w̃)I
O −εI ∗ ∗ ∗

Q̃(A−BK) Q̃G −2Q̃+Q ∗ ∗
1
2 (αI +Q) O O −I ∗
1
2 (ε+ w)2I O O O −I


≺ 0, (32)

which is an LMI. Given this result, our approach to solve P2
my means of SCA is summarized in Algorithm 1. If a feasible
initial solution is found and some assumptions hold, Algorithm
1 is guaranteed to converge to a local optimal solution [16].

Algorithm 1: Solving SCA for Controller Synthesis

1 input: A, B, G, γx, γu, tol, and MaxIter
2 initial solution: obtain a feasible solution to the

problem described by (22); let Q0, K0, ε0, α0, κ0 be
the corresponding solutions

3 set: k := 1, t0 = λmax(Q0), and
w0 := (γx + γuκ0)2 + ε where ε > 0 is a relatively
small constant

4 while k ≤ MaxIter do
5 substitute: Q̃← Qk−1, α̃← αk−1, ε̃← εk−1,

w̃ ← wk−1, t̃← tk−1
6 solve:

(P3) minimize
Q,K,κ,ε,α,t,w

t (33a)

subject to (32), (24c), (24d) (33b)

if |t− tk−1| < tol then
7 break
8 else
9 substitute: Qk ← Q, αk ← α, εk ← ε,

wk ← w, tk ← t
10 update: k ← k + 1
11 end if
12 end while
13 output: K

0 1 2 3 4 5

-2

-1

0

Fig. 1. Stabilized trajectories of state variables for the system in
Example 1 using controller without tracking. It can be seen that both
states are converging to some nonzero equilibria.

V. NUMERICAL EXAMPLES

Herein we apply the designed controllers to two examples of
nonlinear systems from the literature to show the effectiveness
of the proposed approach. All convex problems with LMIs are
solved by using YALMIP [19] optimization interface through
MATLAB along with MOSEK [15] solver.

A. Example 1

In this example, we apply the proposed controllers to an
unstable nonlinear system similar to [12], [20]. The system is
originally defined in continuous-time which can be represented
in the following state-space form

ẋ(t) = Ax(t) + f(x(t), u(t)) +Bu(t) (34a)
y(t) = Cx(t), (34b)
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-5

0

5

10

15

Fig. 2. Stabilized trajectories of state variables for the system in
Example 1 using controller with tracking for state x1. Note that x1
converges to the specified value of r that is −1.5.

For this system, x =
[
x1 x2

]
, that is there are two state

variables, while there is a single input u. The state-space
parameter matrices for this system are given as

A =

[
−2 3
3 1

]
, B = [0 1]>, C =

[
1 0

]
,

f(x, u) =

[
0

γx cos(x1 − (γu/γx)u),

]
,

where γx = 1 and γu = 0.1 are the Lipschitz constants. We
apply Euler discretization to obtain a discrete-time formulation
for the continuous-time system given above, so that it may be
represented by (1). The obtained matrices are as follows

A =

[
1− 2T 3T

3T 1 + 1T

]
, G =

[
T 0
0 T

]
,

B = [0 T ]>, C =
[
1 0

]
,

f(x[k], u[k]) =

[
0

γx cos(x1[k]− (γu/γx)u[k]),

]
,

where T = 0.01 is chosen such that the states of the discrete-
time system are as close to the continuous-time system as
possible. The above system is highly unstable without any input.

We first apply the proposed controller without output tracking
to stabilize the state trajectories for this system. To obtain the
controller gain K, we solve the problem P2 using Algorithm
1. To get the initial solution, we first solve (21) with α = 10−2

and % = −20 which gives us

Q0 =

[
0.0015 0.0009
0.0009 0.0020

]
.

Then, solving (22) with κ0 = 10 and Q0 as above, we get
α0 = 1.47 × 10−2, ε0 = 7.74 × 10−6 which completes our
initial solution. Using ε = 0.01, we compute w0 = 4.01. We
then run Algorithm 1 starting with the above initial values to
obtain the final value of gain K, which comes out as

K =
[
−8.7744 −4.7690

]
.

We use the computed gain K to stabilize the state trajectories
of the system which are presented in Figure 1 starting with an
initial state x[0] =

[
−2 −1

]
.

Next, we apply the controller with output tracking to stabilize
the system and make the state x1 converge to an arbitrary
reference value r = −1.5. To obtain the controller gain, we
again solve P2 but this time for an augmented system dynamics
as shown in Section III. The augmented state vector and state-

space matrices for the given system, with E = 10−3I , are
detailed as follows

x̃ =
[
x1 x2 r

]
, Ã =

1− 2T 3T 0
3T 1 + T 0

10−3 0 1

 ,
G̃ =

T 0 0
0 T 0
0 0 10−3

 , B̃ =
[
0 T 0

]>
, C̃ =

[
0 1 0

]
,

f̃(x[k], u[k]) =

 0
γx cos(x1[k]− (γu/γx)u[k])

−r

 .
We solve (21) for this augmented system with α = 7 × 10−3

and % = −20, which gives us

Q0 = 10−3 ×

0.0032 0.0009 0.0191
0.0009 0.0026 0.0125
0.0191 0.0125 0.1786

 .
Further, solving (22) with κ0 = 40 and Q0 as above, we get
α0 = 3.1× 10−3, ε0 = 3.15× 10−10, and using ε = 0.01, we
compute w0 = 25.01. Running Algorithm 1 starting with the
above initial values, we get the final value of gain K, which
comes out as

K =
[
−7.3724 −3.6017 −36.5141

]
.

The stabilized state trajectories for this system using the output
tracking controller are presented in Figure 2 starting with the
same initial state as before.

B. Example 2

Herein we apply the proposed controller to a flexible link
robot similar to [10]–[12]. Again the system is defined in
continuous-time and has the form (34). For this system we have

x =
[
θm ωm θ ω

]
,

A =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

1.95 0 −1.95 0

 ,
B = [0 21.6 0 0]>, C = [0 0 1 0],

f(x) = [0 0 0 − 0.25 sin(θ)]>,

where θm is the angular position of the motor, ωm is the
angular velocity of the motor, θ is the angular position of the
link, and ω is the angular velocity of the link. The Lipschitz
constants for this system are γx = 0.25 and γu = 0. The
matrices for the discrete system (1) can be obtained similar
to Example 1 (not shown here). We set T = 0.001 to make the
states of the discrete-time system as close to the continuous-time
system as possible. For the controller without output tracking,
we start Algorithm 1 with α = 10−3 and % = −5 to obtain
Q0 (not presented here). Further, solving (22) with κ0 = 1 and
obtainedQ0, we get α0 = 1.83×10−4, ε0 = 1.17×10−7, and
using ε = 0.01, we computew0 = 0.0725. Solving the iteration
steps in Algorithm 1 starting with the above initial values, we
obtain the controller gain

K =
[
−25.8500 −0.9142 16.7354 −4.1012

]
.
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Fig. 3. Stabilized trajectories of state variables for the system in
Example 2 using controller without tracking. All states are converging
to zero equilibria.
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Fig. 4. Stabilized trajectories of state variables for the system in
Example 2 using controller with tracking for state θ. Note that θ
converges to the specified value of r that is 1.5.

Applying the computed gain K to the system, we stabilize the
trajectories of the state variables starting from an initial state
x[0] =

[
−1.5 1 0.5 −2

]
as shown in Figure 3.

Next, we apply the controller with output tracking to stabilize
the system and make the state θ converge to an arbitrary value
r = 1.5. The augmented state vector and state-space matrices
for the given system can again be obtained similar to Example
1 (not shown here) with E = 10−3I . We solve (21) for the
augmented system with α = 10−4 and % = −5, which gives us
the matrix Q0 (not presented here). Further, solving (22) with
κ0 = 1 and obtained Q0, we get α0 = 1.14 × 10−21, ε0 =
1.56× 10−24, and using ε = 0.01, we compute w0 = 0.0725.
By running Algorithm 1 starting with the above initial values
we obtain the controller gain

K =
[
−6.9611 −0.7264 4.3826 −0.3681 −0.7463

]
.

The stabilized state trajectories for this system using the output
tracking controller are presented in Figure 4 starting with the
same initial state as before.

VI. CONCLUDING REMARKS AND FUTURE WORK

In this paper we present a new sufficient condition to achieve
exponential stability for discrete-time Lipschitz nonlinear sys-
tems. The prominent feature of our approach is its ability to
accommodate nonlinear systems where the states and inputs
are nonlinearly coupled. The proposed methodology can also
be directly tailored for output regulation purpose. In addition to
this, we present a simple algorithm to improve the convergence
rate of the closed-loop performance which only requires the
utilization of a convex programming solver. Potential future

research directions include extending the proposed approach
for nonlinear discrete-time systems which nonlinearity belongs
to function sets other than Lipschitz and developing a robust
stabilization method to tackle disturbance and unknown inputs.
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