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Abstract— This paper considers the problem of computing an
optimal trajectory for an autonomous system that is subject to
a set of potentially conflicting rules. First, we introduce the
concept of prioritized safety specifications, where each rule
is expressed as a temporal logic formula with its associated
weight and priority. The optimality is defined based on the
violation of such prioritized safety specifications. We then
introduce a class of temporal logic formulas called si-FLTLGX

and develop an efficient, incremental sampling-based approach
to solve this minimum-violation planning problem with guar-
antees on asymptotic optimality. We illustrate the application
of the proposed approach in autonomous vehicles, showing that
si-FLTLGX formulas are sufficiently expressive to describe many
traffic rules. Finally, we discuss practical considerations and
present simulation results for a vehicle overtaking scenario.

I. INTRODUCTION

Autonomous vehicles are subject to several road rules.
Often, these rules cannot be simultaneously satisfied. For
example, item 221 of Singapore’s Final Theory of Driving [1]
suggests keeping a safe gap of one meter when passing by a
parked vehicle, while item 52 of Singapore’s Basic Theory
of Driving [2] prohibits crossing a solid double white lane
divider. As a result, when encountering a vehicle that is
improperly parked in a lane with a solid double white lane
divider as shown in Figure 1, an autonomous vehicle may
need to violate either of the aforementioned rules unless the
lane is wide enough to laterally accommodate two cars with
a buffer of one meter.

Previous work shows that linear temporal logic (LTL) [3]
is a powerful language for specifying complex properties
such as traffic rules [4]–[6]. Existing controller synthesis
algorithms for LTL specifications include closed system
synthesis [7], reactive synthesis [5], [8], [9], and probabilistic
synthesis [10]–[12]. Closed system synthesis considers a
deterministic system and generates a controller, if one exists,
for the system to satisfy the specification. In contrast, reactive
synthesis considers a system operating in a nondeterministic,
adversarial environment and ensures that the system satisfies
the specification for all possible adversarial actions. Finally,
probabilistic synthesis considers a probabilistic system and
maximizes the probability that the system satisfies the spec-
ification.
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Fig. 1. The autonomous vehicle (blue rectangle) encounters a stationary
vehicle (red rectangle) on a two-lane road with a double white lane divider.
The red octagon represents the clearance zone around the stationary vehicle.

More recently, minimum-violation planning has been pro-
posed to handle conflicting objectives [13]–[15]. As opposed
to reactive and probabilistic synthesis, minimum-violation
planning considers a deterministic system and relies on real-
time re-planning to respond to quickly changing environ-
ments. It is particularly suitable for applications such as au-
tonomous vehicles, where (1) it is hard to obtain an accurate
probabilistic model of the environment, (2) accounting for all
possible adversarial actions of the environment may render
the system too conservative, and (3) the system is subject
to multiple rules of different importance and there may be
situations where not all the rules can be simultaneously
satisfied. Existing work on minimum-violation planning,
however, relies on converting an LTL specification to a finite
automaton, whose size is exponential in the length of the
specification, making real-time re-planning unrealistic.

As shown in [6], most rules of the road can be expressed
by a safety formula. In particular, this paper considers the
case where autonomous vehicles need to reach the target
location but may violate some road rules if needed. We
assume that each rule has a certain penalty associated with its
violation. The goal of motion planning is to minimize such
penalties. The main focus of the paper is on reducing the
computational complexity of minimum-violation planning to
make real-time re-planning possible.

This paper is closely related to the framework proposed in
[16]. The main focus of [16] is the framework for describing
rules and their associated violation penalties, taking into
various considerations, including law, ethics, local driving
culture, etc. Given all the rules and their associated violation
penalties, this paper focuses on computing a trajectory of an
autonomous vehicle that minimizes the total penalty.

The main contributions of this paper are twofold. First,
we introduce a class of linear temporal logic formulas called
si-FLTLGX

that is sufficient to precisely describe many traffic
rules. Second, we propose an efficient algorithm for comput-
ing a path that minimizes the amount of rule violation with
the same computational complexity as traditional motion
planning algorithms. The proposed algorithm eliminates the
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exponential part of the complexity of existing algorithms by
avoiding the conversion of specifications into finite automata.
The remainder of the paper is organized as follows: Section
II introduces the terminology and notations used throughout
the paper. Section III formulates the minimum-violation
planning problem. Section IV and Section V discuss the
solution and practical considerations, respectively. Finally,
Section VI presents simulation results.

II. PRELIMINARIES
We consider time-invariant dynamical systems and use

finite linear temporal logic (FLTL) [17] to specify their
correct behaviors. Given a natural number n, let N≤n =
{0, 1, . . . , n} be the set of natural numbers not greater than
n. For any set S, |S| and 2S denote the cardinality and the
powerset of S , respectively.

A. Systems
Let S ⊂ Rd, where d ∈ N, be a compact set of states

and U be a compact set of control signals. Additionally,
let Π denote a finite set of atomic propositions that capture
the properties of interest. We define the labeling function
L : S → 2Π, which maps each state to a set of atomic
propositions that are true at that state.

Consider a time-invariant dynamical system

ẋ(t) = f(x(t), u(t)), (1)

with the initial state x(0) = sinit ∈ S. f : S × U → Rd is
assumed to be Lipschitz continuous in both arguments.

Given T ∈ R≥0, x : [0, T ] → S is a trajectory of (1) if
there exists u : [0, T ] → U satisfying (1) for all t ∈ [0, T ].
Note that a trajectory does not necessarily start at sinit. Let
F(x) = T denote the final time of x : [0, T ]→ S.

Consider a trajectory x : [0, T ] → S. A finite timed
word of x with respect to a finite set Γ = {t1, t2, . . . , tn}
with 0 < t1 < t2 < · · · < tn < T is a finite sequence
ω(x,Γ) = lt0l

t
1 . . . l

t
n where lti =

(
limt→t+i

L(x(t)), ti+1−ti
)

for all i ∈ N≤n, t0 = 0 and tn+1 = T . Let T (x) ={
t ∈ (0, T ) | limt′→t− L(x(t′)) 6= limt′→t+ L(x(t′)

}
be the

set of discontinuities of L(x(·)). Throughout the paper, we
assume that the labeling function L is such that the limits
in the definition of T (x) exist and T (x) is finite, for any
trajectory x of (1). The finite timed word of x is defined as
ω(x) = ω(x, T (x)).

A dynamical system in (1) can be abstracted into a finite
state system represented by a durational Kripke Structure.

Definition 1 (Durational Kripke Structure): A durational
Kripke structure is a tuple

K = (SK, sinit,K,RK,ΠK,LK,∆K), (2)

where SK is a finite set of states, sinit,K ∈ SK is the initial
state, RK ⊆ SK × SK is a transition relation, ΠK is a set
of atomic propositions, LK : SK → 2ΠK is a state labeling
function, and ∆K : RK → R≥0 is a function assigning a
time duration to each transition.

A finite trace of K is a finite sequence of states τ =
s0s1 . . . sn such that s0 = sinit,K and (si, si+1) ∈ RK, for
all i ∈ N≤n−1.

B. Specifications

We consider specifications that can be described by a
subset of FLTL. Roughly, an FLTL formula is built up from
(a) a set of atomic propositions, (b) the logic connectives:
negation (¬), disjunction (∨), conjunction (∧) and material
implication ( =⇒ ), and (c) the temporal operators: next
(#), always (�), eventually (3) and until (U). We refer to
an FLTL formula that does not include temporal operators
as a propositional logic formula.

An FLTL formula ϕ over Π is interpreted over a finite
word w = l0l1 . . . ln ∈ (2Π)n+1 and we write w |= ϕ if w
satisfies ϕ. In particular, consider p, p′ ∈ Π. w |= p if and
only if p ∈ l0. w |= �p if and only if p ∈ li for all i ∈ N≤n.
Consider a more complicated specification that will be used
throughout the paper

ϕ = �
(
p =⇒ (#p ∨#p′)

)
. (3)

In this case, w |= ϕ if and only if for any i ∈ N≤n−1 such
that p ∈ li, we have p ∈ li+1 or p′ ∈ li+1. The satisfaction
of an FLTL formula with respect to a finite timed word can
be defined in a natural way: Given an FLTL formula ϕ over
Π and a finite timed word ω = (l0, d0) . . . (ln, dn) ∈ (2Π ×
R≥0)n+1, ω |= ϕ if and only if w(ω) = l0 . . . ln |= ϕ.

Definition 2 (si-FLTLGX
): An si-FLTLGX

formula over a
set Π of atomic propositions is an FLTL formula that is
stutter-invariant (see below) and is of the form

ϕ = �PX, (4)

where PX belongs to the smallest set defined inductively by
the following rules:
• p is a formula for all p ∈ Π ∪ {True,False},
• #p is a formula for all p ∈ Π ∪ {True,False}, and
• if P 1

X and P 2
X are formulas, then so are ¬P 1

X , P 1
X ∨P 2

X ,
P 1
X ∧ P 2

X and P 1
X =⇒ P 2

X .
In other words, PX is a Boolean combination of propositions
from Π and expressions of the form #p where p ∈ Π.

Roughly, a specification is stutter-invariant if its satisfac-
tion with respect to any word is not affected by operations
that duplicate some letters or remove some duplicate letters
in that word. For example, consider w = l0l1 . . . ln and
w′ = l0l1 . . . li−1lilili+1 . . . ln, which is constructed from w
by duplicating li for some i ∈ N≤n. If ϕ is stutter-invariant,
then w |= ϕ if and only if w′ |= ϕ. We refer the reader to
[18] for the definition of stutter-invariant properties. See, e.g.,
[19], [20] for approaches to check whether a specification is
stutter-invariant.

Regardless of its simplicity, si-FLTLGX
turns out to be

sufficiently expressive to describe many traffic rules. Refer-
ence [21] shows that all the rules enforced in the DARPA
Urban Challenge 2007 can be expressed with si-FLTLGX

formulas. All the traffic rules in the examples presented in
[15] can also be described using si-FLTLGX

formulas.
Definition 3 (Prioritized Safety Specification): A priori-

tized safety specification is a tuple P = (Π,Φ,Ψ, ρ) where
Π is a set of atomic propositions, Φ is a set of si-FLTLGX

formulas over Π, Ψ = (Ψ0,Ψ1, . . . ,ΨN ) organizes the



formulas in Φ into a hierarchy based on their priorities such
that Ψi ⊆ Φ, for all i ∈ N≤N , and ρ : Φ→ N is a function
that assigns the weight to each ϕ ∈ Φ. Throughout the paper,
we refer to each ϕ ∈ Φ as an atomic safety rule.

We use the level of unsafety to measure the violation of
an si-FLTLGX

formula. Consider an si-FLTLGX
formula ϕ =

�PX and a finite timed word ω = lt0l
t
1 . . . l

t
n where lti =

(li, di) ∈ 2Π × R≥0 for all i ∈ N≤n. We let ltn+1 = (ln, 0)
and define the level of unsafety of ω with respect to ϕ as

λ(ω, ϕ) =
∑

i∈N≤n

∣∣ lili+1 6|=PX

λ̃(lti , PX), (5)

where λ̃(lti , PX) = di if lil′ 6|= PX for all l′ ∈ 2Π; otherwise
λ̃(lti , PX) = 1. Note that this choice of λ̃ differentiates the
violation caused by visiting a (unsafe) state with label li
(the case where lil′ 6|= PX for all l′ ∈ 2Π) and the violation
caused by taking a (unsafe) transition from a state with label
li to a state with label li+1 (the case where lili+1 6|= PX

but lil′ |= PX for some l′ ∈ 2Π). In particular, the cost of
visiting an unsafe state is the time spent on that state, whereas
the cost of taking an unsafe transition is 1. This choice of
violation cost is to better accommodate the notion of next as
discussed in Remark 1.

Let P = (Π,Φ,Ψ, ρ) be a prioritized safety specification
where Ψ = (Ψ0,Ψ1, . . . ,ΨN ). We define the level of
unsafety of ω with respect to P as

λP(ω) = (λP(ω,Ψ0), . . . , λP(ω,ΨN )) ∈ RN+1, (6)

where for each i ∈ N≤N ,

λP(ω,Ψi) =
∑
ϕ∈Ψi

ρ(ϕ)λ(ω, ϕ). (7)

Remark 1: In [15], the level of unsafety of a finite timed
word ω with respect to an atomic safety rule ϕ is defined as

λ(ω, ϕ) = min
I⊆N≤n|vanish(ω,I)|=ϕ

∑
i∈I

di, (8)

where for any given finite sequence w = l0l1 . . . ln and
a set I ⊆ N≤n, vanish(w, I) is defined as a subsequence
of w obtained by removing all li, i ∈ I . This definition
is consistent with (5) for the case where ϕ is an invari-
ant property, i.e., PX does not include the next operator.
However, for the case where PX includes the next operator,
(5) and (8) may yield different results. Our choice of (5)
is to better accommodate the notion of next, which is
not handled in [15]. For example, consider a finite timed
word ω = ({p0}, d0)({p1}, d1) and an si-FLTLGX

formula
ϕ = �(p0 =⇒ #p0) where Π = {p0, p1}. In this
case, we get

∑
i∈N≤1

∣∣ lili+1 6|=PX
λ̃(li, PX) = 1 regardless

of the value of d0, d1; thus, the level of unsafety defined
in (5) corresponds to the number of unsafe transitions. As
a result, this definition allows us to specify an objective
such as minimizing the number of lane changes. In contrast,
minI⊆N≤1|vanish(ω,I)|=ϕ

∑
i∈I di = min(d0, d1), and thus,

the level of unsafety defined in (8) corresponds to the total
duration either before or after the unsafe transition.

III. PROBLEM FORMULATION
Consider the time-invariant dynamical system (1) with the

initial state sinit and the set Sgoal ⊂ S of goal states. Let X ={
x : [0, T ]→ S

∣∣ T ∈ R≥0, x(0) = sinit, x(T ) ∈ Sgoal

}
be

the set of trajectories of (1), starting at sinit and ending at a
state s ∈ Sgoal.

Given a prioritized safety specification P = (Π,Φ,Ψ, ρ),
the minimum-violation planning problem is to compute an
optimal trajectory x∗ ∈ X that minimizes the time of
reaching a state s ∈ Sgoal among all the trajectories that
minimize the level of unsafety with respect to P . Formally,
we define the cost function J : X → RN+2 as

J(x) =
(
λP(ω(x)),F(x)

)
. (9)

Recall from Section II that F(x) denotes the final time
of trajectory x. As a result, the last coordinate of the
cost function J corresponds to the minimum-time objective
whereas the first coordinate, λP(ω(x)), corresponds to the
level of unsafety of x with respect to P .

Using the cost function J , we formally define the
minimum-violation planning as follows.

Problem 1 (Minimum-Violation Planning): Based on the
standard lexicographical order, compute an optimal trajectory
x∗ = arg minx∈X J(x).

Remark 2: We choose the minimum-time objective as
indicated by the maneuver cost function F for the simplicity
of the presentation. Our approach also applies to other
maneuver costs, including the control effort, with some
minor modifications.

IV. SOLUTION
Reference [15] solves Problem 1 by constructing a

weighted finite automaton A that is the product of weighted
finite automata, each corresponding to an atomic safety rule
ϕ ∈ Φ. The weights on the transitions of A are defined such
that the weight of the shortest accepting run over any word
ω is the level of unsafety of ω. The product K ⊗ A of the
Kripke structure K and A is incrementally constructed. It can
be shown that Problem 1 is equivalent to finding a shortest
path in K ⊗A.

As the size of A is exponential in the length of ϕ [3],
our approach avoids constructing the product K ⊗ A to
reduce computational complexity. Instead, we translate an
si-FLTLGX

formula over Π into an si-FLTLG formula over
Π × Π. As will be discussed later, this translation allows
us to incrementally construct and maintain only the Kripke
structure K (as opposed to K ⊗A as in the aforementioned
work), and compute the weights of its transitions based on
the satisfaction of propositional formulas of the consecutive
states and the time duration of the transitions. As a result,
it allows temporal logic specifications to be handled with
the same computational complexity as traditional motion
planning algorithms such as RRT* and RRG.

Definition 4 (si-FLTLG): An si-FLTLG formula over Π×
Π is an si-FLTLGX

formula ϕ = �P where P is a proposi-
tional logic formula over Π×Π.

A propositional logic formula P over Π×Π is interpreted
over a pair (l, l′) ∈ 2Π × 2Π with the satisfaction relation



|= defined as follows. For p, p′ ∈ Π ∪ {True,False} and
(l, l′) ∈ 2Π × 2Π, (l, l′) |= (p, p′) if and only if l |= p and
l′ |= p′. Here, for any l ∈ 2Π, we have l |= True , l 6|= False ,
and for any p ∈ Π, l |= p if and only if p ∈ l. The logic
connectives are defined as in the standard propositional logic.

Based on the semantics of FLTL, given a finite word w =
l0l1 . . . ln ∈ (2Π)n+1 and an si-FLTLG formula ϕ = �P
over Π×Π, we say that w satisfies ϕ, written w |=Π×Π ϕ if
and only if (li, li+1) |= P for all i ∈ N≤n−1 and (ln, ln) |=
P . Note that the terminal condition (ln, ln) |= P results from
the assumption that ϕ is stutter-invariant, which ensures that
w |= ϕ if and only if w′ = l0l1 . . . lnln |= ϕ.

The level of unsafety of a finite timed word ω = lt0l
t
1 . . . l

t
n

with respect to an si-FLTLG formula ϕ over Π×Π is defined
by

λ(ω, ϕ) =
∑

i∈N≤n | (li,li+1)6|=P

λ̃(lti , P ), (10)

where lti = (li, di) ∈ 2Π × R≥0 for all i ∈ N≤n, ltn+1 =

(ln, 0), λ̃(lti , P ) = di if (li, l
′) 6|= P for all l′ ∈ 2Π; otherwise

λ̃(lti , P ) = 1.

A. Conversion of si-FLTLGX
to si-FLTLG

Given an si-FLTLGX
formula ϕ over Π, we define an oper-

ation denext that constructs an si-FLTLG formula over Π×Π
from ϕ by replacing each instance of p in ϕ with (p,True)
and replacing each instance of #p in ϕ with (True, p) for
all p ∈ Π. For example, consider an si-FLTLGX

formula ϕ
defined in (3). The corresponding si-FLTLG formula over
Π×Π is given by

denext(ϕ) = �
(

(p,True) =⇒
(
(True, p) ∨ (True, p′)

))
.

(11)
Lemma 1: Let Π = {p0, p1, . . . , pn} and Π′ =

{q0, q1, . . . , qn′} be sets of propositions. Let P be a propo-
sitional formula over Π ∪ Π′ and P ′ be a propositional
formula over Π×Π′ that is constructed from P by replacing
each instance of pi by (pi,True) and replacing each instance
of qj by (True, qj) for all i ∈ N≤n, j ∈ N≤n′ . Then, for any
l ⊆ Π and l′ ⊆ Π′, l ∪ l′ |= P if and only if (l, l′) |= P ′.

Proof: Consider arbitrary l ⊆ Π and l′ ⊆ Π′, i ∈ N≤n
and j ∈ N≤n′ . It follows directly from the definition of True
that (a) l |= pi if and only if (l, l′) |= (pi,True), and (b) ,
l′ |= qj if and only if (l, l′) |= (True, qj). As a result, we
can conclude from the construction of P ′ and the sematics of
propositional logic that l ∪ l′ |= P if and only if (l, l′) |= P ′.

Lemma 2: Let PX be defined as in Definition 2. Con-
sider a propositional logic formula P ′ over Π × Π that is
constructed from PX by replacing each instance of p in PX

with (p,True) and replacing each instance of #p in PX with
(True, p) for all p ∈ Π ∪ {True,False}. For any arbitrary
l, l′ ∈ 2Π, we have ll′ |= PX if and only if (l, l′) |= P ′.

Proof: Let Π = {p0, p1, . . . , pn}. Define Π′ =
{q0, q1, . . . , qn}. Let P be a propositional formula over
Π ∪ Π′ that is constructed from PX by replacing each
instance of #pi by qi for all i ∈ N≤n.

Consider arbitrary l, l′ ∈ 2Π. Let Πl′ =
{
qi | pi ∈ l′

}
⊆

Π′. Based on the definition of the # operator, we can
conclude that ll′ |= PX if and only if l ∪ Πl′ |= P .

By construction, P ′ is obtained from P by replacing each
instance of pi in P by (pi,True) and replacing each instance
of qi in P by (True, pi) for all i ∈ N≤n. As a result, we
can conclude using Lemma 1 and the definition of Πl′ that
l ∪ Πl′ |= P if and only if (l, l′) |= P ′. Combining this with
the result from the previous paragraph, we obtain ll′ |= PX

if and only if (l, l′) |= P ′.
We now establish the equivalence of the level of unsafety

with respect to an si-FLTLGX
formula over Π and the level of

unsafety with respect to the corresponding si-FLTLG formula
over Π×Π.

Lemma 3: For any finite timed word ω and any si-FLTLGX

formula ϕ over Π,

λ(ω, ϕ) = λ(ω, denext(ϕ)). (12)

Proof: This result can be trivially derived from Lemma
2 and the definitions of the level of unsafety (5) and (10).

Finally, we construct the prioritized safety specification
P̂ = (Π×Π, Φ̂, Ψ̂, ρ̂) with each atomic safety rule obtained
from that of P by applying denext operation. Formally,
Φ̂ =

{
denext(ϕ) | ϕ ∈ Φ

}
, Ψ̂ = (Ψ̂0, , Ψ̂1, . . . , Ψ̂N ),

Ψ̂i =
{
denext(ϕ) | ϕ ∈ Ψi

}
for all i ∈ N≤N , and ρ(ϕ) =

ρ̂(denext(ϕ)) for all ϕ ∈ Φ. The level of unsafety of a
finite timed word ω with respect to P̂ is defined following
(6), (7) as λP̂(ω) = (λP̂(ω, Ψ̂0), . . . , λP̂(ω, Ψ̂N )) ∈ RN+1,
where for each i ∈ N≤N , λP̂(ω, Ψ̂i) =

∑
ϕ∈Ψ̂i

ρ̂(ϕ)λ(ω, ϕ).
Based on the construction of P̂ and Lemma 3, we obtain the
following result, which allows us to replace P with P̂ .

Proposition 1: For any finite timed word ω, λP(ω) =
λP̂(ω).

B. Incremental Construction of Weighted Kripke Structure

We follow a sampling-based procedure described in [22] to
incrementally construct a Kripke structure K as a finite state
representation of the dynamical system (1). The main differ-
ence is that we augment K with weights on its transitions.
The weights are picked such that the sum of the weights on
any finite trace τ of K is the level of unsafety of the finite
timed word generated by the trajectory of (1) corresponding
to τ . As opposed to [15], we do not construct the weighted
product automaton K⊗A where A is created by combining
all the automata, each corresponding to each ϕ ∈ Φ.

Definition 5 (Weighted Kripke Structure): A weighted
Kripke structure is a tuple

K = (SK, sinit,K,RK,ΠK,LK,WK), (13)

where SK, sinit,K, RK, ΠK and LK are defined as in
Definition 1 and WK : RK → Rn

≥0 for some n ∈ N is a
function assigning a transition cost to each transition in RK.

A finite trace of K is defined as that of K. Given a
finite trace τ = s0s1 . . . sn, we define the weight of τ
as W(τ) =

∑
i∈N≤n−1

WK(si, si+1). For any s ∈ SK,



define Traces(K, s) =
{
τ = s0s1 . . . sn | n ∈ N, sn =

s, τ is a finite trace of K
}

to be the set of all the finite traces
of K that end at s.

Various sampling-based algorithms such as RRT*, RRG,
and their k-nearest variants can be employed to incremen-
tally construct K [22]. The key difference between these
algorithms lies in the connections of states. In particular,
the RRT* algorithm maintains a tree structure rather than a
graph as in RRG, ensuring that each state only has at most
one parent. It maintains an upper bound on the cost JK(s)
of the unique path from the initial state to each state s ∈ SK.
Algorithm 1 provides a common template for incrementally
constructing K, based on the following primitive procedures.
a) Sample: sample : N→ S is a function that generates in-

dependent, identically distributed samples from a uniform
distribution supported over S.

b) Add: Given a state s, add(s) adds s to SK, i.e., it executes
SK ← SK ∪ {s}. For RRT*, it also sets JK(s) = 0 if
s = sinit; otherwise JK(s) =∞.

c) Steer: Given states s, s′ ∈ S, steer(s, s′) returns the set
of trajectories x : [0, T ] → S of (1) such that x(0) = s,
x(T ) = s′, and T (x) exists and is finite.

d) Nearest neighbors: near : S → 2SK computes the set
of nearest neighbors. When applying the RRT* or RRG
algorithm, we let

near(s) =

{
s′ ∈ SK

∣∣∣ ‖s′ − s‖2 ≤ (γ logm

m

)1/D
}
,

where m is the cardinality of SK, and γ and D are
constants that depend on the dimension d of the state
space and the Lebesgue measure of S. For the case of
k-nearest RRG or k-nearest RRT*, near(s) returns k
nearest neighbors of s ∈ S where k > γ′ log(n) for
some constant γ′. We refer the reader to [22], [23] for
the definitions of γ, γ′, and D.

e) Transition cost: For any trajectory x : [0, T ] → S of
(1), we define the cost of x as C(x) =

(
λP̂(ω(x)), T

)
∈

RN+2. Note that according to (9) and Proposition 1, C(·)
corresponds to the cost function defined in Problem 1.
Let ω(x) = (l0, d0)(l1, d1) . . . (ln, dn). Thanks to (10),
λP̂(ω(x)) can be computed by simply evaluating whether
(li, li+1) satisfies the propositional formula corresponding
to each atomic safety rule for each i ∈ N≤n, with ln+1 =
ln. For any states s, s′ ∈ S, the transition cost from s to
s′ is then defined for the case where steer(s, s′) 6= ∅ as
cost(s, s′) = minx∈steer(s,s′) C(x).

f) Connect: Given states s, s′ ⊆ SK, connect(s, s′) updates
the relevant elements based on a transition from s to
s′. For RRG, connect(s, s′) simply adds the transition
(s, s′) to RK and set WK(s, s′) = cost(s, s′) as shown
in Algorithm 2. In contrast, as shown in Algorithm 3, the
transition (s, s′) is added for RRT* only if it improves
the cost to reach s′ from sinit (Line 1). If so, existing
transitions to s′ are removed (Line 2) and JK(s′) is
updated (Line 4). By propagating the change in JK(s′)
down the tree structure, we obtain the RRT# algorithm,
which ensures that the promising vertices (i.e., those that

have the potential to be part of the optimal solution)
are consistent, i.e., JK(s̃) is the cost of the unique path
from the initial state to a promising vertex s̃ ∈ SK. This
approach has been shown to improve the convergence rate
of RRT*. See [24] for more details on RRT#.

Algorithm 1 returns the weighted Kripke structure Kn af-
ter n iterations as well as the set Sgoal,K = Sgoal ∩ SK of the
sampled goal states. For each state s ∈ SK, let τ(Kn, s) ∈
Traces(Kn, s) denote an optimal trace of Kn that ends at s,
i.e., W(τ(Kn, s)) ≤ W(τ̃) for all τ̃ ∈ Traces(Kn, s). We
define sgoal,K = arg mins∈Sgoal,KW(τ(Kn, s)). Note that for
the case of RRT#, sgoal,K = arg mins∈Sgoal,K JK(s) and for
any promising vertex s ∈ SK, W(τ(Kn, s)) = JK(s) and
τ(Kn, s) can be obtained by following the unique parent of
each state backward, starting from s to the initial state, i.e.,
τ(Kn, s) = s0s1 . . . sm for some m ∈ N such that s0 = sinit,
sm = s, and si = parent(si+1) for all i ∈ N≤m−1. Here,
parent(s̃) is a unique state with (parent(s̃), s̃) ∈ RK. When
the connections are constructed based on the RRT* or RRG
algorithm, sgoal,K and τ(Kn, s) can be obtained using, e.g.,
the Dijkstra’s shortest path algorithm.

Algorithm 1: Minimum-violation planning.

1 SK ← ∅; RK ← ∅; Sgoal,K ← ∅;
2 add(sinit);
3 foreach i ∈ N≤n do
4 snew ← sample(i);
5 Snear = near(snew);
6 add(snew);
7 foreach s ∈ Snear do
8 if steer(s, snew) 6= ∅ then
9 connect(s, snew);

10 foreach s ∈ Snear do
11 if steer(snew, s) 6= ∅ then
12 connect(snew, s);

13 if snew ∈ Sgoal then
14 Sgoal,K = Sgoal,K ∪ {snew};

15 return Kn = (SK, sinit,RK,Π,L,WK), Sgoal,K

Algorithm 2: connect(s, s′) for RRG.

1 RK ← RK ∪ {(s, s′)};
2 WK(s, s′) = cost(s, s′)

Algorithm 3: connect(s, s′) for RRT*.

1 if JK(s) + cost(s, s′) < JK(s′) then
2 RK ←

(
RK \ {(s1, s2) ∈ RK | s2 = s′}

)
∪ {(s, s′)};

3 WK(s, s′) = cost(s, s′);
4 JK(s′) = JK(s) + cost(s, s′);

Let c∗ = mins∈Sgoal
cost(sinit, s) be the cost of an optimal

trajectory of (1) from sinit to Sgoal based on the cost function



C. The following result can be directly derived from the
asymptotic optimality of the RRG and RRT* algorithms [22]
and the boundedness of cost for the case where PX in (4) is
a propositional formula for all ϕ ∈ Φ.

Lemma 4: If PX in (4) is a propositional formula for
all ϕ ∈ Φ, then W(τ(Kn, sgoal,K)) converges to c∗ almost
surely, i.e.,

P
({

lim
n→∞

W(τ(Kn, sgoal,K)) = c∗
})

= 1.

We now establish the equivalence of the transition cost
cost and the original cost function J of Problem (1).

Lemma 5: c∗ = minx∈X J(x).
Proof: This result follows directly from Proposition 1

and the definitions of J and cost.
Consider an arbitrary s ∈ SK. Let τ(Kn, s) = s0s1 . . . sm

for some m ∈ N. For each i ∈ N≤m−1, let xs,i =
arg minx∈steer(si,si+1) C(x), i.e., xs,i is a trajectory of (1)
from si to si+1 with C(xs,i) = cost(si, si+1). A trajectory
xs of (1) from sinit to s can be constructed from τ(Kn, s)
by concatinating xs,i. Formally, xs : [0,

∑
i∈N≤m−1

Ti]→ S

such that xs(t +
∑i−1

k=0 Tk) = xs,i(t) for all t ∈ [0, Ti] and
i ∈ N≤m−1 where Ti = F(xs,i).

Lemma 6: For any s ∈ SK, W(τ(Kn, s)) = J(xs).
Proof: Let τ(Kn, s) = s0s1 . . . sm. By construc-

tion, W(τ(Kn, s)) =
∑

i∈N≤m−1
cost(si, si+1). Addition-

ally, from the definition of C, J and Proposition 1, J(xs) =∑
i∈N≤m−1

C(xs,i). We can then conclude from the definition
of xs,i that J(xs) =

∑
i∈N≤m−1

cost(si, si+1).
Combining Lemma 4–6, we obtain the asymtotic optimal-

ity of Algorithm 1.
Proposition 2: Let x∗ be a solution of Problem 1 and

J∗ = J(x∗). If PX in (4) is a propositional formula for
all ϕ ∈ Φ, then J(xsgoal,K) converges to J∗ almost surely.

If there exists ϕ ∈ Φ such that PX is not a propositional
formula, then the asymptotic optimality of Algorithm 1
cannot be guaranteed as cost is not necessarily bounded.
However, Lemma 6 ensures that τ(Kn, sgoal,K) is an optimal
trajectory among those in Kn.

The analysis in [15] shows that the computational com-
plexity of the original Minimum-Violation RRT* algorithm
is O(K2n log n) where K is the number of states in the
weighted finite automaton A, which is exponential in the
length of the specification. As Algorithm 1 is a special case
of the RRT* and RRG algorithms where the transition cost
corresponds to the level of unsafety of the transition, it shares
the same computational complexity of O(n log n) as that
of the RRT* and RRG algorithms, which is the same as
that of the original Minimum-Violation RRT* algorithm with
K = 1. As in [15], this analysis relies on the assumption that
the complexity of connect(s, s′) is O(1) for all s, s′ ∈ SK.

V. PRACTICAL CONSIDERATIONS

The asymptotic optimality of Algorithm 1 is essential
in many safety-critical applications as it ensures that a
sufficiently safe trajectory will be found, if one exists,

given sufficient computation time. For autonomous vehicles,
however, the available computation time is often limited
due to the dynamic nature of the environments in which
they operate. Such environments include not only relatively
static features such as road markings, constructions, weather
conditions, etc., but also dynamic features arising from other
agents (vehicles, pedestrians, animals, etc.) sharing the road.
An optimal trajectory with respect to the environment at time
t ∈ R≥0 may become the least safe option with respect to
the environment at time t + ε, even for small ε ∈ R≥0,
especially when there is a drastic change in the environment.
Examples of such situations include (a) a newly detected
object shows up, (b) another agent violates the right of way,
and (c) a vehicle that is initially parked starts to move off
while the autonomous vehicle is overtaking it. In fact, a
similar situation to the latter led to an accident between the
Cornell and the MIT autonomous vehicles during the 2007
DARPA Urban Challenge [25].

Reactive synthesis [5], [8], [9] and probabilistic synthesis
[10]–[12] have been applied to handle dynamic environ-
ments. Roughly, in reactive synthesis, a control policy is
constructed to ensure that the system satisfies its specification
for all valid environment behaviors. In contrast, probabilistic
synthesis considers a probabilistic model of the environment
and constructs a control policy that maximizes the probability
that the system satisfies its specification. Both approaches
assume a good understanding of the environment: Reactive
synthesis requires the knowledge of all possible behaviors of
the environment, whereas probabilistic synthesis relies on an
accurate probabilistic model of the environment. The control
protocol synthesized by these approaches could be invalid in
that the system could be left with no valid trajectory if such
assumptions do not hold.

A key advantage of minimum-violation planning com-
pared to these approaches is in handling unexpected or
unmodeled environment behaviors: As long as there exist
trajectories from sinit to a state in Sgoal in Kn, the algorithm
always returns the safest one. Hence, the richness of Kn is
a crucial factor for successful applications of this approach.

As autonomous vehicles are required to respond quickly
to changes in the environment, Kn needs to be updated in
each planning iteration. To ensure the richness of Kn, we
maintain Kn from the previous planning iteration instead
of rebuilding it from scratch. Then, each planning iteration
updates sinit andWK based on the current state of the vehicle
and the most recently observed environment. Additionally,
due to changes inWK, RRG-based algorithms are potentially
more preferable than RRT*-based algorithms.

In summary, we initialize Kn with SK = {sinit} andRK =
∅. Then, each planning iteration performs the following
procedures.

(i) Update sinit and WK based on the current state of the
system.

(ii) Augment Kn based on lines 3–14 of Algorithm 1.
(iii) Extract an optimal trajectory in Kn using a graph search

algorithm (e.g., Dijkstra or A*).
Finally, Algorithm 1 can be adapted to other defitions



of the level of unsafety by modifying the transition cost
function C such that J(xs) =

∑
i∈N≤m−1

C(xs,i) for all
s ∈ SK where s0s1 . . . sm = τ(Kn, s). In this case, it is
easy to show that Lemma 5 and Lemma 6 still hold; thus,
an optimal trace of Kn to a goal state as extracted by a
graph search algorithm still corresponds to a safest trajectory
among all the options in Kn. In fact, we have experimented
with other definitions of the level of unsafety as suggested by
the rulebooks framework [16], including non-additive costs
[26]. Certain definitions, however, invalidate the assumption
of Lemma 4 and as a result, lead to the loss of asymptotic
optimality guarantee similar to the case where PX in (4) is
not a propositional formula. Refining the definition of the
level of unsafety as well as ensuring the richness of Kn are
subject to the current research.

VI. EXPERIMENTAL RESULTS

We consider an autonomous vehicle modeled by a Dubins
car [27]: ẋ = cos(θ), ẏ = sin(θ) and θ̇ = u where u ∈
[−1, 1], (x, y) is the position of the center of the rear axle
and θ is the heading of the vehicle. The autonomous vehicle
encounters a stationary vehicle while it is navigating a two-
lane road with a solid yellow center line as show in Figure 1.
The set of goal states is given by Sgoal = {(x, y, θ) | x ≥ 37}.

A. Prioritized Safety Specification

For any x, y, θ ∈ R, let FP(x, y, θ) ⊂ R2 be the footprint
of the autonomous vehicle when the center of its rear axle is
at (x, y) and its heading is θ. Consider atomic propositions
collision, close, road and lane, representing the autonomous
vehicle colliding with the stationary vehicle, overlapping
with the clearance zone, being fully on the road and be-
ing fully within a correct lane, respectively. Formally, the
labeling function L is defined such that for any x, y, θ ∈ R,
(a) collision ∈ L(x, y, θ) iff FP(x, y, θ) ∩ SV 6= ∅ where
SV ⊂ R2 is the footprint of the stationary vehicle, (b) close ∈
L(x, y, θ) iff FP(x, y, θ) ∩ CZ 6= ∅ where CZ ⊂ R2 is
the clearance zone around the stationary vehicle, constructed
from SV and the required lateral and longitudinal clearance
(see Figure 1), (c) road ∈ L(x, y, θ) iff FP(x, y, θ) ⊆ RD
where RD is the road, i.e., the area where a vehicle is allowed
to drive, and (d) lane ∈ L(x, y, θ) iff FP(x, y, θ) ⊆ LN
where LN is the right lane, i.e., the lane with the correct
travel direction for the autonomous vehicle.

We consider the following atomic safety rules, each of
which can be expressed by an si-FLTLGX

formula.

(i) No collision: ϕ1 = �¬collision.
(ii) Staying on road: ϕ2 = �road.

(iii) Obstacle clearance: ϕ3 = �¬close.
(iv) Lane keeping: ϕ4 = �lane.

The prioritized safety specification P = (Π,Φ,Ψ, ρ)
is defined as Π = {collision, close, road, lane}, Φ =
{ϕ1, . . . , ϕ4}, Ψ = {{ϕ1}, {ϕ2}, {ϕ3, ϕ4}}, and ρ(ϕi) = 1,
for all i.

B. Simulation Results

Algorithm 1 was implemented in TuLiP, a Python-based
software toolbox [28] and run on a laptop with Intel Core i7-
10710U processor. 40 iterations of Line 3–14 of Algorithm 1
were run with n = 20, i.e., 20 states were added in each iter-
ation. Figure 2 shows the optimal traces τ(Kn, sgoal,K) when
the connection is based on the RRT* algorithm. The optimal
cost W(τ(Kn, sgoal,K)) at the end of the 40th iteration is
(0, 0, 12.7, 37.0). The level of unsafety and computation time
of each iteration is shown in Figure 3.

Fig. 2. The states (dark blue dots) and their connections (light blue curves)
in Kn and the optimal path (black curve) extracted at the end of the 10th (top
left), 20th (top right), 30th (bottom left), and 40th (bottom right) iterations
when Algorithm 1 is applied with RRT* connections.

The results when applying RRG connections are shown in
Figure 4 and Figure 5. The optimal costW(τ(Kn, sgoal,K)) at
the end of the 40th iteration is (0, 0, 11.9, 35.5). The Kripke
structure constructed based on the RRG algorithm includes
significantly more connections than that constructed based
on the RRT* algorithm. For both cases, the level of unsafety
with respect to Ψ1 and Ψ2 quickly converges to 0.

Note that the majority of the computation time is spent
on computing labels along a trajectory. This is similar to the
case of traditional motion planning, where collision checking
is typically the main bottleneck [27]. In fact, computing the
violation of ϕ1 is exactly the collision checking problem. The
specific implementation in this example performs expensive
polygon operations to compute the labels. The computation
time can be significantly reduced by employing more effi-
cient polygon operations and parallel computation.

VII. CONCLUSIONS
This paper introduced a class of LTL formulas that are

sufficiently expressive to describe traffic rules such as lane-
keeping, obstacle avoidance, etc. Given traffic rules specified
by these formulas and their relative importance, we proposed
an incremental algorithm to compute a trajectory for an
autonomous vehicle to reach a given goal while minimiz-
ing the level of unsafety with respect to the given rules.
Both the theoretical guarantees and practical considerations



Fig. 3. The level of unsafety of the optimal path with respect to
Ψi, i ∈ {1, 2, 3} and the computation time (seconds) of each iteration
when Algorithm 1 is applied with RRT* connections.

Fig. 4. The states (dark blue dots) and their connections (light blue curves)
in Kn and the optimal path (black curve) extracted at the end of the 10th (top
left), 20th (top right), 30th (bottom left), and 40th (bottom right) iterations
when Algorithm 1 is applied with RRG connections.

were discussed. Simulation results for the vehicle overtaking
scenario were provided.
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