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Abstract— Reinforcement learning is a promising approach
to synthesizing policies for challenging robotics tasks. A key
problem is how to ensure safety of the learned policy—e.g., that
a walking robot does not fall over or that an autonomous car
does not run into an obstacle. We focus on the setting where the
dynamics are known, and the goal is to ensure that a policy
trained in simulation satisfies a given safety constraint. We
propose an approach, called model predictive shielding (MPS),
that switches on-the-fly between a learned policy and a backup
policy to ensure safety. We prove that our approach guarantees
safety, and empirically evaluate it on the cart-pole.

I. INTRODUCTION

Reinforcement learning has recently proven to be a
promising approach for synthesizing neural network control
policies for accomplishing challenging control tasks. We
focus on the planning setting with known and deterministic
dynamics—in this setting, reinforcement learning is can be
used to learn policy in a simulator, and the goal is to deploy
this policy to control a real robot. For instance, this approach
has been used to automatically synthesize policies for chal-
lenging control problems such as object manipulation [1] and
multi-agent control [2], or to compress a computationally
expensive search-based planner or optimal controller into
a neural network policy that is computationally efficient in
comparison [3].

A major challenge for deploying learned policies on real
robots is how to guarantee that the learned policy satisfies
given safety constraints. In optimal control, the generated
controls are guaranteed to satisfy the safety constraints (as-
suming a feasible solution exists), yet reinforcement learning
cannot currently provide these kinds of guarantees. Further-
more, we assume that while the environment may not be
known ahead-of-time, perception is accurate, so we know the
positions of the obstacles when executing the policy. As a
concrete example, consider an autonomous car. We have very
good models of car dynamics, and we have good sensors for
detecting obstacles. However, we may want the car to drive in
many different environments, with different configurations of
obstacles (e.g., walls, buildings, and trees). Given a learned
policy, our goal is to ensure that the policy does not cause
an accident when driving in a novel environment.

One approach to guaranteeing safety is to rely on ahead-of-
time verification—i.e., prove ahead-of-time that the learned
policy is safe, and then deploy the learned policy on the
robot [4], [5]. A related approach, called shielding, is to
synthesize a backup policy and prove that it is safe, and
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then use the backup policy to override the learned policy as
needed to guarantee safety [6], [7], [8], [9], [10], [11]. How-
ever these approaches can be computationally intractable
for high-dimensional state spaces. This can be a major
problem for robots operating in open world environments—
in particular, to handle novel environments, we must encode
the environment in the state, which can quickly increase the
dimension of the state space.

An alternative approach to safe reinforcement learning is
to verify safety on-the-fly. One recently proposed approach
in this direction is model predictive safety certification
(MPSC) [12], [13]. This approach ensures recursive feasibil-
ity by using a model predictive controller (MPC) to ensure
that the next state visited by the learned policy. If the MPC
for the next state is feasible, then it uses the learned policy.
Otherwise, it switches to using the MPC on the current state.
Either way, the MPC is guaranteed to be feasible for the next
state visited, so the overall controller is recursively feasible.
However, these approaches have focused on linear dynamical
systems where constrained MPC is computationally tractable.

We propose an approach that verifies safety on-the-fly that
generalizes to deterministic nonlinear dynamical systems.
Our approach, which we call model predictive shielding
(MPS), is based on the concept of shielding. In contrast to
ahead-of-time verification, our algorithm chooses whether to
use the learned policy or the backup policy on-the-fly. At
a high level, MPS maintains the invariant that the backup
policy can always recover the robot, and only uses the
learned policy if it can prove that doing so maintains this
invariant. It checks whether this invariant holds on-the-fly by
simulating the dynamics. Intuitively, checking the invariant
for just the current state is far more efficient than verifying
ahead-of-time that safety holds for all initial states. While our
approach incurs runtime overhead during computation of the
policy, each computation is efficient. In contrast, ahead-of-
time verification can take exponential time; even though this
computation is offline, it can be infeasible for problems of
interest.

A key challenge is how to construct the backup policy.
We propose an approach that decomposes it into two parts:
(i) an invariant policy, which stabilizes the robot near a
safe equilibrium point (additionally, for unstable equilibrium,
we propose to use feedback control to stabilize the robot),
and (ii) a recovery policy, which tries to drive the robot
to a safe equilibrium point. Thus, in contrast to MPSC, in
our approach, the recovery policy can be arbitrary—e.g., it
can itself be trained using reinforcement learning. Thus, we
can ensure it is computationally efficient even for nonlinear

ar
X

iv
:1

90
5.

10
69

1v
3 

 [
cs

.L
G

] 
 2

1 
O

ct
 2

02
0



dynamical systems.1

a) Example: Consider a walking robot, where the goal
is to have the robot run as fast as possible without falling
over. The learned policy may perform well at this task,
but cannot guarantee safety. We consider equilibrium points
where the robot is standing upright at rest. Then, the equi-
librium policy stabilizes the robot at these points, and the
recovery policy is trained to bring the running robot to a
stop. Finally, the MPS algorithm uses the learned policy to
run, while maintaining the invariant that the recovery policy
can always safely bring the robot to a stop, after which the
equilibrium policy can ensure safety for an infinite horizon.
A key feature of our approach is that it naturally switches
between the learned and backup policies. For example,
suppose our algorithm uses the recovery policy to slow down
the robot. The robot does not have to come to a stop; instead,
our algorithm switches back to the learned policy as soon as
it is safe to do so.

b) Contributions: We propose a new algorithm for
ensuring safety of a learned control policy (Section III), we
propose an approach for constructing a backup policy in
this setting (Section IV), along with an extension to handle
unstable equilibrium points (Section V), and we empirically
demonstrate the benefits of our approach compared to ones
based on ahead-of-time verification (Section VI).

II. RELATED WORK

There has been much recent interest in safe reinforcement
learning [14], [15]. One approach is to use constrained
reinforcement learning to learn policies that satisfy a safety
constraint [16], [17]. However, these approaches typically do
not guarantee safety.

Existing approaches that guarantee safety typically rely on
proving ahead-of-time that the safety property

φsafe =
∧

x0∈X0

∞∧
t=0

xt ∈ Xsafe

holds, where X0 are the initial states, xt+1 = f(xt, π(xt))
for all t ≥ 0, and Xsafe are the safe states. One approach is
to directly verify that the learned policy is safe [18], [19],
[4], [5]. However, verification does not give a way to repair
the learned policy if it turns out to be unsafe.

An alternative approach, called shielding, is use ahead-
of-time verification to prove safety for a backup policy, and
then combine the learned policy with the backup policy in
a way that is guaranteed to be safe [6], [7], [8], [9], [10],
[11].2 This approach can improve scalability since the backup
policy is often simpler than the learned policy. For example,
the backup policy may bring the to a stop if it goes near an
obstacle. This approach implicitly verifies safety of the joint
policy (i.e., the combination of the learned policy and the
backup policy) ahead-of-time.

1The invariant policy is simply a linear feedback policy, so it is also
computationally efficient.

2More generally, the shield can simply constrain the set of allowed actions
in a way that ensures safety.

However, ahead-of-time verification can be computation-
ally infeasible—it requires checking whether safety holds
from every state, which can scale exponentially in the state
space dimension. Many existing approaches only scale to a
few dimensions [7], [18]. One solution is to overapproximate
the dynamics [20], [21]. However, for nonlinear dynam-
ics, the approximation error quickly compounds, causing
verification to fail even when safety holds. Scalability is
particularly challenging when we want to handle the pos-
sibility of novel environments. One way to handle novel
environments is to run verification from scratch every time
a novel environment is encountered; however, doing so
online would be computationally expensive. Our approach to
handling novel environments is to encode the environment
into the state. However, this approach quickly increases the
dimension of the state space, resulting in poor scalability
for existing approaches since they rely on ahead-of-time
verification. Instead, these approaches typically focus on
verifying a property of the robot dynamics in isolation of
its environment (e.g., positions of obstacles) or with respect
to a fixed environment.

Finally, while we focus on planning, where the dynamics
are known, there has also been work on safe exploration,
which aims to ensure safety while learning the dynam-
ics [22], [7], [8], [23], [24], [18], [25]. These approaches
rely on verification, so we believe our approach can benefit
them as well.

III. MODEL PREDICTIVE SHIELDING

Given an arbitrary learned policy π̂ (designed to minimize
a loss function), our goal is to minimally modify π̂ to obtain
a safe policy πshield for which safety is guaranteed to hold.
At a high level, our algorithm ensures safety by combining
π̂ with a backup policy πbackup (guaranteed to ensure safety
on a subset of states).

As a running example, for the cart-pole, π̂ may be learned
using reinforcement learning to move the cart as quickly as
possible to the right, but cannot guarantee that the desired
safety property that pole does not fall over. In contrast, πbackup
may try to stabilize the pole in place, but does not move the
cart to the right.

In general, shielding is an approach to safety based on
constructing a policy πshield that chooses between using π̂
and using πbackup. Our shielding algorithm, called model pre-
dictive shielding (MPS), maintains the invariant that πbackup
can be used to ensure safety. In particular, given a state x,
we simulate the dynamics to determine the state x′ reached
by using π̂ at x, and then further simulate the dynamics to
determine whether πbackup can ensure safety from x′ using
πbackup. For now, we describe our approach assuming πbackup
is given; in Sections IV & V, we describe approaches for
constructing πbackup.

a) Preliminaries: We consider deterministic, discrete
time dynamics f : X × U → X with states X ⊆ RnX
and actions U ⊆ RnU . Given a control policy π : X → U ,
f (π)(x) = f(x, π(x)) denotes the closed-loop dynamics. The
trajectory generated by π from an initial state x0 ∈ X is the



Algorithm 1 Model predictive shielding (MPS).
procedure MPS(x)

if ISRECOVERABLE(f (π̂)(x)) then
return π̂(x)

else
return πbackup(x)

end if
end procedure
procedure ISRECOVERABLE(x)

for t ∈ {0, 1, ..., N − 1} do
if x ∈ Xinv then

return true
else if x 6∈ Xsafe then

return false
end if
x← f (πbackup)(x)

end for
return false

end procedure

infinite sequence of states x0, x1, ..., where xt+1 = f (π)(xt)
for all t ≥ 0.

b) Shielding problem: We have two goals: (i) given loss
` : X × U → R, initial states X0 ⊆ X , and initial state
distribution d0 over X0, minimize

L(π) = Ex0∼d0

[
T−1∑
t=0

`(xt, ut)

]
,

where xt+1 = f(xt, ut), ut = π(xt), and T ∈ N is a finite
time horizon, and (ii) given safe states Xsafe ⊆ X , ensure that
the trajectory x0, x1, ... generated by π from any x0 ∈ X0 is
safe—i.e., xt ∈ X for all t ≥ 0.

To achieve these goals, we assume given two policies: (i) a
learned policy π̂ trained to minimize L(π), and (ii) a backup
policy πbackup, together with invariant states Xinv ⊆ X , such
that the trajectory generated by πbackup from any x0 ∈ Xinv is
guaranteed to be safe. We make no assumptions about π̂; e.g.,
it can be a neural network policy trained using reinforcement
learning. In contrast, πbackup cannot be arbitrary; we give a
general construction in Section IV.

The shielding problem is to design a policy πshield that
combines π̂ and πbackup (i.e., πshield(x) ∈ {π̂(x), πbackup(x)})
in a way that (i) uses π̂ as frequently as possible, and (ii)
the trajectory generated by πshield from any x0 ∈ X0 is safe.
Specifically, we must guarantee (ii), but not necessarily (i)—
i.e., πshield must be safe, but may be suboptimal. The key
challenge is deciding when to use π̂ and when to use πbackup.

Finally, to guarantee safety, we must make some assump-
tion about X0; we assume X0 ⊆ Xinv.

c) Model predictive shielding (MPS): Our algorithm for
computing πshield(x) is shown in Algorithm 1. At a high
level, it checks whether πbackup can ensure safety from the
state x′ = f (π)(x) that would be reached by π̂. If so, then
it uses π̂; otherwise, it uses πbackup.

More precisely, let N ∈ N be given. Then, a state x ∈ X
is recoverable if for the trajectory x0, x1, ... generated by

πbackup from x0 = x, there exists t ∈ {0, 1, ..., N − 1} such
that (i) xi ∈ Xsafe for all i ≤ t, and (ii) xt ∈ Xinv. Intuitively,
πbackup safely drives the robot into an invariant state from x
within N steps. In Algorithm 1, ISRECOVERABLE checks
whether x ∈ Xrec.

Then, πshield uses π̂ if f (π̂)(x) is recoverable; otherwise,
it uses πbackup. We have the following:

Theorem III.1. The trajectory generated by πshield from any
x0 ∈ X0 is safe.

We give proofs in Appendix VII.

Remark III.2. The running time of our algorithm on each
step is O(N) due to the call to ISRECOVERABLE (assuming
π̂ and πbackup run in constant time). We believe this overhead
is reasonable in many settings; if necessary, we can safely
add a time out, and have ISRECOVERABLE return false if it
runs out of time.

IV. BACKUP POLICIES

We now discuss how to construct πbackup. Our construction
relies on safe equilibrium points of f—i.e., where the robot
remains safely at rest. Most robots of interest have such
equilibria—for example, the cart-pole has equilibrium points
when the cart and pole are motionless, and the pole is per-
fectly upright. Other examples of equilibrium points include
a walking robot standing upright, a quadcopter hovering at
a position, or a swimming robot treading water.

One challenge is that these equilibria may be unstable;
while the approach described in this section technically
ensures safety, it is very sensitive to even tiny perturbations.
For example, in the case of cart-pole, a tiny perturbation
would cause the pole to fall down. We describe how a way
to address this issue in Section V.

At a high level, our backup policy πbackup is composed
of two policies: (i) an equilibrium policy πeq that ensures
safety at equilibrium points, and (ii) a recovery policy πrec
that tries to drive the robot to a safe equilibrium point. Then,
πbackup uses πrec until it reaches a safe equilibrium point, after
which it uses πeq. Continuing our example, for cart-pole, πrec
would try to get the pole into an upright position, and then
πeq would stabilize the robot near that position. We begin by
describing how we construct πeq and πrec, and then describe
how they are combined to form πbackup.

A. Equilibrium Policy

An safe equilibrium point z ∈ Zeq ⊆ X × U is a pair
z = (x, u) such that (i) x = f(x, u), and (ii) x ∈ Xsafe. We
let

Xinv = {x ∈ X | ∃u ∈ U s.t. (x, u) ∈ Zeq}.

Furthermore, for (x, u) ∈ Zeq, we let πeq(x) = u; if multiple
such u exist, we pick an arbitrary one. Then, πeq and Xinv
satisfy the conditions for the backup policy. As we describe
below, we do not need to define πeq outside of Xinv.



B. Recovery Policy

Using πbackup = πeq can result in poor performance. In
particular, πbackup it is undefined outside of Xinv, so Xrec =
Xinv. As a consequence, πshield will keep the robot inside
Xinv. However, since Xinv consists of equilibrium points, the
robot will never move.

Thus, we additionally train a recovery policy πrec that
attempts to drive the robot into Xinv. The choice of πrec
can be arbitrary; however, πshield achieves lower loss for
better πrec. There is sometimes an obvious choice (e.g., for
a autonomous car, πrec may simply slam the brakes), but not
always.

In general, we can use reinforcement learning to train
πrec. At a high level, we train it to drive the robot from a
safe state reached by π̂ to the closest safe equilibrium point.
First, we use initial state distribution drec; we define drec by
describing how to take a single sample x ∼ drec: (i) sample
an initial state x0 ∼ d0, (ii) sample a time horizon t ∼
Uniform({0, ..., N}), (iii) compute the trajectory x0, x1, ...
generated by π̂ from x0, and (iv) reject if xt 6∈ Xsafe;
otherwise take x = xt. Second, we use loss `rec(x, u) =
−I[x ∈ Xinv], where I is the indicator function. We can
also use a shaped loss—e.g., `rec(x, u) = ‖x − x′‖2, where
x′ ∈ Xinv is the closest safe equilibrium point. Then, we use
reinforcement learning to train

πrec = argmin
π

Ex0∼drec

[
T−1∑
t=0

`rec(xt, ut)

]
,

where xt+1 = f(xt, ut), ut = π(xt), and T ∈ N.

C. Backup Policy

Finally, we have

πbackup(x) =

{
πeq(x) if x ∈ Xinv

πrec(x) otherwise.

By construction, πbackup and Xinv satisfy the conditions for a
backup policy.

V. UNSTABLE EQUILIBRIUM POINTS

For unstable equilibria z ∈ Zeq, we use feedback stabiliza-
tion to ensure safety. As in Section IV, πbackup is composed
of an equilibrium policy πeq, which is safe on Xinv, and a
recovery policy πrec, which tries to drive the robot to Xinv. In
this section, we focus on constructing πeq and Xinv; we can
train πrec as in Section IV. At a high level, we choose πeq to
be the LQR for the linear approximation f̃ of the dynamics
around z, and then use LQR verification to compute the states
Xinv for which πeq is guaranteed to be safe. We begin by
giving background on LQR control and verification, and then
describe our construction.

A. Assumptions

For tractability, our algorithm makes two additional as-
sumptions. First, we assume that the dynamics f is a degree

d polynomial. 3 Second, we assume that the safe set is a
convex polytope—i.e.,

Xsafe = {x ∈ X | Asafex ≤ bsafe},

where Asafe ∈ Rk×nX and bsafe ∈ Rk for some k ∈ N.

Remark V.1. As in prior work [26], for non-polynomial
dynamics, we use local Taylor approximations; while our
theoretical safety guarantees do not hold, safety holds in
practice since these approximations are very accurate. Fur-
thermore, as described below, our results easily extend to
arbitrary Xsafe.

B. LQR control
Consider linear dynamics f̃(x, u) = Ax + Bu, where

A ∈ RnX×nX and B ∈ RnX×nU , with loss `(x, u) =
x>Qx + u>Ru, where Q ∈ RnX×nX and R ∈ RnU×nU .
Then, the optimal policy for these dynamics is a linear
policy πeq(x) = Kx, where K ∈ RnU×nX , called the linear
quadratic regulator (LQR) [27]. 4 Additionally, the cost-to-
go function (i.e., the negative value function) of the LQR has
the form J(x) = x>Px, where P ∈ RnX×nX is a positive
semidefinite matrix. Both the LQR and its cost-to-go can be
computed efficiently [27].

To stabilize the robot near z ∈ Zeq, we use the LQR πeq for
the linear approximation f̃ of f around z; the cost matrices
Q,R can each be chosen to be any positive definite matrix—
e.g., the identity. Since f̃ becomes arbitrarily accurate close
to z, we intuitively expect πeq to be a good control policy.

C. LQR Verification
We can use LQR verification to compute a region around

(x, u) where πeq is guaranteed to be safe for an infinite
horizon [28], [26], [27]. Given a policy π, G ⊆ X is invariant
for π if for any initial state x0 ∈ G, the trajectory generated
by π from x0 is contained in G—i.e., if the robot starts from
any x0 ∈ G, then it remains in G. We have [27]:

Lemma V.2. Let π be a policy. Suppose that there exists
V : X → R and ε ∈ R satisfying

V (x) ≥ V (f (π)(x)) (∀x ∈ Gε = {x ∈ X | V (x) ≤ ε}).

Then, Gε is an invariant set for π.

Here, V is a closely related to a Lyapunov function, though
we do not need the usual constraint that V (0) = 0 and
V (x) > 0 otherwise; this definition suffices to guarantee
safety, but not Lyapunov stability. By Lemma V.2, given a
candidate function V , we can use optimization to compute
ε such that Gε is invariant. In particular, given a set F of
functions f : X → R, a policy π, and a candidate V , let

ε∗ = max
λ∈F,~µ∈Fk,ε′∈R

ε subj. to (1)

V (x)− V (f (π)(x)) + λ(x)(V (x)− ε′) ≥ 0
bsafe −Asafex+ ~µ(x)(V (x)− ε′) ≥ 0

λ(x), ~µ(x), ε′ ≥ 0

3In particular, f is a multivariate polynomial over x ∈ X with real
coefficients.

4The LQR is optimal for the infinite horizon problem.



where the constraints are required to hold for all x ∈ RnX .
We have the following [27]:

Lemma V.3. We have (i) Gε∗ is invariant for π, and (ii) π
is safe from any x0 ∈ Gε∗ .

As with candidate Lyapunov functions, we can choose our
candidate V to be the cost-to-go function J of πeq—i.e.,
V (x) = J(x) = x>Px. Indeed, for the linear approximation
f̃ , J is a Lyapunov function of πeq on all of RnX . Thus, J
is a promising choice of the candidate for V for the true
dynamics f .

The optimization problem (1) is intractable in general. We
use a standard modification that strengthens the constraints
to obtain tractability; the resulting solution is guaranteed to
satisfy the original constraints, but may achieve a suboptimal
objective value. First, for some d′ ∈ N, we choose F
to be the set of polynomials in x of degree at most d′.
Then, for π = πeq, each constraint in (1) has form p(x) ≥
0 for some polynomial p(x). We replace each constraint
p(x) ≥ 0 with the stronger constraint that p(x) is a sum-of-
squares (SOS))—i.e., p(x) = p1(x)

2+ ...+ pk(x)
2 for some

polynomials p1, ..., pk. If p(x) is SOS, then p(x) ≥ 0 for all
x ∈ X . With this modification, the optimization problem (1)
is an SOS program; for our choice of F , it can be solved
efficiently using semidefinite programming [28], [26], [27].

Remark V.4. Our approach is sound—i.e., the solution to
our SOS program is guaranteed to satisfy the constraints
in (1), so the statement of Lemma V.3 holds; however, our
solution may be suboptimal.

Remark V.5. For general Xsafe, given an equilibrium point
(x, u) ∈ Zeq, consider a convex polytope X̃safe = {x ∈ X |
Ãsafex ≤ b̃safe} satisfying (i) X̃safe ⊆ Xsafe, and (ii) x ∈
X̃safe. Then, we can conservatively use Ãsafe, b̃safe in place of
Asafe, bsafe when solving the optimization problem (1).

D. Equilibrium Policy

Given a safe equilibrium point z ∈ Zeq, let πeq be the
LQR for the linear approximation f̃ around z; then, we let
πz = πeq. Furthermore, let ε∗ be the solution to the SOS
variant of the optimization problem (1); then, we let Gz =
Gε∗ be an invariant set of πz . Now, we choose

πeq(x) = πρ(x)(x) and Xinv =
⋃
z∈Zeq

Gz,

where ρ(x) is the closest equilibrium point to x—i.e., ρ(x) =
argmin(x′,u′)∈Zeq

‖x− x′‖. In other words, πeq(x) uses the
LQR for the equilibrium point closest to x, and Xinv is the
set of states in the invariant set of some equilibrium point.
We have the following:

Theorem V.6. The trajectory generated using πeq from any
x0 ∈ Xinv is safe.

Remark V.7. Computing πeq is polynomial time, but may
still be costly—given x, we need to compute the nearest
equilibrium point z, and then compute πz and Gz . In practice,
we can often precompute these. For example, for cart-pole,

the dynamics are equivariant under translation. Thus, we can
compute the πz0(x) = K0x and Gz0 for the origin z0 =
(~0,~0), and perform a change of coordinates to use these for
other z. In particular, for any z = (x′,~0) ∈ Zeq, we have
πz(x) = K0(x− x′) and Gz = {x′ + x | x ∈ Gz0}.

VI. EXPERIMENTS

A. Experimental Setup

a) Benchmark: We evaluate our approach based on the
cart-pole [29]. In this task, the goal is to balance an inverted
pole on top of a cart, where we are only able to move the
cart left and right. The states are (x, v, θ, ω) ∈ R4 include the
position and velocity of the cart, and the angle and angular
velocity of the pole. The action a ∈ R is the acceleration
applied to the cart. The goal is to move the cart to the right
at a target velocity of v0 = 0.1, under a safety constraint
that the pole angle θ is bounded by θmax = 0.15 rad.

b) Reinforcement learning: We learn both π̂ and πrec
using backpropagation-through-time (BPTT) [30]. This al-
gorithm is a model-based reinforcement learning algorithm
that learns control policies by using gradient descent on the
reward gradients through the dynamics. Each policy π̂ and
πrec is a neural network with a single hidden layer containing
200 hidden units and using ReLU activiations. For training,
we randomly sample trajectories using initial states drawn
uniformly at random from [−0.05, 0.05]4, consider a time
horizon of T = 200, and use a discount factor γ = 0.99.

c) Shielding: We use ρ((x, v, θ, ω)) =
((x, 0, 0, 0), 0)—i.e., stabilize the pole to the origin at
the current cart position. We use the degree 5 Taylor
approximation around the origin for LQR verification, and
degree 6 polynomials for F in the SOS program. For our
shield policy πshield, we use a recovery horizon of N = 100.

d) Baselines: We compare our shield policy to two
baselines. The first is using the learned policy π̂ without a
shield. The second, is an ablation of our shield policy πshield
where the backup policy πbackup includes the invariant policy
πeq but not use the recovery policy πrec; equivalently, it is
our shield policy with a recovery horizon of N = 0.

e) Metrics: We consider both the reward and safety
probability. First, the reward is the total distance z traveled
by the cart; higher is better. Second, the safety probability is
the probability that a uniformly random state visited during
a randomly sampled rollout is safe (i.e., x ∈ Xsafe).

B. Results

In Figure 1 (left), we show the reward and safety prob-
ability achieved by our shield policy along with our two
baselines. Both our shielded policy and its ablation achieve
100% safety probability. In this case, the learned policy π̂
achieves perfect safety as well, though it is not guaranteed
to do so. Our shielded policy achieves lower reward than π̂,
but is guaranteed to be safe. Our ablation achieves the lowest
reward; it is unable to move very far since it cannot leave
Xinv. Thus, the recovery policy is critical for achieving good
performance.
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Fig. 1. Reward (gray) and safety probability (red) for original (left) and modified (middle) environments. We show means and standard errors estimated
using 100 random rollouts.

C. Changes in the environment

Changes in the environment are an important cause of
safety failures of learned policies. In particular, the learned
policy π̂ is tailored to perform well on a specific state
distribution; thus, if the problem changes (for instance,
different obstacle configurations or a longer time horizon),
then π̂ may no longer be safe to use. To demonstrate how
MPS can ensure safety in the face of such changes, we
consider a modification to the cart-pole where we increase
the time horizon. In particular, we only π̂ and πrec for rollouts
of length T = 200, but we then use them to control the cart-
pole for rollouts of length T = 1000.

In Figure 1 (middle), we show the reward and safety prob-
ability achieved by our shield policy and our two baselines
on this modified environment. As can be seen, both our
shield policy and its ablation continue to achieve 100% safety
probability. In this case, the learned policy π̂ achieves good
performance, but it does so by achieving a very low safety
probability (essentially zero).

VII. CONCLUSION

We have proposed an algorithm for ensuring safety of a
learned controller by composing it with a safe backup con-
troller. Our experiments demonstrate how our approach can
ensure safety without significantly sacrificing performance.
We leave much room for future work—e.g., extending our
approach to handle unknown dynamics, partial observability,
and multi-agent robots.

APPENDIX

Proof of Theorem III.1. We prove by induction that if
xt ∈ Xrec, then xt+1 = f (πshield)(xt) ∈ Xrec. The base case
holds since x0 ∈ X0 ⊆ Xstable ⊆ Xrec. For the inductive case,
there are two possibilities. (i) If x′ = f (π̂)(xt) ∈ Xrec, then
πshield(xt) = π̂(xt), so xt+1 = x′ ∈ Xrec. (ii) Otherwise,
πshield(xt) = πbackup(xt); clearly, xt ∈ Xrec implies that
x′′ = f (πbackup)(xt) ∈ Xrec, so xt+1 = x′′ ∈ Xrec. Thus,
the inductive case holds. The claim follows.

Proof of Lemma V.2. The claim follows by induction.

Proof of Lemma V.3. Consider any x such that V (x) ≤ ε.
To see (i), note that in the first constraint in (1), the second
term is negative since λ(x) ≥ 0, so V (x)−V (f (π)(x)) ≥ 0.
Thus, by Lemma V.2, Gε is invariant. Similarly, to see (ii),
note that in the second constraint in (1), the second term
is negative since ~µ(x) ≥ 0, so bsafe − Asafex ≥ 0. Thus,
x ∈ Xsafe for all x ∈ Gε. Since Gε is invariant, π is safe from
any x0 ∈ Gε.

Proof of Theorem V.6. We prove by induction on t
that xt ∈ Xstable for all t ≥ 0. The base case follows by
assumption. For the inductive case, note that xt ∈ Gρ(x), so
we have f (πρ(x))(xt) ∈ Gρ(x) since Gρ(x) is invariant. Thus,
xt+1 = f (πbackup)(xt) = f (πρ(x))(xt) ∈ Gρ(x), so the inductive
case follows. By construction, Xstable ⊆ Xsafe.
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