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Abstract— We consider an architecture of confidential cloud-
based control synthesis based on Homomorphic Encryption
(HE). Our study is motivated by the recent surge of data-driven
control such as deep reinforcement learning, whose heavy
computational requirements often necessitate an outsourcing
to the third party server. To achieve more flexibility than
Partially Homomorphic Encryption (PHE) and less computa-
tional overhead than Fully Homomorphic Encryption (FHE),
we consider a Reinforcement Learning (RL) architecture over
Leveled Homomorphic Encryption (LHE). We first show that
the impact of the encryption noise under the Cheon-Kim-Kim-
Song (CKKS) encryption scheme on the convergence of the
model-based tabular Value Iteration (VI) can be analytically
bounded. We also consider secure implementations of TD(0),
SARSA(0) and Z-learning algorithms over the CKKS scheme,
where we numerically demonstrate that the effects of the
encryption noise on these algorithms are also minimal.

I. INTRODUCTION

The growing demand of applications such as smart grids
[1] and smart cities [2] assures the important role of data
usage and connectivity via advanced data-driven algorithms.
However, the utility of advanced data-driven algorithms may
be limited in many real-world control systems since compo-
nents within the network are often resource-constrained. The
cloud-based control can be an appealing solution in such sce-
narios, although a naive outsourcing comes with a steep cost
of privacy. Recent literature in control has shown that the use
of HE could mitigate the issue of privacy to a certain extent.
However, there are many remaining challenges in encrypted
control technologies. For instance, in the current encrypted
control literature, the potential of FHE is not fully utilized,
even though FHE would be necessary to encrypt advanced
control algorithms, such as deep reinforcement learning [3].
RL framework has recently accomplished impressive feats
with successful applications from AlphaGo Zero to traffic
signal control, robot controls and many others, [4], [5], [6].
Its success is also bolstered by the availability of large-
scale data and connectivity. Thus, we wish to study a cloud-
based control synthesis architecture which can integrate two
promising technologies, namely HE and RL. In particular, we
examine the effects of using HE on RL both theoretically and
numerically.

The first applications of HE to control systems utilized
PHE since its relatively low computational overhead was
suitable for real-time implementations. On the other hand,
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FHE or LHE can support more general classes of computa-
tions in the ciphertext domain, although its computational
overhead makes it less suitable for real-time systems. In
this regard, we first make an observation that the encrypted
control can be better suited to the control synthesis problems
rather than control implementations. For instance, explicit
model predictive control (MPC) or RL problems require
heavy computations or a large set of data to synthesize
the control policy but implementing such policy may be
kept local as they are often relatively light computations. In
addition, real-time requirement is less stringent in control
law synthesis problems than control law implementation
counterpart.

A. Related Work

Various HE schemes were applied to the linear con-
troller in [7], [8], [9]. Importance of quantization and using
non-deterministic encryption scheme was identified in [7].
Necessary conditions on encryption parameters for closed-
loop stability were shown by [8]. The feasibility of FHE
in encrypted control was first shown in [9] by managing
multiple controllers. Evaluation of affine control law in
explicit MPC was shown by [10]. In [11] encrypted implicit
MPC control was shown to be feasible but the cost of privacy
as increased complexity was identified. Real-time proximal
gradient method was used in [12] to treat encrypted implicit
MPC control and it showed undesired computation loads of
encrypted control system. Privacy and performance degrada-
tion was further highlighted in [13] through experiments on
motion control systems. Dynamic controller was encrypted in
[14] using FHE exploiting the stability of the system while
not relying on bootstrapping. Despite significant progress,
encrypted control has been limited to simple computations
where the motivation for cloud computing is questionable.

B. Contribution

To study the feasibility of RL over HE, this paper makes
the following contributions. First, as a first step towards
more advanced problems of private RL, we formally study
the convergence of encrypted tabular VI. We show that the
impact of the encryption-induced noise can be made negli-
gible if the Q-factor is decrypted in each iteration. Second,
we present implementation results of temporal difference
(TD) learning (namely, TD(0), SARSA(0), and Z-learning
[15]) over the CKKS encryption scheme and compare their
performances with un-encrypted cases. Although the formal
performance analysis for this class of algorithms are difficult
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with encryption noise, we show numerically that these RL
schemes can be implemented accurately over LHE.

C. Preview

In section II, we summarize the relevant essentials of
RL and HE. In section III, we set up the encrypted con-
trol synthesis problem and specialize it to the encrypted
model-based and model-free RL algorithms. We analyze how
the encryption-induced noise influences the convergence of
standard VI. In section IV-A, we perform the simulation
studies to demonstrate the encrypted model-free RL over HE.
Finally, in section V, we summarize our contributions and
discuss the future research directions.

II. PRELIMINARIESS

A. Reinforcement Learning

RL can be formalized through the finite state Markov
decision process (MDP). We define a finite MDP as a
tuple (S,A, P,R), where S = (1, 2, . . . , n) is a finite state
space, A is a finite action space, P = P (st+1|st, at) is a
Markov state transition probability and R = R(st, at, st+1)
is a reward function for the state-transition. A policy can
be formalized via a sequence of stochastic kernels π =
(π0, π1, ...), where πt(at|s0:t+1, a0:t) is a mapping for each
state st ∈ S to the probability of selecting the action at ∈ A
given the history (s0:t−1, a0:t−1).

We consider a discounted problem with a discount factor
γ ∈ [0, 1) throughout this paper. Under a stationary policy
π, the Bellman’s optimality equation can be defined through
a recursive operator T applied on the initial value vector V π0
of the form V π = (V (1), . . . , V (n))π:

(TV π)(st) = max
at

∑
st+1

P [R+ γV π(st+1)]. (1)

Throughout this paper, we adopt the conventional defini-
tion for the maximum norm ‖·‖∞. The following results are
standard [16].

Lemma 1: (a) For any vectors V and V̄ , we have

‖TV − T V̄ ‖∞ ≤ γ‖V − V̄ ‖∞.

(b) The optimal value vector V ∗ is the unique solution to
the equation V ∗ = TV ∗,

(c) We have
lim
k→∞

T kV = V ∗

for any vector V .
If some policy π∗ attains V ∗, we call π∗ the optimal policy
and the goal is to attain the optimal policy π∗ for the given
MDP environment.

Often the state values are written conveniently as a func-
tion of state-action pairs called Q-values:

Qπ(st, at) =
∑
st+1

P [R+ γV π(st+1)], (2)

and for all state st, V πk+1(st) = maxat∈AQ
π(st, at).

RL is a class of algorithms that solves MDPs when the
model of the environment (e.g., P and/or R) is unknown.

RL can be further classified into two groups: model-based
RL and model-free RL [17]. A simple model-based RL
first estimates the transition probability and reward function
empirically (to build an artificial model) then utilizes the VI
to solve the MDP. Model-free RL on the other hand directly
computes the value function by averaging over episodes
(Monte Carlo methods) or by estimating the values iteratively
like TD learning.

TD(0) is one of the simplest TD learning algorithm where
the tuple (s,R, s′) is sampled from the one-step ahead
observation [18]. The on-policy iterative update rule for
estimating the value is called TD(0) and is written as follows:

V̂ πt+1(s) = V̂ πt (s) + αt(s)δt. (3)

δt denotes the TD error and is computed with the sample as

δt = R(s, a) + γV̂ πt (s′)− V̂ πt (s),

starting with an initial guess V̂ π0 . We use V̂ to indicate that
the values are estimated. With some standard assumptions on
the step size αt(s) and exploring policies, the convergence
of TD(0) is standard in the literature, see [19].

B. Homomorphic Encryption

HE is a structure-preserving mapping between the plain-
text domain P and the cipher-text domain C. Thus, encrypted
data in C with a function f(C) can be outsourced to the cloud
for confidential computations.

PHE supports only the addition or the multiplication.
On the other hand, LHE can support both the addition
and the multiplication but the noise growth of ciphertext
multiplication is significant without the bootstrapping [20].
The bootstrapping operation can promote a LHE scheme
to FHE enabling unlimited number of multiplications but it
requires a heavy computation resource on its own.

In order to use both addition and multiplication necessary
in evaluating RL algorithms, we use an LHE. In particular,
we employ CKKS encryption scheme proposed in [21] as it
is well suited for engineering applications and also supports
parallel computations. Also, there exists a widely available
library optimized for implementations. We will only list and
describe here several key operations and properties with more
detailed information found in Appendix. We are particularly
concerned with the fact that the CKKS encryption is noisy
(due to error injection for security) but if properly imple-
mented, the noise is manageable.

The security of CKKS scheme assumes the difficulty of
the Ring Learning With Errors (RLWE) problem. Security
parameters are a power-of-two integer N , a ciphertext mod-
ulus Q and the variance σ used for drawing error from a
distribution. The operation KeyGen uses security parameters
(N , Q, σ) to create a λ-bit public key pk, a secret key sk,
and an evaluation key evk.

III. ENCRYPTED LEARNING OVER THE CLOUD

A. Cloud-based reinforcement learning

Our control loop consists of the plant (environment) and
the controller (client) and the cloud server. We are concerned



Fig. 1. Encrypted RL Control synthesis with cloud in the loop.

with a possible data breach at the cloud. In order to prevent
the privacy compromise of our data such as training data
set and other parameters at play, we add the homomorphic
encryption module as seen in Fig. 1. In particular, we ignore
the malleability risks [22] inherent to the considered HE
scheme, which is beyond the scope of this paper. In our con-
text, Syn(Enc(·)) can be thought of as a ciphertext domain
implementation of RL algorithms. However, Syn(Enc(·)) is
a general control synthesis that can be evaluated remotely.
Ideal uses for Syn(Enc(·)) would include advanced data-
driven control synthesis procedures such as MPC, or Deep
RL. We emphasize that the encryption adds communication
delays for control policy synthesis but does not add an extra
computation cost to control implementation. For RL, the
controller’s task is to implement the most up-to-date state-
action map π that is recently synthesized, which can be done
locally.

We assume the tabular representation of the state and
action pairs. The client explores its plant and samples the in-
formation set ht = (st+1, at, rt). Other necessary parameters
such as learning rate αt(s) and γ are grouped as θ denoting
the hyperparmeters. This set of data is then encrypted by
the CKKS encryption module to generate ciphertexts cv ,
cv′ , cα, cγ , and cr, which are encrypted data for V̂ πt (s),
V̂ πt (s′), αt(s), γ, and R(s, a), and will be used to implement
(3). Note that the subscripts refer to the value when these
ciphertexts are decrypted. The cloud is instructed on how to
evaluate the requested algorithms in ciphertexts. One may
concern about the cloud knowing the form of the algorithm,
but this can be resolved by the circuit privacy. That is, we
can hide the actual computation steps by adding zeros or
multiplying ones in ciphertexts on the original algorithm. We
also assume that the cloud is semi-honest so that the cloud
faithfully performs the algorithm as instructed. The output
of the cloud is a newly synthesized policy πt(s0:t), which,
after a decryption, can be accessed on real-time by the client
to produce the control action at(st).

As a first step towards investigating more sophisticated
RL algorithms, we specialize the proposed framework to
solving RL problems in finite MDP with more elementary

methods. In particular, we consider the basic model-based
RL and model-free RL using tabular algorithms. For the
model-based, we theoretically analyze the convergence of
VI under the presence of encryption-induced noise. For the
model-free, we implement the encrypted TD algorithms to
estimate the values and investigate how the encryption noise
affects the output.

B. Encrypted Model-based RL

The client is assumed to explore the plant, sample the
information sets ht and build the model first. A simple model
of the state-transition probability can be in the form

P (st+1|st, at) =
N(s, a, s′)

N(s, a)
, (4)

where N(s, a, s′) denotes the number of visits to the triplet
(s, a, s′) and N(s, a) to the pair (s, a) with s, s′ ∈ S, a ∈
A. Similarly, the reward function R(st, at, st+1) can be
quantified by the average rewards accumulated per the state-
action pair.

Then, the client can encrypt the initial values of the state
along with the model P and R and the discount rate γ
and request the cloud to perform the computation of (2)
over the ciphertext domain. Since comparison over HE is
non-trivial, the max operation is difficult to be implemented
homomorphically. Thus, the cloud computes the Q values
and the controller will receive the decrypted Q values and
completes the VI process for iteration index k:

Ṽ πk+1(st) = max
at∈A

Q̃π(st, at). (5)

However, note that the Q values computed by the cloud
will be noisy due to the encryption, hence we use Q̃ and Ṽ
to denote the noisy value. Let w(st, at) be the encryption-
induced noise produced by computations over HE. Then, the
noisy Q values can be written as

Q̃π(st, at) = Qπ(st, at) + w(st, at), (6)

where the noise term is bounded such that |w(st, at)| ≤ ε
∀st, at for some ε > 0. Appendix A shows how ε depends
on the encryption parameter and operations used to evaluate
the given algorithm.

We now analyze the discrepancy between two sequences
of vectors V πk and Ṽ πk . We separate the analysis into the
synchronous and the asynchronous cases.

1) Synchronous VI: The synchronous VI means that the
VI is applied to all state s simultaneously. First note that V πk
is computed by the noiseless VI

V πk+1(st) = max
at∈A

∑
st+1

P [R+ γV πt (st+1)]

= (TV πk )(st) ∀st ∈ S, (7)

and Ṽ πk is computed by the noisy VI

Ṽ πk+1(st) = max
at∈A

∑
st+1

P [R+ γV πk (st+1) + w(st, at)]

(8)



We will utilize the following simple lemma, whose proof is
straightforward and hence omitted.

Lemma 2: For any arbitrary vectors x = (x(1), . . . , x(n))
and w = (w(1), . . . , w(n)) such that ‖w‖∞ ≤ ε,

max
i

(x(i) + w(i)) = max
i

(x(i)) + w̃ (9)

for some constant w̃ satisfying |w̃| ≤ ε.
By applying Lemma 2 on the noisy VI (8),
we obtain

Ṽ πk+1(st) = max
at∈A

∑
st+1

P [R+ γṼ πk (st+1) + wk(st, at)]

= max
at∈A

∑
st+1

P [R+ γṼ πk (st+1)] + w̃k(st)

= (T Ṽ πk )(st) + w̃k(st),
(10)

where the vector w̃k satisfies ‖w̃k‖∞ ≤ ε. In the vector form,
(10) can be written as

Ṽ πk+1 = T Ṽ πk + w̃k,

= T̃ Ṽ πk . (11)

We can now quantify the worst-case performance degra-
dation due to the encryption-induced noise. The result is
summarized in the next Theorem.

Theorem 1: (Approximate VI, [16]) Let V ∗ be the optimal
value function characterized by Lemma (1) (a). Suppose Ṽ πk
is the sequence of vectors computed by the noisy VI (8). For
an arbitrary initial condition Ṽ0, we have

lim sup
k→∞

‖V ∗ − Ṽ πk ‖∞ ≤
ε

1− γ
.

Proof: Let V πk be the sequence of vectors computed
by the noiseless VI (7) with arbitrary initial conditions V π0
and Ṽ π0 . Then,

‖V πk+1 − Ṽ πk+1‖∞ = ‖TV πk − T Ṽ πk+1 − w̃k‖∞ (12a)

≤ ‖TV πk − T Ṽ πk ‖∞ + ‖w̃k‖∞ (12b)

≤ ‖TV πk − T Ṽ πk ‖∞ + ε (12c)

≤ γ‖V πk − Ṽ πk ‖∞ + ε, (12d)

where the first inequality (12b) follows from (11), and (12c)
follows from the triangular inequality, and the last inequality
is due to Lemma (1). Now define a sequence ek of positive
numbers by

ek+1 = γek + ε (13)

with e0 = ‖V π0 − Ṽ π0 ‖∞. By geometric series,

lim sup
k→∞

ek =
ε

1− γ
.

Comparing (12) and (13), we have by induction

‖V πk − Ṽ πk ‖∞ ≤ ek,∀k = 0, 1, 2, . . . .

Therefore,

lim sup
k→∞

‖V πk − Ṽ πk ‖∞ ≤
ε

1− γ
. (14)

Since (14) holds for any V π0 , we can pick V π0 = V ∗ for
which we have V πk = T kV ∗ = V ∗ for k = 0, 1, 2, . . . by
lemma (1), we obtain the desired result.

2) Asynchronous VI: It is often necessary or beneficial to
run the VI algorithm asynchronously, or state-by–state, for
simulations. We can define the asynchronous noiseless and
noisy VI with the new mapping F and F̃ , respectively.

FV πk (st) =

{
(TV πk )(s) if s = st,

V πk (st), otherwise,
(15)

F̃ Ṽ πk (st) =

{
(T̃ Ṽ πk )(s) if s = st,

Ṽ πk (st), otherwise.
(16)

In each case, we make the following assumption.
Assumption 1: (a) Each state is visited for updates in-

finitely often.
(b) There exists a finite constant M , which is greater than

or equal to the number of updates to sweep through
each state at least once.

Assumption 1 is essential for the following theorem as it
ensures that the mapping F and F̃ are contraction operators
as long as all the states are visited at least once and that the
time it takes for visiting all the states at least once is finite.
A common approach to ensure this assumption would be to
incorporate exploring actions as seen in ε-greedy policy.

Now, define the iteration sub-sequence {kn}n=0,1,2,...

such that k0 = 0 and each state is visited at least
once between kn+1 and kn. For instance, consider a finite
MDP with 4 states denoted s1, s2, s3, s4. If the state tra-
jectory is (s1, s2, s4, s3, s1, s1, s2, s4, s3, s1, s1, ...) for t =
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...), then the sub-sequence kn
formed is k0 = 0, k1 = 4, k2 = 9, . . . .

Theorem 2: Let V ∗ be the optimal value function as
defined previously. Suppose Ṽ πkn is the sequence of vectors
computed by the asynchronous noisy VI (16) under Assump-
tion 1. For an arbitrary initial condition Ṽ0, we have

lim sup
n→∞

‖V ∗ − Ṽ πkn‖∞ ≤
Mε

1− γ
.

Proof: By definition of mapping F and F̃ , we can
write:
‖V πkn+1

− Ṽ πkn+1
‖∞ = ‖F kn+1−knV πkn − F̃

kn+1−kn Ṽ πkn‖∞
≤ ‖F kn+1−knV πkn − F̃

kn+1−kn Ṽ πkn‖∞
+ (kn+1 − kn)ε

(17)
Similar to the proof of Theorem 1, the inequality is due
to the bound of the error vector and the triangle inequality.
Now, we note that the asynchronous mapping is a contraction
mapping with respect to a sequence index kn. Thus, we have

‖V πkn+1
− Ṽ πkn+1

‖∞ ≤ γ‖V πkn − Ṽ
π
kn‖∞ + (kn+1 − kn)ε.

By forming a sequence with n as it is done in the previous
proof, and by the Assumption 1−(b), it yields

lim sup
n→∞

‖V πkn − Ṽ
π
kn‖∞ ≤

Mε

1− γ
. (18)

By expanding the left hand side and applying the reverse
traingle inequality

‖V πkn − Ṽ
π
kn‖∞ = ‖V πkn − V

∗ − (Ṽ πkn − V
∗)‖∞

≥ ‖Ṽ πkn − V
∗‖∞ − ‖V πkn − V

∗‖∞, (19)



for which we know the second term approaches zero in the
limit. Since the left hand side is bounded in the limit with
constants, we achieve the proposed result.

Theorem 2 assures that the encrypted VI outsourced to the
cloud also guarantees a comparable performance asymptoti-
cally.

C. Encrypted Model-free RL

Consider again the TD(0) update rule, (3). The cloud
receives the set of ciphertexts {cv , cv′ , cα, cγ , cr}. Then,
the update rule in the ciphertext domain becomes:

cv(t+1) = cv(t)+ cα · cr + cα · cγ · cv′(t)− cα · cv(t). (20)

Upon decryption of cv(t + 1), we need to remember
that the computed value is corrupted with the noise. A
similar error analysis for the TD algorithms can be performed
(perhaps using stochastic approximation theory). However,
the formal analysis in this domain presents some difficulties.
Whereas a conventional theory on stochastic approximation
with an exogenous noise seen in [16] requires the noise
to approach zero in the limit and bounded, the encryption-
induced noise satisfies only the bounded condition. We thus
only provide some implementation results at this time to gain
some insight. We hope to rigorously prove this case as in the
future work.

IV. SIMULATION

We present implementation results of various model-free
(TD(0), SARSA(0), and Z-learning) RL algorithms over the
CKKS implementation scheme. The environment used is the
grid world with the state size |S| = 36 for all three and
the action size |A| = 9 for the first two. The available
actions are up, up-right, right, down-right, down, down-left,
left, up-left, and stay. The reward is fixed as randomly set real
numbers to simulate unknown environment. The client starts
with a policy π at the box coordinate (1,1), top-left and the
grid world has three trap states and one goal state, marked
by letters T and G, which terminate the current episode.
In each episode, we set the maximum number of steps at
which the current episode terminates as well. The learning
parameter set θ consists of the discount factor, learning rate,
and exploration percentage. As soon as the new data set ht
containing the reward (or cost) and values of states s and s′

become available, the client uploads the encrypted data to
the cloud.

Choosing encryption parameters is not straightforward but
there exists a standardization effort, [23]. Also, an open-
source library SEAL [24] provides a practical tutorial and
accessible tools along with encryption parameter generator.
We use the default 128-bit security (λ = 128) encryption
parameters (N ,Q, σ) generated by SEAL with the user input
of N . These are listed in Table I. The size of N need not
be this large as there is no parallel operation exploited for
the particular example application considered in this paper.
However, future applications such as multi agents RL or deep
RL can find such capability useful as they contain many
batch operations.

TABLE I
ENCRYPTION PARAMETERS

Param. TD(0) SARSA(0) Z-learning
N 8192 8192 16384
Q 219 219 441
σ 8√

2π
8√
2π

8√
2π

The CKKS encryption without employing a bootstrapping
allows a predetermined depth for multiplication. Thus, for
interested users, it is important to note the largest depth of
ciphertext multiplications needed to evaluate the algorithm at
hand. For example, TD(0) update rule considered in equation
(20) requires cα · cγ · cv′(t) at the most. This is factored into
the design your encryption parameters.

To examine the effect of encryption noise, we created
two tables. One keeps track of the values of un-encrypted
updates and the other keeps track of the values updated
over HE. We recorded the error between two values through
each iteration. At final stages of learning, these errors were
confirmed to be bounded by some constant of very small
magnitude. Although formal convergence analysis of model-
free algorithms such as TD(0) are currently not available
in this paper, simulation results suggest that they can be
performed in the encrypted domain as equally well. Formal
analysis of these algorithms based on the analysis already
done is left as future research.

A. Prediction: TD(0)

We implement a GLIE (greedy in the limit with infinite
exploration) type learning policy seen in [25], where the
client starts completely exploratory (ε = 1.00) and slowly
becomes greedy (ε = 0.00) with more episodes. The learning
rate is set to be 0 for non-visited states and for visited states,
we set α(s, t) = 500

500+n(s,t) , with n(s, t) counting the number
of visits to the state s at time t, to satisfy the standard
learning rate assumptions. The discount factor is γ = 0.9.
*RULE* for TD(0) is the right hand side of equation (20).

B. Control: SARSA(0)

The update rule for SARSA(0) is:

Q̂t+1(s, a) =Q̂t(s, a) + αt(s, a)δSt , (21)

where δSt =
(
r(s, a) + γQ̂t(s

′, a′)− Q̂t(s, a)
)
.

The policy for SARSA(0) is also a GLIE (greedy in the
limit with infinite exploration) type learning policy used in
TD(0). The learning rate α(s, t) and the discount factor γ are
unchanged. *RULE* for SARSA(0) is the right hand side
of equation (20) after substituting cv and cv′ with cQ and
cQ′ .



Algorithm 1 Encrypted TD Learning
Client (Start)

1: Perform an action a and state transition s → s′ on a
policy πt to earn a reward r.

2: Collect the transition data set ht. Index values from the
current table using ht.

3: Encode values (Q-values if SARSA(0); Z-values if Z-
learning) and the set θ into the encoded messages Vt
and Θ, respectively.

4: Encrypt Vt and Θ to get Ṽ and Θ̃ and upload to the
cloud.

Cloud
1: Extract ciphertexts from Ṽ and Θ̃.

Example: extract {cz , cz′ , cα, cl, c l
2
} (Z learning).

2: Update: use the *RULE* with ciphertexts extracted.
3: Upload the result of *RULE*, denoted by ciphertect c*,

back to the Client.
Client

1: Decrypt the ciphertext c* to get the updated H̃ .
2: Decode H̃ to get the newly synthesized table of values.
3: Update the policy πt if necessary.
4: go to Start
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Fig. 2. State-value map learned over encrypted TD(0); states are numbered
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increased as it propagates from reaching goal states more often once the
policy becomes greedy (see Fig. 2) and its error dominates between iterates
t = 30000 and 35000.

Unknown

T

T

T

G

1 2 3 4 5 6

1

2

3

4

5

6
0

0.5

1

1.5

2
10 episodes learned

T

T

T

G

1 2 3 4 5 6

1

2

3

4

5

6
0

50

100

150

Final episode learned

T

T

T

G

1 2 3 4 5 6

1

2

3

4

5

6
0

50

100

150

200

250

Fig. 4. Value map learned over encrypted SARSA(0)

0 1 2 3 4 5 6 7

104

0

1

2

3

4

5

6
10-4 Maximum norm of encryption error in values

0 1 2 3 4

104

0

50

100

150

200
SARSA(0) values (State #15)

0 1 2 3 4

104

0

2

4

6
10-4 Encryption error (State #15)

Fig. 5. Maximum norm of encryption errors in SARSA(0) over each
iterate t (top). The un-encrypted and decrypted values for each state are
computed using the equation V ∗ = maxa Q̂(s, a). Bottom-left shows the
sample history of value V ∗(s = 15) and the associated encryption error
V̂ πt (s = 15)− Ṽ πt (s = 15).
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Fig. 7. Maximum norm of encryption errors in Z-learning over each iterate
t (top). The state 30 converges to the highest Z value as seen in Fig. 4. Un-
encrypted Z value updates show more variance than TD(0) counterparts due
to constant exploration. Encryption error in state 30 is the highest error until
about t = 22000 which can be seen in maximum norm but it is bounded
by a very small number.

C. Control: Z-Learning
An off-policy learning control called Z-learning was pro-

posed in [15]. It is formulated on the key observation that
the control action can be regarded as an effort to change
the passive state transition dynamics. The update rule for
Z-learrning is:

Ẑt+1(s) = Ẑt(s) + αt(s)δ
Z
t , (22)



where δZt = exp(−lt)Ẑt(s′) − Ẑt(s). The estimate Z is
named the desirability function and it uses the cost lt
associated with the unknown state-transitions, rather than the
reward. Z-learrning by default is exploratory. Thus, we fix
the policy to be greedy (ε = 1.00) but it will continuously
explore, too. The learning rate α(s, t) and the discount factor
are unchanged. *RULE* for Z-learning is evaluating the
right hand side of equation (22) after encrypting. Since
evaluating exp(−lt) over a ciphertext is not straightforward,
we approximate with Taylor series.

D. Results

We observed that encryption-induced noise over time
approached some small numbers with minimal fluctuations.
Moreover, the effects of encryption-induced noise were min-
imal regarding the convergence of values. This observation
complements the analysis on VI in Section III as the TD-
algorithms are sampling based value estimation algorithms.

Encryption and decryption are all done at the client’s
side and so significant computation time is expected for
the client. For this reason, the ideal application will require
less frequent needs for uploading and downloading and more
advanced synthesis procedure that operate on a large set of
data.

V. CONCLUSION AND FUTURE WORK

We considered an architecture of confidential cloud-based
RL over LHE. For the model-based RL, we showed that
the impact of the encryption noise on the convergence
performance can be analytically bounded. For the model-
free RL, we numerically tested implementations of TD(0),
SARSA(0), and Z-learning and numerically confirmed that
the impacts of the encryption noise on these algorithms are
also minimal. Although the applications considered do not
necessarily require the cloud, we can develop the framework
to adopt to more advanced synthesis algorithms in the future.

There are numerous directions to extend this paper. First,
the effort to derive analytical performance guarantees for
encrypted RL (including the model-free schemes considered
in this paper) is necessary to prove the utility of the encrypted
RL concept. Second, an encrypted RL scheme that does not
require periodic decryption (similar to the case in [26]) is
highly desired as the periodic decryption and communication
between the cloud and the controller is costly. Finally, more
extensive numerical experiments are needed to fully under-
stand the potential of advanced RL (e.g., deep Q learning)
over HE. The interplay between computational overhead,
delay, accuracy and security levels must be studied from both
theoretical and experimental perspectives.

VI. APPENDIX

A. CKKS Encryption Scheme

CKKS encoding procedure maps the vector of complex
numbers sized N2 to the message m in plain-text space P .
The plaintext P is defined as the set ZQ[X ]/

(
XN + 1

)
,

where ZQ[X ] denotes the polynomials of x ∈ X whose
coefficients are integers modulo Q, and XN + 1 denotes the

degree N cyclotomic polynomials. This allows for CKKS
encryption scheme to accept multiple complex-valued inputs
of a size N2 at once, which is convenient for many computing
applications.

Then, encryption on the message m ∈ P yields the
ciphertext c ∈ C

Encpk(m) = c, (23)

Each ciphertext is designated with a level L, which in-
dicates how many multiplications you can perform before
decryption fails. This is a key limitation in comparison to
FHE.

The encryption also creates a noise polynomial e. A
properly encrypted ciphertext has a bound on the message
‖m‖∞ ≤ p and also on the noise ‖e‖∞ ≤ B when the norm
is defined on those polynomials. Thus, a CKKS ciphertext
can be defined as a tuple c = (c, L, p,B). Then, decryption
can be defined as follows.

Dec(c, sk) ≡ m+ e (mod qL), (24)

where qL is the coefficient modulus at level L.
For ciphertexts ci = Encpk(mi) at the same level L,

Add(c1, c2) = cadd
= (cadd, L, p1 + p2, B1 +B2), (25)

Dec(Add(c1, c2), sk) ≡ m1 +m2 +eadd (mod qL), (26)

where ‖eadd‖∞ ≤ B1 +B2.
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