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Abstract— Control co-design (CCD) is a technique for im-
proving the closed-loop performance of systems through the
coordinated design of both plant parameters and an optimal
control policy. While model predictive control (MPC) is an
attractive control strategy for many systems, embedding it
within a CCD algorithm presents challenges because obtaining
a closed-form solution for this receding-horizon optimization
strategy is often not feasible. This paper meets that challenge
by including a robust MPC formulation within the inner loop of
a CCD algorithm. As exemplified by application to an aircraft
thermal management system, the proposed algorithm closely
matches the plant design of an open-loop benchmark. However,
unlike the open-loop approach, the proposed algorithm can
leverage MPC control variables designed a priori to achieve
robust online operation under disturbance profiles that differ
from those used for design.

I. INTRODUCTION

As performance requirements for a wide range of systems
become more stringent, control co-design (CCD), also known
as combined plant and control design, has been gaining
renewed attention. This is due to the performance limitations
of designing a controller only after the plant is designed, and
thus the open loop dynamics are fixed. Instead, by consid-
ering both the design of plant parameters and an optimal
control policy at the same time, more degrees of freedom
are available to the engineer to achieve desired performance
objectives. CCD has largely been limited to the design of
static optimal control policies. However, this precludes the
use of CCD with attractive control methods, such as model
predictive control (MPC), which explicitly considers state
and input constraints and uses a finite prediction horizon
to take anticipatory control actions. Because MPC is often
implemented as an online optimal control problem without
a closed-form solution, there are significant challenges to
embedding this control method within a CCD approach.

CCD is an interdisciplinary research area with contri-
butions from engineering design and control experts alike.
Control systems researchers have emphasized the design
of CCD methods that synthesize static optimal controllers,
ranging from LQR [1], [2], [3] to H-infinity [4], [5]. In the
design community, a major emphasis is on static parameter
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optimization and an open-loop control policy that assumes
the future is known perfectly [6], [7]. In [8], Diangelakis et
al. present a CCD algorithm with multi-parametric MPC that
provides an explicit relationship between the control actions
and design variables. However, explicit MPC approaches are
typically limited to low-order systems and short horizons
due to the computational complexity and memory storage
requirements associated with a priori solutions of the control
laws. To account for disturbance and process uncertainties,
[9], [10], [11] use system identification techniques at each
optimization step to quantify closed-loop variability. Ref.
[12] uses MPC within a simultaneous plant and controller
optimization for a hybrid electric vehicle.

In this paper we present a control co-design algorithm
for optimizing both plant parameters and a robust model
predictive controller for systems with bounded additive un-
certainty. The proposed algorithm incorporates a recursive
MPC optimization within an inner loop without requiring
a closed-form solution. This results in a set of optimal
control variables and feedback gains that can be implemented
in closed-loop without requiring online optimization. We
demonstrate the efficacy of the algorithm through a case
study on a notional aircraft thermal management system.

The remainder of the paper is organized as follows. In Sec.
II we derive the model of a notional thermal management
system used to exemplify the proposed CCD algorithm. Sec.
III describes that algorithm which incorporates the design of
a robust MPC controller. In Sec. IV, we present an open-
loop CCD algorithm used as a baseline for comparison.
Sec. V illustrates the efficacy of the proposed algorithm in
application to the thermal management system, and Sec. VI
concludes the paper.

II. PRELIMINARIES: DUAL-TANK THERMAL
MANAGEMENT SYSTEM

Here we derive the plant model that will be used through-
out the rest of the paper. The dual-tank fuel thermal manage-
ment system (plant) considered in this work and developed
originally in [13], [14] is shown in Fig. 1.

In the dual tank architecture, working fluid with mass Mr

and temperature Tr exits a dedicated recirculation tank with
controlled mass flow rate ṁr. Concurrently, working fluid
with mass Mf and temperature Tf exits a secondary reservoir
tank with controlled mass flow rate ṁf . The two controlled
flows are mixed with a valve to produce downstream mass
flow rate ṁm and temperature Tm. The mixed working fluid
absorbs energy from a pulsed heat load Q̇h applied to a
heater component with lumped working fluid temperature
Th and thermal capacitance Ch. Downstream of the heater,
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working fluid is allowed to exit the cycle at mass flow
rate ṁe; this mimics some aircraft thermal management
systems wherein the working fluid is actually fuel for the
engine and exits the system as needed for propulsion and
power generation. The remaining working fluid flows into
a cooler with lumped working fluid temperature Tc and
thermal capacitance Cc where thermal energy is rejected
to a secondary system at a temperature Ts via resistance
element Rs. The working fluid is then routed back into the
recirculation tank to complete the thermal loop.

Fig. 1. Schematic of a notional dual-tank aircraft thermal management
system.

Five dynamic states are sufficient to describe the first law
dynamics of the system: Mf , Mr, Th, Tc, and Tr. The
heat load Q̇h, secondary source temperature Ts, and exiting
flow rate ṁe are treated as exogenous disturbances while the
mass flow rates from each tank, ṁf and ṁr, are treated as
control inputs. The state equations for the dual-tank system
are given in Eq. (1),

dMf

dt
= −ṁf (1a)

dMr

dt
= ṁf − ṁe (1b)

Ch
dTh

dt
= ṁmcp (Tm − Th) + Q̇h (1c)

Cc
dTc

dt
= (ṁm − ṁe) cp (Th − Tc) +

1

Rs
(Ts − Tc) (1d)

Mr
dTr

dt
= (ṁm − ṁe) (Tc − Tr) , (1e)

where cp is the specific heat capacity of the working fluid and
the algebraic mixing equations are given by ṁm = ṁf +ṁr

and ṁmTm = ṁfTf + ṁrTr.
We note that the parameters Ch, Cc, Tf , and Rs are plant

design variables that can be optimized along with a control
policy in a CCD algorithm. The selection of these parameters
captures tradeoffs between the mass/size and capability of
individual components in the system. For example, a large
value of Cc corresponds to a large cooler component which
may be advantageous from a thermal management perspec-
tive but disadvantageous from a system mass perspective.
We also note that the dynamic state describing the mass of
fluid in the reservoir tank, Mf , is an uncontrollable state in

the dual-tank topology. Therefore, the robust MPC algorithm
formulated in this paper must leverage the controllable
subsystem of the plant.

In the following section, we derive our robust control co-
design (rCCD) algorithm that directly leverages a receding-
horizon robust MPC formulation in the CCD algorithm itself,
thereby enabling the design of an optimal plant/controller
design that is more robust to uncertainties in the expected
load profile than designs resulting from conventional open-
loop algorithms in the literature.

III. ROBUST CONTROL CO-DESIGN WITH
RECEDING-HORIZON MPC

Here we describe our proposed robust control co-design
(rCCD) algorithm, which includes a robust MPC (rMPC)
formulation nested within the algorithm. We note that while
the formulation here is aimed at optimizing the plant design
and control policy of a dual-tank fuel thermal management
system for minimum fluid mass, the proposed formulation is
widely applicable to a range of actively-controlled dynamic
systems.

A. Algorithm Description

Our rCCD algorithm directly incorporates a receding-
horizon rMPC synthesis into a CCD algorithm. In other
words, we solve a receding-horizon rMPC problem at each
time step of a desired performance profile. We discretize
the entire time horizon into nt = tf/τs time steps where
tf is the final time and τs is the control sample rate.
We treat the initial state variables of the system, x0, and
the initial control variables of the system, u0, as decision
variables. Plant design parameters Ch, Cc, Tf , and Rs are
also treated as decision variables in vector p. We define
the optimization problem based on a nominal disturbance
profile D = [dk=1, d2, . . . , dnt

], where dk ∈ Rnd is the
vector of disturbances at the kth time step and nd is the
number of exogenous disturbances acting on the system. In
addition to this nominal disturbance, we also assume there
exists a bounded uncertainty in the disturbances given by
the set W := {w ∈ Rnd | w ≤ w ≤ w̄}. Hence the true
disturbance at the kth time step is given by d̃k = dk + wk.
The symbols ᾱ and α represent upper and lower bounds on
the variable α.

The objective of our rCCD algorithm is to minimize the
initial mass of working fluid in the dual-tank system. We note
that in applications such as aircraft thermal management,
lower mass generally correlates with desired performance
criteria such as increased fuel efficiency. The full statement
of the rCCD optimization problem is shown in Eq. (2) and
the algorithm is described by the pseudo code in Alg. 1. The
rMPC formulation nested within each iteration of the rCCD
algorithm is stated in Eq. (3). Additionally, Fig. 2 provides a
block diagram representation of the interaction between the
plant and controller design elements optimized in the rCCD
algorithm.
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Fig. 2. Block diagram illustration of the plant and control elements
optimized in the proposed rCCD algorithm.

min
x0,u0,p

Jsys

s.t. hk = 0 ∀ k ∈ [1, nt]

xk+1 = f (xk, uk, dk, tk) ∈ X ∀ k ∈ [1, nt]

X :=
{
x ∈ R5| x ≤ x ≤ x̄

} (2)

where

Jsys = Msys =
1

cp
(Cc + Ch) +Mf,0 +Mr,0

p = [Cc, Ch, Tf , Rs]T

x0 = xt=0 = [Mf,0, Mr,0, Th,0, Tc,0, Tc,0]T

u0 = ut=0 = [ṁf,0, ṁr,0]T

hk := rMPC (Eq. (3)) feasibility maps to {0, 1}
uk := synthesized in nested rMPC formulation in Eq. (3)

We initialize the algorithm by setting the outer loop itera-
tion index to j = 1 and assigning initial guesses for the plant
variables p(j), initial state variables x(j)0 , and initial control
variables u(j)0 . We then evaluate the objective function value
Jsys for the jth iteration. Recall that for our algorithm,
Jsys = Msys is the amount of working fluid in the system
at time t = 0.

We then enter the inner loop of the rCCD algorithm,
which uses the receding-horizon rMPC formulation in Eq. (3)
to evaluate robust feasibility for the plant/controller design
combination in outer loop iteration j. The nested rMPC prob-
lem is a robust min-max MPC formulation [15] that attempts
to ensure constraint satisfaction for disturbances d̃i = di+wi

with wi ∈ W for the Np-length receding horizon. The
decision variables within the rMPC algorithm are open-loop
control variables C = [ci=1, c2, . . . , cNp

] and the distur-
bance uncertainty variables W = [wi=1, w2, . . . , wNp ].
The objective of the rMPC formulation is to minimize the
total control effort at each time step subject to constraints
that ensure the state variables xi and control variables ui
remain within the sets X and U , respectively, for all uncertain
disturbance variables wi for which wi ∈ W holds. The state
Mf , which is uncontrollable, is also constrained to remain
within a bounded region. We note that the rMPC algorithm

has full preview of the planned disturbances for the Np steps
in the prediction horizon.

The inner loop is initialized by setting the inner loop
iteration index to k = 1 and stepping through each time
step k = [1, nt]. The process begins by assigning the
(expected) disturbance vector di for each ith time sample in
the Np-length prediction horizon. We then linearize about the
current state, discretize the linear dynamics, and extract the
controllable subsystem. We note that the linearization at each
time step is performed to maintain an accurate control model
since the masses in the two tanks change considerably during
operation. We use the resulting discrete-time controllable
system to solve for a static LQR gain matrix Kk for the
kth time step. The gain matrix is then passed to the rMPC
problem. If the rMPC problem has a feasible solution for the
kth time step, we assign the outer loop constraint variable for
that time step, hk, a zero value. Alternatively, if the rMPC
problem has an infeasible solution for the kth time step, hk
is assigned a value of one. In future work we will seek to
incorporate guarantees of closed-loop stability and recursive
feasibility under this successive linearization [16].

For a feasible time step k, we store the open-loop control
variables for the first step of the rMPC horizon, ci=1, and
the static gains Kk, in the sets C and K, respectively. The
total control input uk for the time step is computed based
on the optimal open-loop control variables from the rMPC
problem, the static gains for the time step, and the linearized
point (denoted by superscript e in Alg. 1). We then simulate
the continuous-time, nonlinear plant (see Eq. (1)) forward
from tk to tk+1 using the kth state xk, control input uk, and
expected disturbance dk to obtain the state xk+1 at time tk+1.
Outer loop iteration j is deemed feasible if and only if hk =
0 and xk+1 ∈ X ∀ k ∈ [1, nt]; in other words, we require
both a feasible rMPC problem and a subsequent state xk+1

(simulated on the nonlinear plant) within the allowable set
X for each time step k. Once feasibility has been evaluated,
the decision variables are updated for iteration j+ 1 and the
process is repeated until the tolerance ε for the user-chosen
optimization solver is satisfied.

min
C

max
W

Ju =

Np∑
i=1

cTi Rci

s.t. xi+1 = Axi +B2ui +B1d̃ ∈ X ∀ i ∈ [1, Np]

Mf ≤Mf,i+1 ≤ M̄f ∀ i ∈ [1, Np]

ui ∈ U ∀ i ∈ [1, Np]

wi ∈ W ∀ i ∈ [1, Np]

X :=
{
x ∈ R4| x ≤ x ≤ x̄

}
U :=

{
u ∈ R2| u ≤ u ≤ ū, |ui − ui−1| ≤ δū

}
W :=

{
w ∈ R3| w ≤ w ≤ w̄

}
(3)

where



Algorithm 1: Proposed rCCD algorithm
1 initialize decision variables for outer loop with iteration

index j;
2 j ← 1, p(j) ← p(1), x(j)0 ← x

(1)
0 , u(j)

0 ← u
(1)
0 ;

3 initialize tolerance variable, ∆J ← 1;
4 while ∆J ≥ ε (iterate until convergence) do
5 compute J(j)

sys for current iteration j using p(j);
6 k ← 1;
7 xk ← x

(j)
0 , uk ← u

(j)
0 , C(j) ← ∅, K(j) ← ∅;

8 for k = 1 : nt do
9 assign disturbance signal di ∀ i ∈ [k, k +Np];

10 linearize about current point (x, u, d);
11 discretize dynamics, extract controllable system;
12 compute LQR gain matrix for kth step, Kk;
13 evaluate feasibility of rMPC problem in Eq. (3);
14 if Eq. (3) has feasible solution then
15 hk ← 0, (feasible time step k);
16 C(j) ←

{
C(j), ci=1

}
, ci=1 from Eq. (3);

17 K(j) ←
{
K(j), Kk

}
;

18 uk ← ci=1 +Kk (xk − xe) + ue;
19 simulate nonlinear plant over [tk, tk+1], to get

xk+1;
20 else
21 hk ← 1, (infeasible time step);
22 if here, outer loop iteration j is infeasible;
23 end
24 k ← k + 1;
25 end
26 if hk = 0 & xk+1 ∈ X ∀ k ∈ [1, nt] then
27 iteration j feasible, solver will compute current

tolerance ∆J and update decision variables to
converge toward smaller objective;

28 j ← j + 1;
29 update decision variables p(j), x(j)0 , u(j)

0 ;
30 else
31 iteration j infeasible, solver will update decision

variables as needed to converge toward feasible
solution;

32 j ← j + 1;
33 update decision variables p(j), x(j)0 , u(j)

0 ;
34 end
35 end

C = [ci=1, c2, . . . , cNp ]

W = [wi=1, w2, . . . , wNp ]

ui = ci +Kk (xi − xe) + ue

x = [Mr, Th, Tc, Tr]T

u = [ṁf , ṁr]T

d = [Q̇h, Ts, ṁe]T

d̃i = di + wi

Mf,i+1 = Mf,i − ṁf,i · τs

The optimal solution to the rCCD algorithm then outputs the
following variables and signals:

• optimal vector of plant variables p∗

• optimal initial state x∗0
• optimal initial control variables u∗0

• optimal sample-scheduled set of open-loop control vari-
ables stored in C∗ = {ck=1, c2, . . . , cnt

}
• optimal sample-scheduled set of static LQR gains stored

in K∗ = {Kk=1, K2, . . . , Knt}.

The resulting optimal system leverages both feedforward
and feedback control action from the inner loop receding-
horizon rMPC formulation. While theoretical guarantees of
recursive feasibility under disturbance uncertainty are left to
future work, the use of methods from the robust MPC liter-
ature allows the CCD algorithm to design a controller that
inherently seeks to compensate for disturbance uncertainty,
d̃ = d+ w such that w ∈ W , in maintaining constraints. In
the next section, we describe a conventional CCD algorithm
that will be used as a benchmark to evaluate the efficacy of
our proposed rCCD algorithm.

IV. BASELINE FOR COMPARISON: OPEN-LOOP CONTROL
CO-DESIGN

Direct transcription, or DT, is a popular CCD technique in
the literature wherein a system’s trajectory is discretized into
time steps, and the state and control variables at each time
step are treated as decision variables in a CCD algorithm
[6], [17], [18]. The DT CCD problem can then be solved
as a nonlinear program where the system state equations are
imposed as equality constraints. Here, we will use a similar
open-loop, all-at-once style CCD algorithm as a baseline
against which to benchmark our proposed rCCD algorithm.
We again discretize the entire time horizon into nt = tf/τs
time steps where tf is the final time and τs is the control
sample rate. We treat the vector of initial state variables of
the system x0 and the matrix U of control variables at each
kth time step uk, denoted as U = [uk=1, u2, . . . , unt

],
as decision variables. The plant parameters Ch, Cc, Tf ,
and Rs are again treated as decision variables in vector
p. The full statement of the open-loop CCD optimization
problem is given in Eq. (4); Fig. 3 provides a block diagram
representation of the plant and control elements designed
using the baseline OL CCD algorithm.

PLANT
𝑥𝑥𝑈𝑈∗

�̃�𝑑

Optimal full-horizon 
control signal from 
Eq. (4)

Disturbance signals

Plant design optimized with 
OL CCD algorithm in Eq. (4)

Fig. 3. Block diagram illustration of plant/control elements optimized in
a conventional OL CCD algorithm.



min
x0,U,p

Jsys

s.t. xk+1 ∈ X ∀ k ∈ [1, nt]

uk ∈ U ∀ k ∈ [1, nt] X :=
{
x ∈ R5| x ≤ x ≤ x̄

}
U :=

{
u ∈ R2| u ≤ u ≤ ū, |uk − uk−1| ≤ δū

}
(4)

where

Jsys = Msys =
1

cp
(Cc + Ch) +Mf,0 +Mr,0

U = [uk=1, u2, . . . , unt ]

p = [Cc, Ch, Tf , Rs]T

x = [Mf , Mr, Th, Tc, Tr]T

u = [ṁf , ṁr]T

d = [Q̇h, Ts, ṁe]T

x0 = xt=0 = [Mf,0, Mr,0, Th,0, Tc,0, Tc,0]T

xk+1 from simulating nonlinear plant over [tk, tk + τs]

Similar to the rCCD algorithm, the objective of the OL
CCD algorithm in Eq. (4), Jsys, is to minimize the initial
mass of working fluid in the dual-tank system, Msys. At
the kth discretized time step, the control variables uk are
decision variables and the state variables xk are functions
of the initial state x0 and control and disturbance variables
ui and di for all past time steps i ∈ [1, k]. We impose
constraints for each time step to ensure that the control
variables uk are within the bounded set U and the state
variables xk+1 are within the bounded set X , where U and
X are defined in Eq. (4) and the quantity δū represents a
maximum allowable change in the control variables. Subse-
quent state variables xk+1 are again computed by simulating
the continuous-time nonlinear plant, which is a function of
(xk, uk, dk, tk), forward in time from time tk to tk + τs.
As with conventional CCD algorithms in the literature, we
assume the algorithm has full access, or full preview, to a
disturbance profile D = [dk=1, d2, . . . , dnt

]. The outputs
of the OL CCD algorithm are (1) an optimal set of plant
parameters p∗, (2) an optimal initial state x∗0, and (3) the
optimal set of control variables for the entire performance
profile U = [uk=1, u2, . . . , unt

].
A main drawback of this class of DT-style open-loop

CCD algorithms is they are susceptible to uncertainty in the
exogenous disturbance signals; in other words, the optimal
solution is reliant on an assumed disturbance profile. How-
ever, a fully optimized trajectory for one load (disturbance)
profile may be ill-equipped to handle other load profiles. In
the following section, we use a set of case studies to illustrate
how our proposed rCCD algorithm can meet constraints in
the presence of uncertainty in the load profile.

V. RESULTS: CCD CASE STUDIES

In this section, we present a set of case studies to illustrate
the efficacy of the proposed rCCD algorithm. We use the
conventional OL CCD strategy presented in Sec. IV as a
benchmark against which to compare.

A. Optimal System Design Comparison

For the case studies and results in this work, each algo-
rithm is solved using the NOMAD nonlinear optimization
algorithm, which interfaces with MATLAB through the open-
source OPTI toolbox [19]. The optimizations were performed
on a 32-core machine with a 3.0 GHz processor and 32 GB
RAM. The rMPC problem nested in the rCCD algorithm
is solved using the IPOPT solver interfaced with YALMIP
[20]. We use water as the working fluid with a mission
time (full time horizon) of 100 seconds and a one second
control sample time for each algorithm. Table I summarizes
the optimal plant designs and optimal initial states, along
with the enforced upper and lower bounds for each quantity,
for both the OL CCD algorithm and the rCCD algorithm.
We note that optimal control variables are not presented
in Table I for brevity; however, they will be presented
graphically in subsequent subsections.

TABLE I
COMPARISON OF OPTIMAL SYSTEM DESIGNS AND CHARACTERISTICS:

OL CCD VS. PROPOSED RCCD.

Design Units Lower Upper OL CCD rCCD
variable bound bound

Cc kJ/K 5.0 20.0 5.0 5.0
Ch kJ/K 5.0 20.0 5.0 5.0
Rs K/kW 4.0 5.0 4.6 4.9
Tf C 20.0 30.0 20.0 20.0

Mf ,0 kg 0.10 10.0 0.32 0.35
Mr,0 kg 0.10 10.0 0.10 0.10
Th,0 C 45.0 50.0 49.9 48.0
Tc,0 C 7.5 50.0 34.7 7.5
Tr,0 C 7.5 50.0 19.6 7.5

J∗ = M∗
sys (kg) 2.81 2.84

Table I shows that the optimal objective function values are
very similar for each algorithm. The minimum total working
fluid mass that meets all constraints for the rCCD case is
M∗

sys = 2.84 kg, which is just 1.0% higher than the optimal
value M∗

sys = 2.81 kg for the OL CCD case. We note that,
in either case, several of the optimal decision variables take
on the lower bounds of the respective variables. The lower
bounds of the plant decision variables were chosen such that
the lumped parameter quantities here accurately represent the
characteristics of high-fidelity physical components such as
those optimized in [5]. The benefit of the optimal system
design resulting from our rCCD algorithm, however, is that
the plant/controller combination is designed to be robust to
uncertainties in the load profile for disturbances d̃ = d +
w for all w ∈ W . Conversely, the optimal design in the
OL CCD is geared toward a specific load profile and is not
optimized to be robust to load uncertainty. The case studies
in the following subsections will demonstrate this through
simulation.

B. Case Study 1: Perfect Disturbance Knowledge

We first examine the optimal system responses assuming
perfect disturbance knowledge at the system-build stage. In
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Fig. 4. Case Study 1, perfect disturbance knowledge: both OL CCD and
rCCD plant/controller designs meet the constraints with perfect knowledge
of the load profile.

other words, the actual load profile is the exact profile the
systems were optimized for. The simulated results are shown
in Fig. 4.

Figure 4(a) shows profiles for the heat load Q̇h and
mass flow rate exiting the thermal loop ṁe. Figures 4(b)-
4(c) show the optimal control signals resulting from the
rCCD and OL CCD algorithms, and Fig. 4(d) shows the
heater outlet temperature state Th for each algorithm. We see
from Fig. 4(d) that each algorithm satisfies the temperature
constraints for the heater outlet temperature. In this case,
the OL CCD algorithm represents the best possible initial
fluid mass Msys that will permit a controller to satisfy the
constraints due to its full knowledge of the load profile.
Recall that the inner loop rMPC problem in the rCCD algo-
rithm was formulated to minimize total control effort. The

rCCD algorithm leverages both its feedforward and feedback
control action to meet the constraints while conserving mass
flow (control effort) from each tank. We note that even
though each algorithm satisfies the heater outlet temperature
constraints in Case Study 1, the optimal control signals are
still different in the OL CCD and rCCD cases due to the
fundamental differences between the OL CCD algorithm’s
open-loop control policy and the rCCD algorithm’s recursive
closed-loop (feedback) control policy.

C. Case Study 2: Unplanned Load Profile

Now we consider cases where the profile encountered
during system operation is different from the load profile
planned for in both the rCCD and OL CCD algorithms. In
this case study, the actual loads d̃ = d+w are chosen to be
within the uncertainty set w ∈ W that Alg. 1 was designed
for. The simulated results are shown in Fig. 5.

Figure 5(a) gives profiles for Q̇h and ṁe, Figs. 5(b)-5(c)
give the optimal control signals, and Fig. 5(d) shows the
state temperature Th for each algorithm. In Fig. 5(a), the
dashed curves represent the load profiles used to optimize
the plant/controller designs in the CCD algorithms. The
solid curves and dotted curves, conversely, represent the
actual load profiles simulated on each optimal plant. Profile
1 represents a case where the disturbances are higher in
magnitude than what was planned for and Profile 2 represents
a case where the disturbances are lower in magnitude than
what was planned for. We note that the optimal control
signals for the OL CCD case in Figs. 5(b)-5(c) are the same
for both load profiles since they were completely optimized
pre-system build. The solid curves in Fig. 5(d) represent each
system’s response to Profile 1 and the dotted curves represent
the system responses to Profile 2.

The results in Fig. 5 indicate that while a conventional
CCD method such as the OL CCD algorithm in Sec. IV can-
not meet dynamic constraints in the presence of load uncer-
tainty, the optimal plant/controller design from our proposed
rCCD algorithm is robust to load uncertainties. Although
both the feedforward control variables and feedback control
gains for the system optimized using rCCD were designed
completely offline, the resulting optimal system is capable
of leveraging the corrective feedback input to satisfactorily
reject the actual heat load and drain rate disturbances en-
countered while satisfying system state constraints. In other
words, we are capable of designing a robust controller that
does not require any complex online (real-time) optimization.
Moreover, the proposed rCCD algorithm moves beyond the
current state-of-the-art in the CCD literature by specifically
leveraging robust MPC inside the co-design algorithm itself
to account for bounded additive uncertainties.
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(d) Heater temperature state (red dashed lines are constraint bounds).

Fig. 5. Case Study 2, unplanned load profiles: the pre-optimized rCCD
plant/controller is robust to uncertainties in the load profile.

VI. CONCLUSIONS

In this paper we proposed a nested control co-design
algorithm that uses robust model predictive control (rMPC)
to reject disturbance uncertainties in closed-loop. Plant pa-
rameters are optimized in the outer loop of the proposed
robust control co-design (rCCD) algorithm. The inner loop
utilizes an rMPC approach to account for bounded distur-
bance uncertainties and design feedforward and feedback
gains, thus enabling control variables optimized offline by
the rCCD algorithm to be used during online operation, even
when the disturbance profile differs from the expected one.

In a simulated case study, we applied the proposed ap-
proach to a dual-tank thermal management system, which
is notionally representative of fuel thermal management
systems in aircraft. The proposed algorithm achieved the
plant design objective to within 1% of a benchmark open-

loop approach. However, unlike the open-loop approach, the
proposed algorithm leveraged the feedback and feedforward
gains optimized by the rCCD algorithm to successfully reject
an unexpected disturbance signal while satisfying the control
objective of maintaining a cold plate surface temperature
within defined constraints. Future work will consider formal-
izing stability and robustness guarantees under recursive lin-
earization of the plant, as well as the use of gain scheduling
(rather than time-based scheduling) of the control variables
to accommodate other plant nonlinearities and address more
disparate disturbance profiles.
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