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Consistency of Distributionally Robust Risk- and Chance-Constrained

Optimization under Wasserstein Ambiguity Sets

Ashish Cherukuri and Ashish R. Hota

Abstract— We study stochastic optimization problems with
chance and risk constraints, where in the latter, risk is quan-
tified in terms of the conditional value-at-risk (CVaR). We
consider the distributionally robust versions of these problems,
where the constraints are required to hold for a family of
distributions constructed from the observed realizations of the
uncertainty via the Wasserstein distance. Our main results
establish that if the samples are drawn independently from
an underlying distribution and the problems satisfy suitable
technical assumptions, then the optimal value and optimizers of
the distributionally robust versions of these problems converge
to the respective quantities of the original problems, as the
sample size increases.

I. INTRODUCTION

Optimization problems under uncertain constraints are

pervasive in engineering applications. In the paradigm of

chance-constrained programs (CCPs), uncertain parameters

are treated as random variables and the uncertain constraints

are required to be satisfied with a high probability. However,

the feasibility set of a CCP is in general non-convex [1].

Furthermore, although the probability of constraint violation

is required to be small, the magnitude of constraint violation

could potentially be unbounded which is not desirable.

Consequently, recent approaches model uncertain con-

straints via coherent risk measures that preserve analytical

tractability; specifically the conditional value-at-risk (CVaR)

[2], [3]. In contrast with chance constraints, (i) CVaR pre-

serves the convexity of the feasibility set, (ii) it requires

the magnitude of constraint violation to be bounded in

expectation (to be made more precise in Section II-.1), and

(iii) CVaR constraints provide a convex inner approximation

of chance constraints [1]. Accordingly, CVaR-constrained

programs (referred to as risk-constrained programs (RCPs))

have seen widespread applications in financial engineering

[4], stochastic optimal control [5]–[7], safety-critical control

applications [8], robotics [9] and energy systems [10].

In order to solve stochastic optimization problems in

general and CCPs and RCPs in particular, the decision

maker needs to know the probability distribution of uncertain

parameters. In practice, this information is often unavailable

and instead, the decision maker has access to data about the

uncertainty in the form of samples. Accordingly, recent work

has focused on constructing a family of probability distribu-

tions or an ambiguity set from the observed samples followed

by solving the uncertain optimization problem in a worst-

case sense for all distributions in the ambiguity set. This

approach is referred to as distributionally robust optimiza-

tion. Within this paradigm, ambiguity sets defined via the

Wasserstein distance (see Section II for the definition) have

been shown to have desirable out-of-sample performance and

analytical tractability [11]–[13]. Motivated by these attractive

features, several recent works have proposed approximations

and finite-dimensional reformulations of Wasserstein distri-

butionally robust chance and CVaR constrained programs

[13]–[16]. This class of problems have also been studied

in the context of statistical learning [17], data-driven control

[18], [19], and optimal power flow [20], among others.

Note that the Wasserstein ambiguity set is defined directly

in terms of the available samples that are drawn from an un-

derlying data-generating distribution. Consequently, the dis-

tributionally robust problem instance is a random instance of

the original CCP (or RCP) defined in terms of the underlying

distribution. Therefore, in addition to analytical tractability

and finite sample guarantees, it is desirable to analyze how

well the optimal solution of the (random) distributionally

robust program approximates the optimal solution of the

original CCP (or RCP); particularly in the regime when the

number of samples grows to infinity. This property is termed

as asymptotic consistency in stochastic programming. While

asymptotic consistency has been established for Wasserstein

distributionally robust optimization problems [12], analogous

results for chance- and risk-constrained programs have not

been explored in the prior work.

In this paper, we show under suitable assumptions that if

the samples are being drawn from an underlying distribution

P, then the optimal solution and optimizers of the distribu-

tionally robust CCP or RCP converge to the corresponding

quantities of the CCP or RCP (defined with respect to P), as

the number of samples increases and the size of the ambigu-

ity set shrinks. We show that the convergence of the optimal

values is from above if the rate at which the ambiguity set

shrinks is chosen carefully. Our results provide the much

needed asymptotic theoretical justification for Wasserstein

distributionally robust constrained optimization programs.

Notation: The sets of real, positive real, non-negative real,

and natural numbers are denoted by R, R>0, R≥0, and N,

respectively. The extended reals are R = R ∪ {+∞,−∞}.

For N ∈ N, we let [N ] := {1, 2, . . . , N}. For brevity, we

denote max(x, 0) by x+. The closure of a set S is denoted

by cl(S). For a set S and N ∈ N, we denote the N -fold

cartesian product as SN := ΠN
i=1S. Similar notation holds

for the N -fold product of any probability distribution.

II. TECHNICAL PRELIMINARIES

Here we formally define the notion of CVaR, Wasserstein

distance, and data-driven ambiguity sets.
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1) (Conditional) Value-at-Risk: Let Y be a (real-valued)

random variable with distribution P. For a tolerance level

α ∈ (0, 1), the value-at-risk (VaR) of Y at level α is

VaRP
α(Y ) := inf{y ∈ R | P(Y ≤ y) ≥ 1− α}. (1)

That is, it is the (1 − α)-quantile of the distribution of Y .

The conditional value-at-risk (CVaR) of Y at level α is

CVaRP
α(Y ) := inf

t∈R
{α−1EP[(Y + t)+]− t}. (2)

If Y has a continuous distribution, then CVaRP
α(Y ) =

EP[Y |Y ≥ VaRP
α(Y )], i.e., it is the conditional expectation

of Y given that Y exceeds VaRP
α(Y ).

2) Wasserstein ambiguity sets: Assume Ξ ⊆ Rm and d
to be a complete metric on Ξ. Let B(Ξ) and P(Ξ) be the

Borel σ-algebra and the set of Borel probability measures

on Ξ, resp. Let P1(Ξ) ⊆ P(Ξ) be the set of measures

with finite first moment. Following [12], the 1-Wasserstein

distance between any two measures µ, ν ∈ P1(Ξ) is

W1(µ, ν) := min
γ∈H(µ,ν)

{∫

Ξ×Ξ

d(ξ, ω)γ(dξ, dω)

}
, (3)

where H(µ, ν) is the set of all distributions on Ξ × Ξ with

marginals µ and ν. The minimum in (3) is attained because

the metric d is continuous [11].

We consider ambiguity sets containing distributions close

to the empirical distribution induced by the observed sam-

ples. Specifically, let P̂N := 1
N

∑N

i=1 δξ̂i be the empirical

distribution constructed from samples {ξ̂i}i∈[N ], where δ
ξ̂i

is the unit point mass at ξ̂i. We define the data-driven

Wasserstein ambiguity set as

Mθ
N := {µ ∈ P1(Ξ) | W1(µ, P̂N ) ≤ θ}, (4)

which contains all distributions with finite first moment that

are within a distance θ ≥ 0 of P̂N . In [21], it was shown

that Mθ
N is a weakly-compact subset of P1(Ξ).

III. DISTRIBUTIONALLY ROBUST RISK-CONSTRAINED

PROGRAMS AND THEIR CONSISTENCY

In this section, we introduce risk-constrained programs

and their distributionally robust counterparts. We consider

ambiguity sets defined by the Wasserstein metric and the

empirical distribution as discussed above. Our main result

establishes that as the number of samples increases, the

optimizers and the optimal value of the distributionally

robust problems converge, in an appropriate sense, to the

corresponding quantities of the original (with respect to the

true data-generating distribution) risk-constrained problem.

Throughout we consider Ξ ⊆ Rm and d to be a com-

plete metric. A canonical CVaR or risk-constrained program

(RCP) is of the form

min
x∈X

c⊺x

s. t. CVaRP
α(F (x, ξ)) ≤ 0,

(5)

where X ⊆ Rn is a closed convex set (potentially defined via

deterministic constraints), c ∈ Rn, α ∈ (0, 1), P ∈ P(Ξ) is

the distribution of the uncertain parameter ξ (see Section II-.2

for notation), and F : Rn × Ξ → R is called the constraint

function. Using (2), we can equivalently write the RCP as

min
x∈X,t∈R

c⊺x

s. t. EP[(F (x, ξ) + t)+]− tα ≤ 0.
(6)

By equivalent, we mean that x is a feasible point for (5) if

and only if there exists t such that (x, t) is feasible for (6).

The distributionally robust version of the RCP (5), which

we term as the distributionally robust risk-constrained pro-

gram (DRRCP), is given by

min
x∈X

c⊺x

s. t. sup
Q∈Mθ

N

inf
t∈R

EQ[(F (x, ξ) + t)+ − tα] ≤ 0, (7)

where Mθ
N is the data-driven Wasserstein ambiguity set

defined in (4). In other words, we require the CVaR constraint

to hold for all distributions that are within a distance θ ≥ 0
from the empirical distribution P̂N := 1

N

∑N

i=1 δξ̂i induced

by the samples {ξ̂i}i∈[N ], drawn independently from P. This

problem is of interest when the decision-maker does not

know the distribution P of the uncertain parameters and

instead has access to samples. Thus, the optimal solution

of (7) is robust with respect to a family of distributions that

are likely to have given rise to the observed samples.

We now present a set of general assumptions.

Assumption 3.1: (General assumptions on DRRCP): The

following hold:

(i) the function F : Rn × Ξ → R is continuous,

(ii) for every ξ ∈ Ξ, x 7→ F (x, ξ) is convex on X ,

(iii) for every x ∈ X , ξ 7→ F (x, ξ) is bounded on Ξ, and

(iv) F is uniformly Lipschitz over the set X , that is, there

exists L > 0 such that

|F (x, ξ) − F (x, ξ′)| ≤ L‖ξ − ξ′‖,

for all ξ, ξ′ ∈ Ξ and all x ∈ X .

We first reformulate (7) into a form similar to (6). The

below result shows that the inf and the sup operators in

the constraint defining DRRCP (7) can be interchanged. The

proof is an application of the min-max theorem due to [22]

stated as Theorem A.1 in the appendix. The results hold

under continuity, convexity, and boundedness conditions in

Assumption 3.1 and the proof is presented in the appendix.

Lemma 3.2: (Min-max equality for the constraint func-

tion): Suppose Assumption 3.1 (i)-(iii) hold. Then, for every

x ∈ X , we have

sup
Q∈Mθ

N

inf
t∈R

EQ[(F (x, ξ) + t)+ − tα]

=inf
t∈R

sup
Q∈Mθ

N

EQ[(F (x, ξ) + t)+ − tα]. (8)

As a consequence of the above result, we can write the

DRRCP (7) equivalently as

min
x∈X,t∈R

c⊺x

s. t. sup
Q∈Mθ

N

EQ[(F (x, ξ) + t)+ − tα] ≤ 0.
(9)



That is, x is a feasible point for (7) if and only if there exists

t such that (x, t) is feasible for (9). Having reformulated the

DRRCP into (9), we move on to the consistency analysis.

We require the following assumption throughout.

Assumption 3.3: (Sequence of finite-sample guarantees):

Sequences {βN} ⊂ (0, 1) and {ǫN} ⊂ (0,∞) are such that∑∞

N=1 βN < ∞, limN→∞ ǫN = 0, and the following finite-

sample guarantee holds for each N ∈ N,

PN (W1(P, P̂N ) ≤ ǫN) ≥ 1− βN . (10)

The above assumption imposes that as the number of

samples increases, the distance between the data-generating

distribution and the empirical distribution becomes van-

ishingly small with higher confidence. Recent works have

indeed established the existence of such sequences [12]. We

start our analysis with some preliminary lemmas.

Lemma 3.4: (Uniform convergence of distributions [12,

Lemma 3.7]): Under Assumption 3.3, we have

P∞
(

lim
N→∞

sup
Q∈M

ǫN
N

W1(Q,P) = 0
)
= 1.

The proof is analogous to the proof of [12, Lemma 3.7]

and is omitted in the interest of space. The above result shows

that if the Wasserstein radius decreases to zero in a carefully

chosen manner, then any sequence of distributions drawn

from the ambiguity sets converges to the true distribution.

Remark 3.5: (Comparison with [12]): Following the

above lemma, [12] proves asymptotic consistency of the op-

timal value and optimizers of distributionally robust expected

cost minimization programs under suitable boundedness and

continuity assumptions on the cost function. While con-

strained optimization programs can be written equivalently

as expected cost minimization problems via an indicator

function on the feasibility set, the consistency results from

[12] do not directly apply as the indicator function is not

bounded for points that violate the constraints. •

We now show that as the number of samples increases,

the constraint function of the DRRCP’s equivalent form (9)

converges uniformly to that of the RCP (6). We first define

v(x, t) := EP[(F (x, ξ) + t)+ − tα], (11)

v̂N (x, t) := sup
Q∈M

ǫN
N

EQ[(F (x, ξ) + t)+ − tα], (12)

where note that v̂N is a random function as the ambiguity

set depends on the samples. We now establish uniform P∞-

almost sure convergence of v̂N from above to v. For this,

we require the constraint function to be uniformly Lipschitz

continuous as stated in Assumption 3.1.

Lemma 3.6: (Uniform convergence of v̂N from above to

v): Let Assumption 3.1 (i), (ii) and (iv) hold. Further,

suppose Assumption 3.3 holds. Then, the following hold

P∞
(
v(x, t) ≤ v̂N (x, t) for all sufficiently large N

)
= 1,

P∞
(

lim
N→∞

sup
x∈X,t∈R

|v̂N (x, t) − v(x, t)| = 0
)
= 1,

where the first equality is satisfied for all (x, t) ∈ X × R.

Proof: Fix any (x, t) ∈ X × R. From (10), we deduce

that the following inequality holds with probability at least

1− βN ,

EP[(F (x, ξ) + t)+ − tα] ≤ sup
Q∈M

ǫN
N

EQ[(F (x, ξ) + t)+ − tα].

That is, PN (v(x, t) ≤ v̂N (x, t)) ≥ 1 − βN , for all N ∈
N. Since

∑∞

N=1 βN < ∞, from Borel-Cantelli Lemma [23,

Theorem 2.3.6], we obtain the first assertion.

From the uniform Lipschitz condition on F stated in

Assumption 3.1 (iv), we deduce that for any fixed (x, t) ∈
X × R and any ξ, ξ′ ∈ Ξ,

∣∣((F (x, ξ) + t)+ − tα
)
−
(
(F (x, ξ′) + t)+ − tα

)∣∣
= |(F (x, ξ) + t)+ − (F (x, ξ′) + t)+|

≤ |F (x, ξ)− F (x, ξ′)| ≤ L‖ξ − ξ′‖,

where the first inequality holds because the operator (·)+ is

Lipschitz with constant unity. The above reasoning implies

that the map ξ 7→ (F (x, ξ)+ t)+− tα is uniformly Lipschitz

over the set X × R. Using this fact in the dual form of the

definition of the Wasserstein metric [12], we conclude that
∣∣EP1 [(F (x, ξ) + t)+ − tα]−EP2 [(F (x, ξ) + t)+ − tα]

∣∣
≤ LW1(P1,P2), (13)

for any two distributions P1 and P2. Consider now a se-

quence of positive real numbers δN , N ∈ N such that

limN→∞ δN = 0. For each (x, t) ∈ X×R, let Q
(x,t)
N ∈ MǫN

N

be a δN -optimal distribution such that

E
Q

(x,t)
N

[(F (x, ξ) + t)+ − tα] ≤

v̂N (x, t) ≤ E
Q

(x,t)
N

[(F (x, ξ) + t)+ − tα] + δN . (14)

Existence of such a distribution is due to the fact that

expectation is a linear operator. Next, we have

|v̂N (x, t) − v(x, t)| ≤ |E
Q

(x,t)
N

[(F (x, ξ) + t)+ − tα]

− EP[(F (x, ξ) + t)+ − tα]|+ δN

≤ LW1(Q
(x,t)
N ,P) + δN

≤ L sup
Q∈M

ǫN
N

W1(QN ,P) + δN . (15)

The first inequality above uses (14), the second inequality

follows from the condition (13), and the last inequality due

to the fact that Q
(x,t)
N ∈ MǫN

N . Since the right-hand side

of (15) is independent of (x, t), we have

sup
(x,t)∈X×R

|v̂N (x, t)− v(x, t)| ≤ L sup
Q∈M

ǫN
N

W1(Q,P) + δN .

The proof then concludes by invoking Lemma 3.4.

We note here that the convergence from above of v̂N to v
is due to summability of βN in Assumption 3.3. If one only

needs convergence, then ǫN tending to zero is sufficient.

We now present our main result. We denote by J
RCP the

optimal value of (5) and for a given N , we let J
DRRCP

N and

{xDRRCPN }N∈N denote the optimal value and an optimizer

of (7), resp., where θ is set to ǫN satisfying Assumption 3.3,

i.e., ǫN is chosen depending on N and βN satisfying (10).



Theorem 3.7: (Asymptotic consistency of the

DRRCP (7)): Let Assumptions 3.1 and 3.3 hold. Assume

that the feasibility set of (5) has a nonempty interior and

that the optimizers of (5) belong to a compact set Y ⊂ X .

Moreover, assume that for sufficiently large N and any

sequence of i.i.d samples {ξ̂i}
N
i=1, optimizers of (7) with

θ replaced with ǫN belong to Y . Then, the following

statements hold P∞ - almost surely:

(i) J
RCP ≤ J

DRRCP

N for all sufficiently large N ,

(ii) J
DRRCP

N → J
RCP as N → ∞, and

(iii) any accumulation point of any sequence of optimizers

{xDRRCPN }N∈N is an optimal solution of the problem (5).

Proof: The first statement here follows from the first

assertion of Lemma 3.6. For the next two statements, the

proof strategy is to show an analogous convergence argu-

ment: that the optima and optimizers of (9) approach (6).

All convergence statements in this proof involving random

quantities hold P∞-almost surely and we omit restating this

fact for the sake of brevity. Denote the feasibility sets of (6)

and (9) as FRCP and FDRRCP

N , respectively. Then, FRCP =
{(x, t) ∈ X × R | v(x, t) ≤ 0} and FDRRCP

N = {(x, t) ∈
X×R | v̂N (x, t) ≤ 0}. Recall that the set FDRRCP

N is random.

Step 1: Defining W: Since F is continuous, Y is compact,

and F (x, ·) is bounded over Ξ for every x ∈ Y , we deduce

that the set
{
t
∣∣∣ EP[(F (x, ξ) + t)+] − tα ≤ 0, x ∈ Y

}
is

compact. Recall that optimizers of (5) belong to Y . Thus,

there exists a compact set T ⊂ R such that optimizers of (6)

belong to the set W := Y ×T . Similarly, for all sufficiently

large N and all sequence of N i.i.d samples, the set of

optimizers of (9) (with θ replaced with ǫN ) belong to the

set W . Since the intersection of Y and the feasibility set

of (5) has a nonempty interior, one can assume, without loss

of generality, that W ∩FRCP has a nonempty interior.

Step 2: Establishing FDRRCP

N → FRCP: Following

Lemma 3.6, we know that v̂N converges uniformly P∞-

almost surely to v. Using this fact, one can establish conver-

gence, defined in an appropriate sense, of FDRRCP

N to FRCP.

Specifically, we will show

lim
N→∞

sup
(x,t)∈FDRRCP

N
∩W

dist((x, t),FRCP) = 0, (16)

where dist((x, t),FRCP) is the distance of the point

(x, t) to the set FRCP, that is, dist((x, t),FRCP) =
inf(x′,t′)∈FRCP ‖(x, t) − (x′, t′)‖. We proceed with a contra-

diction argument to show (16). Recall the assertion that (16)

holds P∞-almost surely. Now, for the sake of contradiction,

assume that there exists a set of sequence of i.i.d samples

H :=
{
{ξ̂N (σ)}N∈N

∣∣∣ σ ∈ Σ
}

that has finite measure under the distribution P∞ and each

element of H violates the limit (16). Here, Σ is some

uncountable index set. To be more precise, H gives rise

to a set of sequences {{FDRRCP

N (σ)}N∈N | σ ∈ Σ} such

that each element in this set violates (16). This in turn

implies that for each σ ∈ Σ, one can assign a sequence

{(xN (σ), tN (σ)) ∈ FDRRCP

N (σ) ∩ W}N∈N and a constant

γσ > 0 such that

dist
(
(xN (σ), tN (σ)),FRCP

)
> γσ, ∀N ∈ N. (17)

Since W is compact, there exists a subsequence of

{(xN (σ), tN (σ))} that converges to some (x̄(σ), t̄(σ)) ∈
W . We denote this subsequence by {(xN (σ), tN (σ))} for

convenience. Then, due to continuity of v, for any ǫ/2 > 0,

there exists N1(σ) ∈ N such that

|v(xN (σ), tN (σ)) − v(x̄(σ), t̄(σ))| ≤ ǫ/2

for all N ≥ N1(σ). Moreover, by P∞-almost sure uniform

convergence of v̂N → v, for any ǫ/2 > 0, for almost all

σ ∈ Σ, there exists N2(σ) ∈ N such that

|v̂N (xN (σ), tN (σ))− v(xN (σ), tN (σ))| ≤ ǫ/2,

for all N ≥ N2(σ). Using the above two inequalities, we

conclude that for almost all σ ∈ Σ, for any ǫ > 0, there

exists N̄(σ) such that

|v̂N (xN (σ), tN (σ))− v(x̄(σ), t̄(σ))| ≤ ǫ, ∀N ≥ N̄(σ).

This implies that limN→∞ v̂N (xN (σ), tN (σ)) =
v(x̄(σ), t̄(σ)) for almost all σ. Since v̂N (xN (σ), tN (σ)) ≤ 0
for all N , we get v(x̄(σ), t̄(σ)) ≤ 0, that is,

(x̄(σ), t̄(σ)) ∈ FRCP for almost all σ ∈ Σ. This is in

contradiction with (17). Hence, we have established (16).

Step 3: Convergence of optimizers and optimal values:

Now let (xN , tN ) ∈ FDRRCP∗
N for all N , where FDRRCP∗

N

is the set of optimal solutions of (9). Since the sequence

{(xN , tN )} is contained in a compact set W , by abuse

of notation, we deduce that (xN , tN ) → (x̄, t̄) for some

(x̄, t̄) ∈ W . Since FRCP is closed and (16) holds, we get

(x̄, t̄) ∈ FRCP. By continuity,

lim
N→∞

c⊺xN = c⊺x̄ ≥ J
RCP, (18)

where J
RCP is the optimum value of (5).

Now, let (x∗, t∗) ∈ FRCP∗, where FRCP∗ is the set of

optimal solutions of (6). Since FRCP is convex and its interior

is nonempty, there exists a sequence {(xk, tk)}k∈N belonging

to the interior of FRCP such that (xk, tk) → (x∗, t∗). This

implies that for any ǫ > 0, there exists k̄ satisfying

c⊺xk̄ − J
RCP = c⊺xk̄ − c⊺x∗ ≤ ǫ. (19)

Since {(xk, tk)} belongs to the interior of FRCP and v̂N
converges to v uniformly over X × R, we deduce that

(xk̄, tk̄) ∈ FDRRCP

N for all sufficiently large N . For such

N , optimality of xN implies that c⊺xk̄ ≥ c⊺xN . Using

this fact in (19), we get J
RCP ≥ c⊺xk̄ − ǫ ≥ c⊺xN − ǫ.

Taking N → ∞ gives J
RCP ≥ c⊺x̄ − ǫ. Since ǫ can be

chosen arbitrarily small, we obtain J
RCP ≥ c⊺x̄. Combined

with (18), we conclude c⊺x̄ = c⊺x∗ and hence x̄ ∈ FRCP∗.

Finally, the argument holds for any convergent subsequence

of {(xN , tN )}. The convergence of the optimum values then

follows by continuity.

The first part of our result, that J
RCP ≤ J

DRRCP

N for all

sufficiently large N , signifies that the solution of the DRRCP



is a conservative approximation of the solution of the RCP

in the asymptotic regime.

Remark 3.8: (Discussion on assumptions of Theorem 3.7):

Our assumption on the interior of the feasibility set of (5)

being nonempty is a fairly standard assumption in consis-

tency analysis, e.g., [24, Theorem 5.5 and Proposition 5.30].

This ensures that the sample-based optimization problem

(problem stated in (7)) is feasible for large N . A sufficient

condition for this assumption to hold is the existence of

x ∈ X such that F (x, ξ) < 0 for all ξ ∈ Ξ; this condition

can be checked without knowing P or samples.

Similarly, our assumption on the existence of a compact

set Y ⊂ X containing the optimizers of (5) and (7) is also a

standard one for consistency analysis [24, Theorem 5.3 and

Proposition 5.3], and is required to establish the convergence

FDRRCP

N → FRCP. It is trivially satisfied if X is compact. If

X is unbounded, this assumption holds if x 7→ EP[F (x, ξ)]
and x 7→ EQ[F (x, ξ)] are coercive for some distribution Q ∈
Mθ

N (e.g., the empirical distribution). •
Next, we analyze the consistency of distributionally robust

chance-constrained programs.

IV. DISTRIBUTIONALLY ROBUST CHANCE-CONSTRAINED

PROGRAMS AND THEIR CONSISTENCY

Consider the chance-constrained program (CCP),

min
x∈X

c⊺x

s. t. P((F (x, ξ) ≤ 0) ≥ 1− α,
(20)

where we borrow the notation from Section III. In com-

parison with the RCP (5), here, we require the uncertain

constraint F (x, ξ) ≤ 0 to hold with a high probability,

i.e., at least 1 − α. Note that this constraint is equivalent

to VaRP
α(F (x, ξ)) ≤ 0 and in general, the set of points

satisfying the constraint is non-convex.

The distributionally robust version of the CCP (20), which

we term as the distributionally robust chance-constrained

program (DRCCP), is given as

min
x∈X

c⊺x

s. t. inf
Q∈Mθ

N

Q((F (x, ξ) ≤ 0) ≥ 1− α,
(21)

where Mθ
N is the ambiguity set defined in (4). We next

present the consistency analysis for the DRCCP. As ex-

plained before, the chance-constraint can render the feasibil-

ity set non-convex. Therefore, consistency requires the fol-

lowing conditions which are different from Assumption 3.1.

Assumption 4.1: (Regularity of CCP): The map F is uni-

formly continuous and either of the following holds:

(i) The distribution P satisfies

P({ξ ∈ Ξ | F (x, ξ) = 0}) = 0, for all x ∈ X.

(ii) The set-valued map H(x) := {ξ ∈ Ξ | F (x, ξ) ≤ 0}
is convex-valued and continuous over X (where con-

tinuity implies inner and outer semicontinuity of the

set-valued map) and for any x ∈ X , P(bdH(x)) = 0,

where bdH(x) denotes the boundary of the set H(x).

We have the following consistency result. The proof is

largely based on results from [25], where the consistency

analysis was done for ambiguity sets that are not random. A

key step in the proof is to establish almost sure convergence

of the feasibility set of the DRCCP to the feasibility set of the

CCP which requires the constraint function to be continuous.

Assumption 4.1, inspired by [25], states complementary

sufficient conditions which ensure this; [25, Example 4.3]

illustrates how Assumption 4.1 (ii) holds in cases where

Assumption 4.1 (i) fails.1

Theorem 4.2: (Asymptotic consistency of the

DRCCP (21)): Let Assumptions 3.3 and 4.1 hold.

Assume that there exists a compact set Y ⊂ X such that

the optimizers of (20) belong to Y . Suppose there exists an

optimizer x∗ of (20) that belongs to the closure of the set

{x ∈ X | P(F (x, ξ) ≤ 0) > 1− α}. Moreover, assume that

for sufficiently large N and any sequence of i.i.d samples

{ξ̂i}
N
i=1, optimizers of (21) with θ replaced with ǫN belong

to Y . Then, the following hold P∞ - almost surely:

(i) J
CCP ≤ J

DRCCP

N for all sufficiently large N ,

(ii) J
DRCCP

N → J
CCP as N → ∞, and

(iii) any accumulation point of any sequence of optimizers

{xDRCCPN }N∈N is an optimizer of the problem (20).

Here, J
CCP is the optimal value of (20) and for a given

N , J
DRCCP

N and {xDRCCPN }N∈N are the optimal value and an

optimizer of (21), respectively, where θ is set to ǫN .

Proof: By assumption, without loss of generality, one

can assume that X = Y is a compact set. Define

vCCP(x) := P(F (x, ξ) ≤ 0), (22)

v̂DRCCPN (x) := inf
Q∈M

ǫN
N

Q(F (x, ξ) ≤ 0), (23)

where {ǫN}N∈N ⊂ (0,∞) is any sequence satisfying the

hypotheses. Using Assumption 3.3 and following a similar

reasoning as presented in the proof of Lemma 3.6, we

conclude that for any x ∈ X ,

P∞
(
v̂DRCCPN (x) ≤ vCCP(x) for all sufficiently large N

)
= 1.

Consequently, J
CCP ≤ J

DRCCP

N for all sufficiently large N .

Regarding the convergence statements, note that from [25,

Theorem 4.9], Assumption 4.1 implies continuity of vCCP.

Further, from Lemma 3.4, we deduce that MǫN
N converges

weakly to P almost surely. That is, almost surely, any

sequence {PN ∈ MǫN
N } converges weakly to P. Thus,

from [25, Proposition 5.2, 5.3 and Theorem 3.2], we obtain

P∞
(
limN→∞ supx∈X |v̂DRCCPN (x) − vCCP(x)| = 0

)
= 1. The

proof concludes by applying [25, Theorem 3.4].

V. CONCLUSION

We have studied the asymptotic consistency of data-driven

distributionally robust risk- (captured by the CVaR) and

1The assumption is satisfied for several classes of functions. For example,
if the constraint function has an affine separable form F (x, ξ) = Ax +
Bξ, B has full column rank, and P has a continuous distribution, then
P(F (x, ξ) = 0) = 0 for any x.



chance-constrained optimization under Wasserstein ambigu-

ity sets. As a consequence, under suitable assumptions on

the problem data, the distributionally robust versions of the

problems can be used as “robust approximators” of the

original problems. In future, we plan to analyze the rate of

convergence of the consistency arguments. Particularly, we

wish to obtain confidence intervals for original optimizers

of the problems using the solutions of the distributionally

robust counterparts.

APPENDIX

The following result aids us in proving Lemma 3.2.

Theorem A.1: (Stochastic min-max equality [22]): Let M
be a nonempty and weakly compact set of probability mea-

sures on (Ξ,B(Ξ)). Consider a function g : Rn × Ξ → R.

Let T ⊆ Rn be a closed convex set. Assume that there

exists a convex neighborhood V of T such that for all

t ∈ V , the function g(t, ·) is measurable, integrable with

respect to all P ∈ M, and supP∈M EP[g(t, ξ)] < ∞. Further

assume that g(·, ξ) is convex on V for all ξ ∈ Ξ. Let

t̄ ∈ argmint∈T supP∈M EP[g(t, ξ)]. Assume that for every

t in a neighborhood of t̄, the function g(t, ·) is bounded

and upper semicontinuous on Ξ and the function g(t̄, ·) is

bounded and continuous on Ξ. Then,

inf
t∈T

sup
P∈M

EP[g(t, ξ)] = sup
P∈M

inf
t∈T

EP[g(t, ξ)].

Proof of Lemma 3.2: We suppress the variable x in the

proof for better readability. We verify that the hypotheses of

the min-max theorem (Theorem A.1) hold.

Drawing the parallelism in notation between our case and

Theorem A.1, note that here R plays the role of both T
and V ; Mθ

N that of M; and the function g is g(t, ξ) :=
(F (ξ) + t)+ − tα. Recall that Mθ

N is weakly compact.

Note that g is continuous as F is so. Further since F
is bounded, for every t ∈ R, the function ξ 7→ g(t, ξ)
is bounded and supQ∈Mθ

N
EQ[g(t, ξ)] < ∞. Finally, for

every ξ ∈ Ξ, t 7→ g(t, ξ) is convex. Thus, to conclude

the proof it remains to show that the infimum on the right-

hand side of (8) is attained. To this end, define the function

h(t) := sup
Q∈Mθ

N

EQ[(F (ξ)+t)+−tα]. Now, for any Q ∈ Mθ
N ,

the function t 7→ EQ[(F (ξ) + t)+ − tα] is convex and real-

valued. Since h is supremum over a family of such functions,

h is convex, lower semicontinuous [26, Proposition 2.1.2].

Further, for any ξ, (F (ξ) + t)+ − tα → ∞ as |t| → ∞.

This fact along with boundedness of F implies h(t) → ∞
as |t| → ∞. Thus, inft∈R h(t) exists. �
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