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Abstract—In this paper, we propose several rules to tune the
gains for a class of passivity-based controllers for nonlinear
mechanical systems. Such tuning rules prescribe a desired lo-
cal transient response behavior to the closed-loop system. To
establish the tuning rules, we implement a PID passivity-based
controller. Then, we linearize the closed-loop system, and we
transform the matrix of the resulting system into a class of
saddle point matrices to analyze the influence of the control
gains, in terms of the oscillations and the rise time, on the
transient response of the closed-loop system. Hence, the resulting
controllers stabilize the plant and simultaneously address the
performance of the closed-loop system. Moreover, our analysis
provides a clear insight into how the kinetic energy, the potential
energy, and the damping of the mechanical system are related
to its transient response, endowing in this way the tuning rules
with a physical interpretation. Additionally, we corroborate the
analytical results through the practical implementation of a
controller that stabilizes a two degrees-of-freedom (DoF) planar
manipulator, where the control gains are tuned following the
proposed rules.

I. INTRODUCTION

New technological trends have created new control chal-
lenges in which current linear techniques are not adequate
as the nonlinearities phenomena are no longer negligible.
Nonetheless, in contrast to the linear methods, the development
of a general framework to control nonlinear systems is still an
open question. Thus, the current nonlinear control techniques
are available only for special classes of systems. Furthermore,
the vast majority of the nonlinear control methods only focus
on the stability of the closed-loop system without providing
any insight into how to tune the control gains, and con-
sequently, disregarding some indicators of performance of
the closed-loop system. Nevertheless, in several cases, it is
essential to ensure a prescribed performance to solve a task at
hand, e.g., applications involving physical systems that require
high precision such as those found in aerospace, medical,
semiconductor manufacturing, among other industries.

Passivity-based control (PBC) methods offer a constructive
approach to control complex physical systems where the
exchange of energy between the plant and the environment
plays a central role [1]. Additionally, the gains of such
controllers may be associated with the physical quantities
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of the closed-loop system, i.e., energy and damping. While
there exist several references (e.g., [2], [3], [4]) where the
authors implement PBC techniques to ensure that the closed-
loop system exhibits a desired performance (e.g., L2 stability),
the results related to gain tuning for removing oscillations and,
or improving the rise time are scarce for PBC-methodologies.
Some works that we find in this line of research are [5] where
the authors propose a methodology for tuning the damping
gain in switched-mode power converters, [6] where the authors
improve the transient response of a class of mechanical system
by modifying the initial conditions of a dynamic controller,
and [7] where the author proposes a methodology–based on
the linearization of the system–to tune an interconnection and
damping assignment (IDA) PBC.

On the linear counterpart, several control design approaches
exist such that the resulting closed-loop system exhibits a
desired performance. In particular, for PID controllers, we
find the Ziegler-Nichols methods for single-input single-output
(SISO) systems [8]. While for multiple-input multiple-output
(MIMO) systems, we have diverse techniques as the ones
reported in [9], [10], and [11]. However, some disadvantages
of these methods include using heuristic approaches to derive
the rules, employing a first or second-order time-delay model
to approximate the real plant, or solving complex optimization
problems that involve linear matrix inequalities.

Due to the simple structure of PID controllers and the
suitability of PBC techniques to stabilize physical systems,
recently, several authors have paid particular attention to the
so-called PID-PBC approach (see [3], [4], [12], [13]). Some
remarkable properties of PID-PBCs are that i) in contrast to
other PBC techniques, the PID-PBC method does not require
the solution of partial differential equations (PDEs), and ii) the
tune of the control gains is trivialized for stability purposes.
Nonetheless, to the best of the authors’ knowledge, there is no
available literature that provides guidelines on how to tune the
gain of PID-PBCs to prescribe a desire performance in terms
of oscillations, damping ratio, or rise time.

Motivated by the lack of tuning guidelines for the PID-PBC
technique, the main contribution of this manuscript is a set of
tuning rules for the class of controllers described in [3] and
[4], that prescribes a desired local behavior of the closed-loop
system in terms of oscillations, damping ratio, or rise time.
The rules are obtained by inspecting the linearized closed-loop
system, where we analyze it via the saddle point matrix theory.
Hence, the resulting PID-PBCs are suitable to stabilize MIMO
systems while ensuring a desired local transient response
behavior of the closed-loop system. In contrast to the results
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reported in [7], the stability analysis of the closed-loop system
does not rely on the linearization of the system nor the solution
of PDEs.

The remainder of this paper is structured as follows: in
Section II, we provide the preliminaries and the problem
formulation. In Section III, we present the main results of
this paper. In Section IV, we apply our tuning rules to control
a 2DoF planar manipulator. We finalize the paper with some
concluding remarks and future work in Section V.

Notation: We denote the n×n identity matrix as In and the
n×m matrix of zeros as 0n×m. For a given smooth function
f : Rn → R, we define the differential operator ∇xf :=

(∂f∂x )> and ∇2
xf := ∂2f

∂x2 . For a smooth mapping f : Rn →
Rm, we define the ij−element of its n×m Jacobian matrix
as (∇xf)ij :=

∂fj
∂xi

. When clear from the context the subindex
in ∇ is omitted. Given a distinguished element x? ∈ Rn,
we define the constant matrix B? := B(x?) ∈ Rn×m. For
a given matrix A ∈ Rn×n and a vector x ∈ Rn, we say
that A is positive definite (semi-definite), denoted as A > 0
(A ≥ 0), if A = A> and x>Ax > 0 (x>Ax ≥ 0) for all x ∈
Rn − {0n}(Rn). For a positive (semi-)definite matrix A, we
define the weighted Euclidean norm as ‖x‖A :=

√
x>Ax. For

A = A>, we denote by λmin(A) and λmax(A) as the minimum
eigenvalue and the maximum eigenvalue of A, respectively.
Consider y ∈ Cn, we denote by y∗ as the conjugate transpose
vector of y.

II. PRELIMINARIES AND PROBLEM SETTING

In this section, we summarize some properties of a class
of saddle point matrices, which are the cornerstone in the
development of the tuning rules presented in Section III.
Although not mentioned explicitly in the pioneering work
of Brayton and Moser [14], the authors use these properties
to verify the behavior of the transient response. Then, we
provide the port-Hamiltonian (pH) representation of the class
of mechanical systems for which our tuning rules are suitable.
Finally, we describe some details of the PID-PBC implemented
in this work.

A. Some properties of a class of saddle point matrices

Consider the following linear system[
˙̃x
˙̃y

]
= −Φ

[
x̃
ỹ

]
, Φ :=

[
X Z>

−Z Y

]
(1)

where X ∈ Rn×n is positive-definite, Y ∈ Rm×m is positive
semi-definite, Z ∈ Rm×n has full row rank, x̃ ∈ Rn, and
ỹ ∈ Rm, where m ≤ n. The structure of Φ corresponds to a
class of saddle point matrices. Hence, the spectrum of Φ can
be analyzed via inspection of the spectrum of X , Y , and Z. In
particular, we are interested in the results below in Theorem
1 and Corollary 1.

Theorem 1 ([15]). Let Y = 0m×m, v ∈ Cn, w ∈ Cm. Denote
with λΦ and (v>, w>)> an eigenvalue and an eigenvector of
Φ, respectively1. Then, λΦ is real if and only if:(

v∗Xv

v∗v

)2

≥ 4
v∗(Z>Z)v

v∗v
. (2)

Furthermore, if Corollary 2.6 of [15] is satisfied, then, the
entire spectrum of Φ is real.

Corollary 1 ([16]). Let Y = 0m×m. Denote with λΦ ∈ C any
eigenvalue of Φ. Then, the following statements are true:

i) If =(λΦ) 6= 0, then 1
2λmin(X) ≤ <(λΦ) ≤ 1

2λmax(X)

ii) If =(λΦ) = 0, then

min{λmin(X), λmin(ZX−1Z>)} ≤ λΦ ≤ λmax(X).

B. PID-PBC for mechanical systems

Throughout this work, we consider mechanical systems that
admit a pH representation of the form[

q̇
ṗ

]
=

[
0n×n In
−In −D(q, p)

]
∇H(q, p) +

[
0n×m
G

]
u,

H(q, p) =
1

2
p>M−1(q)p+ V (q), y = G>q̇,

(3)

where q, p ∈ Rn are the generalized positions and momenta
vectors, respectively, u ∈ Rm is the control vector, y ∈ Rm is
the passive output, m ≤ n, D(q, p) : Rn × Rn → Rn×n is the
positive semi-definite damping matrix, H : Rn × Rn → R is
the Hamiltonian, M(q) : Rn → Rn×n is the positive definite
mass-inertia matrix, V (q) : Rn → R is the potential energy
of the system, and G ∈ Rn×m is the constant input matrix,
where rank(G) = m.

To formulate the problem under study, we identify the set
of assignable equilibria for (3) given by

E =
{

(q, p) ∈ Rn × Rn | G⊥∇V (q) = 0n, p = 0n
}

where G⊥ is the (full rank) left annihilator of G. Then, we
consider the PID-PBCs

u = −KP y −KI(γ(q) + κ)−KDẏ (4)

where the gains KP ,KI ,KD ∈ Rm×m satisfy KP ,KI >
0, and KD ≥ 0, γ(q) := G>q, and κ ∈ Rm is a constant
vector that is used to assign the equilibrium for the closed-
loop system. Hence, the closed-loop system (3)-(4) takes the
form [

q̇
ṗ

]
= Υ−1(q)F (q, p)Υ−>(q)∇Hd(q, p) (5)

with 2

1The vector w is not used explicitly in this manuscript but is essential to
prove this theorem. See [15] for further details.

2The closed-loop system (5) preserves the mechanical structure such as the
IDA-PBC procedure (see [17]).



Hd(q, p) := H(q, p) +
1

2
‖γ(q) + κ‖2KI

+
1

2
‖y‖2KD

,

Υ(q) :=

[
In 0n×n

GKD(∇qy)> In +GKDG
>M−1(q)

]
,

F (q, p) :=

[
0n×n In
−In −D(q, p)−GKPG

>

]
. (6)

Now, we formulate the problem under study as follows.
Problem setting: given (q?, 0n) ∈ E , propose a method

to choose the gains KP ,KI , and KD of (4) such that (5)
has a local transient response behavior that does not exhibit
oscillations, and a prescribed damping ratio or rise time.

To develop the subsequent section, we introduce the follow-
ing assumption:

Assumption 1. The desired hamiltonian Hd has a local iso-
lated minimum at x? := (q?, 0), i.e., x? = arg minHd(q, p).

Remark 1. Assumption 1 implies that (5) has a stable equi-
librium point at x?. Asymptotic stability follows if the output
y is detectable for the closed-loop system. Furthermore, (4)
defines an output strictly passive operator y 7→ −u. Hence, the
application of the Passivity Theorem ensures that the closed-
loop system is L2 stable (see [2]). See [3], [4] for further
details about the stability analysis of (5).

Remark 2. As indicated in [4], the implementation of the
term KDẏ is subject to two conditions, namely, (i) y must be
of relative degree one, and (ii) u can be expressed as a function
of the state vector without singularities. However, for systems
of the form (3), the mentioned conditions are always verified,
where (i) is directly satisfied, and some simple computations
show that the controller has no singularities since the matrix
Ψ(q) := Im+KDG

>M−1(q)G has full rank for every KD ≥
0.

Remark 3. The main difference between PID-PBCs and
classical PID controllers is that the former are constructed
around the passive output signal, while the latter are designed
in terms of an error signal. In particular, for mechanical
systems, the passive output signal is given by the actuated
velocities, i.e., G>q̇, while the error signal used to design
classical PID controllers is given in terms of position. Some
simple computations show that, for fully actuated mechanical
systems, a PI-PBC scheme coincides with a classical PD
controller.

III. TUNING RULES

In this section, we describe our approach to obtain the
tuning rules. To facilitate the analysis, we linearize the system
and convert the drift vector field into a class of saddle point
matrices by similarity transformation. The main benefit of
this particular form is that this reveals a clear relationship
between the damping, the potential energy, and the kinetic
energy, which is used later to propose the tuning rules.

A. Linearizing and obtaining the saddle point form

To obtain the linearized dynamics of (5), we introduce the
vectors q̃ := q − q?, p̃ := p.

Consequently, the linearized system around the equilibrium
point (q?, 0) corresponds to:[

˙̃q
˙̃p

]
= Υ−1

? F?Υ
−>
? ∇2Hd?

[
q̃
p̃

]
(7)

where Υ and F are defined as in (6). Then, to obtain the saddle
point, we define

R : = GKPG
> +D?

P : = GKIG
> +∇2V?

W : = GKDG
> +M?

(8)

and φP , φW ∈ Rn×n are full rank matrices satisfying 3

W−1 = φ>WφW , P = φ>PφP . (9)

Subsequently, we define the similarity transformation matrix
T ∈ R2n×2n and new coordinates z ∈ R2n such that 4

T :=

[
0n×n φ−>W M−1

?

φP 0n×n

]
, z := T

[
q̃
p̃

]
. (10)

Therefore, the linearized system in z corresponds to

ż = −N z, N :=

[
φWRφ>W φWφ

>
P

−φPφ>W 0n×n

]
. (11)

where N belongs to a class of saddle point matrices as (1)
with X := φWRφ>W , Z := φPφ

>
W and Y := 0n×n.

Finally, to characterize the eigenvalues of N , denote with
(λN , v) an eigenpair of (11) with λN ∈ C and v ∈ Cn. Then,
λN is given by the following expression (see [15]):

λN :=
1

2

(
v∗φWRφ>W v

v∗v ±
√(

v∗φWRφ>W v

v∗v

)2

− 4
v∗φWPφ>W v

v∗v

)
.

(12)

The terms R,P , and W are associated with the damp-
ing injection, the potential energy, and the kinetic energy,
respectively. In the sequel, we propose three conditions on the
relation between these terms. When these conditions hold, the
closed-loop system exhibits the specified –or desired– transient
response. On the other hand, note thatR, P , andW are related
to the gain matrices KP , KI , and KD via (8). Hence, we can
design the gain matrices such that the mentioned conditions
are verified.

B. Removing the overshoot

The oscillations of the transient response are characterized
by the dominant pair of complex-conjugated poles of the
system. The peak of such oscillations corresponds to the
maximum overshoot of the system [18]. Here, we provide
a condition such that system (7) presents a “no-overshoot”

3φP and φM are unique matrices obtained from the Cholesky decomposi-
tion.

4The spectrum is invariant to similarity transformation.



response. In other words, the matrix N from system (7) must
contain only real spectrum.

From Theorem 1, an eigenvalue of N is real if and only if
condition (2) holds, that is, the discriminant of (12) is non-
negative. Then, to extend condition (2) to all the eigenvalues
of N , we propose the following:

Proposition 1. The spectrum of the system (7) is real and
nonnegative if the following is satisfied:

4λmax(P)λmax(W) ≤ λmin(R)2 (13)

Proof. Let η := φ>W v, then, expression (2) can be rewritten
as

4
η∗Pη
η∗η

η∗Wη

η∗η
≤

(
η∗Rη
η∗η

)2

. (14)

Therefore, if condition (13) holds, then inequality (2) is
satisfied for any λ since

4
η∗Pη
η∗η

η∗Wη

η∗η
≤ 4λmax(P)λmax(W)

≤ (λmin(R))2 ≤

(
η∗Rη
η∗η

)2

.

(15)

Any eigenvalue of N is characterized by expression (12), then
it follows that

0 ≤ λmin(R)

λmax(W)
≤ v∗φWRφ>W v

v∗v
=⇒ <(λ) ≤ 0. (16)

Remark 4. The equality case in (13) corresponds to a critical
damped response.

C. Prescribing the bounds for the damping ratio
The tuning rule provided with Proposition 1 might be

restrictive for some applications that need a faster rise time.
However, this is usually achieved at the expense of a transient
response with overshoot and oscillations. If this performance
is acceptable, we propose a rule to improve the rise time by
tuning the bounds of the damping ratio of the spectrum of (7).

Denote with λN ∈ C any eigenvalue of N , then, the
standard definition of the damping ratio of λN is given by
[19]:

ζN :=
|<(λN )|√

<(λN )2 + =(λN )2
(17)

where 0 ≤ ζN ≤ 1.
From (17), note that the damping ratio of the spectrum of

N belongs to the interval [0, 1], which is conservative. We
can rewrite the definition of (17) in terms of R,P and W and
provide less conservative bounds, i.e.,

Proposition 2. Denote with (λN , v) any eigenpair of (11)
with λN ∈ C and v ∈ Rn, then, the damping ratio of λN is
given by

ζN :=
1

2

v∗Xv

v∗v

(√
v∗Z>Zv

v∗v

)−1

(18)

where this is bounded by

ζmin ≤ ζ2
N ≤ ζmax, (19)

where

ζmin := max

{
0,

1

4

λmin(R)2

λmax(W)λmax(P)

}

ζmax := min

{
1,

1

4

λmax(R)2

λmin(W)λmin(P)

}
.

(20)

Proof. From the proof of Corollary 1 (see [16]), we have that:

<(λN ) =
1

2

v∗Xv

v∗v
. (21)

Note that expression (12) follows from solving the quadratic
equation (see [15])

λ2
N −

v∗Xv

v∗v
λN +

v∗Z>Zv

v∗v
= 0. (22)

Substituting (21) in (22) yields

v∗Z>Zv

v∗v
= <(λN )2 + =(λN )2, (23)

Then, expression (18) follows from substituting (21) and (23)
in (17). By rewriting (18) we have that

ζ2 =
1

4

(η∗Rη)2

(η∗Wη)(η∗Pη)
, (24)

therefore, (19) follows from:

λmin(R)2

λmax(W)λmax(P)
≤ (η∗Rη)2

(η∗Wη)(η∗Pη)
≤ λmax(R)2

λmin(W)λmin(P)
.

D. Prescribing the upper bound for the rise time

In this section, we proceed to characterize the upper bound
of the rise time for system (7) based on the work of [16]. We
define the rise time tr ∈ R+ as the time taken by the system to
reach 98% of its steady state value. The rise time is influenced
directly by the real part of the pole closest to the imaginary
axis. Consider the following three scenarios:
S1: The spectrum of N is purely real.
S2: All the elements of the spectrum of N have an imaginary
part different from zero.
S3: Some elements of the spectrum of N are purely real,
and some elements are complex (imaginary part different from
zero).
Based on this premise, we define tru ∈ R+ as the nominal
rise time of the system, then, we propose the following:

Proposition 3. Denote with <(λu) the lower bound for the
real part of the spectrum of N . Then, the rise time of the
response of (11) is bounded from above by tru ∈ R+ where
this is defined as

tru :=
4

<(λu)
(25)



where <(λu) is given by

<(λu) =


min{λmin(W−1R), λmin(R−1P)} if S1
1
2λmin(W−1R) if S2
min{ 1

2λmin(W−1R), λmin(R−1P)}, if S3.
(26)

Proof. : The decay ratio of System (11) is bounded by <(λu),
therefore, expression

exp−<(λu)tru = 0.0183 (27)

calculates the upper bound of the time where all the outputs
of the systems have reached 98% of the desired equilibrium
point. Expression (25) follows immediately by rearranging
(27). Finally, (26) follows immediately from substituting (8)
in Corollary 1.

Remark 5. S1 can be ensured by using Proposition 1 while
S2 can be ensured with the condition 1

4
λmax(R)2

λmin(W)λmin(P) < 1
from Proposition 2.

Remark 6. Proposition 3 may be used as a tuning rule
in combination with Propositions 1 or 2. For example, note
that the pair {λmin(R), λmax(P)} is used in Proposition
1 to ensure a “no-overshoot” behavior, therefore, the pair
{λmax(R), λmin(P)} may be used to prescribe the upper
bound of the rise time.

Remark 7. For implementation purposes, the expression
λmin(X−1Y) can be approximated with λmin(Y)

λmax(X ) , however,

this might be conservative since λmin(Y)
λmax(X ) ≤ λmin(X−1Y).

E. Discussion

Some additional observations from this section are discussed
below:
i) About the natural damping: note that the tuning rules
require some knowledge of the natural damping D(q, p) of the
system, which can be challenging in practice. Nevertheless, we
stress the fact that the tuning rules will work even with a rough
estimate as the closed-loop system will remain stable. Some
caveats of working with the rough estimate include changes
in the oscillatory behavior and deviation of the bounds. Such
variations may provide some intuition about the real bounds of
the natural damping. For example, when applying Proposition
1 to achieve a critically damped response, if the system
presents an over-damped (resp. under-damped) response, then
the real damping value is larger (resp. smaller) than the
nominal.
ii) Improving the performance of a stable system: if the
open-loop system (3) is stable, then, the controller (4) can be
used to improve its performance.
iii) Underactuated systems: when m < n, the right hand
side of (13) reads as λmin(R)2 = λmin(D?)

2 because
λmin(GKPG

>) = 0. Therefore, if D(q, p) > 0 (i.e. λmin(D?)
is strictly positive), then Proposition 1 can be applied to reduce
the oscillations for an underactuated system.

iv) Region of validity: the proposed tuning rules are based
on the linearization of the system. Accordingly, the perfor-
mance analysis represented in this section is valid only in a
neighborhood of (q?, 0n). A method to estimate such a region
consists of using the tools designed to estimate the region of
attraction of the equilibrium of stable linearized systems. For
further details, see [20] or [21].
v) Comparison with the pole placement approach: the pole
placement method is a linear control technique. Therefore,
to apply this technique to control a nonlinear system, it is
necessary to linearize it. Moreover, the stability results are
restricted to the region where the linearization is valid. On the
other hand, in the PID-PBC approach, the stability results are
based on (nonlinear) Lyapunov analysis, and the linearization
is required exclusively to analyze the performance–in terms
of oscillations, rise time, or damping ratio–of the closed-loop
system.

IV. EXPERIMENTAL RESULTS

In this section, the PID-PBC [3] to stabilize a 2 DoF Rigid
Planar Manipulator, as shown in Fig. 1 (see [22] for the
Quanser reference manual), at the desired equilibrium (q?, 02)
with q? = col(0.6, 0.8), and to prescribe a desired behavior to
the transient response.

Fig. 1. Experimental Setup: 2 DoF Planar Manipulator

The manipulator model is described as in (3) with n = 2,
V (q) = 0, G = I2, D = diag(0.07, 0.03) and

M(q) =

[
a1 + a2 + 2b cos(q2) a2 + b cos(q2)

a2 + b cos(q2) a2

]
, (28)

where a1 = 0.1476, a2 = 0.0725, and b = 0.0858.
To illustrate the applicability of our tuning rules, we first

obtain the results for a “Random Tuning (RT)” scenario
for comparison purposes. Then, we perform the following
experiments:
E1: system without oscillations (Proposition 1).
E2: system with oscillations (Proposition 2 with

0.4 ≤ ζ ≤ 0.8).
Table I contains the gains calculated by using Propositions 1
and 2 for each experiment. Furthermore, Table II presents the
upper bound estimation for the rise time using Proposition
3 for each experiment. The results of the angular position
trajectories with initial conditions (q, p) = 04 for Link 1 (L1)



TABLE I
PROPORTIONAL, INTEGRAL AND DERIVATIVE GAINS

RT E1 E2
KP diag(1,0.5) diag(7.3972,9.2) diag(3.9136 4.1710)
KI diag(50,30) diag(35,20) diag(50,45)
KD diag(0,0) diag(0,0) diag(0.08,0.15)

TABLE II
EXPERIMENTAL RISE TIME VS NOMINAL RISE TIME

RT E1 E2
L1 L2 L1 L2 L1 L2

Experimental (sec) 0.662 0.274 1.016 2.194 0.568 0.330
Nominal (sec) 3.397 1.846 0.966

and Link 2 (L2) are shown in Fig. 2 and Fig. 3, respectively 5.
For the reader convenience, Table II shows the experimental
results for the rise time from both experiments. Furthermore,
a video with the experimental results can be found in this link:
https://youtu.be/aHPv-mKK eI.

Comparing E2 with E1 and RT, it can be seen, particularly
in Link 2, that there is a trade-off between oscillations and
the rise time, i.e., the faster the rise time, the more over-
shoot/oscillations the transient response exhibits. Additionally,
note that tuning the kinetic term in E2 improves the settling
time with respect to the RT scenario.

Finally, although the nominal values in Table II are
conservative, the rise time of each output is upper bounded;
therefore, we can ensure that every trajectory has reached the
98% of its final value by the nominal value. However, note
that there is a particular case in E1 where the time taken for
L2 is larger than the nominal. As mentioned in Section III-E,
as a consequence of working with a rough estimate of the
natural damping, a deviation from the real value may occur.
In this particular case, the nominal rise time is given by the
expression

tru = 4/λmin(R−1P) = 4λmax(RP−1),

where it can be seen that the rise time is proportional to the
upper bound of the damping matrix R. Consequently, this
rule suggests that the real damping is actually larger than the
nominal provided by the manufacturer.

V. CONCLUDING REMARKS AND FUTURE WORK

Our results have shown that transforming the pH structure
into other coordinates reveals interesting spectral properties
that can be used to improve the transient response for the
nonlinear mechanical systems. Furthermore, it is clear from the
tuning rules that there is an underlying relationship between
the potential energy (P), the kinetic energy (W), and the
damping (R), which combinations result in a specific transient
response. As seen in the experiments, the proposed tuning
rules can prescribe the desired performance in terms of the
oscillation, the damping ratio, and the rise time to a nonlinear
MIMO mechanical systems.

5The steady-state error presented in both figures is due to the nonlinearities
no considered for our model, such as internal frictions and the dead zone of
motors.

Fig. 2. Trajectories for angular position of L1.

Fig. 3. Trajectories for angular position of L2.

As possible future research, we propose the implementation
of damping identification methods in combination with PID-
PBCs to apply the proposed tuning rules to a broader range of
underactuated mechanical systems. Furthermore, we propose
to establish tuning rules to prescribe a desired performance
to the closed-loop system without linearizing it. For instance,
tuning rules that prescribe an exponential rate of convergence
for nonlinear system. Additionally, we aim to extend this
methodology to other domains, such as electrical circuits or
electro-mechanical systems.
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