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A Model-free Approach to Automatic Dose
Guidance in Long Acting Insulin Treatment of

Type 2 Diabetes*
Dinesh Krishnamoorthy1, Dimitri Boiroux2, Tinna Björk Aradóttir3,

Sarah Ellinor Engell2,3 and John Bagterp Jørgensen2

Abstract— This paper presents a model-free insulin titra-
tion algorithm for patients with type 2 diabetes that auto-
matically finds and maintains the optimal insulin dosage
in order to maintain the blood glucose concentration at
desired levels. The proposed method is based on recursive
least square based extremum seeking control. Since the
proposed method does not require a detailed model, it
can be applied on a wide population of patients without
the need to identify and adapt models to the patient data.
We demonstrate the effectiveness of the proposed method
using in silico simulations, which are benchmarked against
two standard-of-care approaches. We also show that the
proposed method can handle intra-patient metabolic varia-
tions and non-adherence to the treatment regimen. Finally,
using a population of 50 virtual patients, we show that the
proposed method is able to handle inter-patient variations.

Index Terms— Healthcare and medical systems, Emerg-
ing control applications, Human-in-the-loop control

I. INTRODUCTION

D IABETES is a metabolic disorder characterized by a high
blood glucose concentration. Type 1 diabetes (T1D) is

due to absolute lack of insulin production by the pancreatic
beta cells, which requires life-long insulin replacement ther-
apy, e.g. using artificial pancreas (AP). Artificial pancreas uses
continuous glucose measurement (sensor) and insulin infusion
pumps (actuator) for glycemic regulation. Treatment of T1D
using AP is a well studied problem by control engineers,
leading to several advancements in AP technology [1]–[3],
with a majority of literature on AP proposing different variants
of MPC-based schemes, see for example [4]–[7] and the
references therein.

However, relatively little attention has been provided to
Type 2 diabetes (T2D) by the control community, despite
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the fact that T2D accounts for around 90% of all the cases.
T2D occurs due to an imbalance between insulin secretion
and insulin resistance, leading to elevated blood glucose con-
centration over prolonged periods of time. T2D is a relatively
more heterogeneous disorder than T1D, since different T2D
patients may experience different levels of insulin resistance,
and the insulin resistance also changes within the same patient
with age, duration of diabetes, duration of insulin therapy, diet
and physical activity etc. The heterogeneous nature of T2D
makes it a relatively more challenging modelling and control
problem.

The standard treatment procedure for T2D is commenced
with changes to lifestyle such as diet and physical activity.
This is often accompanied by non-insulin pharmaceuticals
such as Metformin to increase insulin sensitivity. If this is
still not sufficient to regulate the blood glucose concentration
within the target range, one possibility is the insulin treat-
ment. Typically, insulin treatment for T2D involves manually
administering a dosage of long acting insulin (also known as
basal insulin) e.g. using an insulin pen (actuator) once a day
based on self-measured blood glucose (SMBG) readings, also
recorded once a day (sensor) at fasting conditions. Finding a
patient’s optimal insulin dosage is known as insulin titration.
Insulin titration is very important, since too low insulin may
fail to lower the blood glucose concentration sufficiently,
causing hyperglycemia, which leads to long term diabetic
complications such as blindness, neuropathy etc. On the other
hand, too high insulin dosage, leads to a severe short term
effect, known as hypoglycemia, which can cause fainting, brain
damage, or even death.

The standard-of-care clinical approach to an insulin titration
procedure involves adjusting the insulin dosage by few units
based on self-measured blood glucose (SMBG) data, measured
daily at fasting conditions (i.e. pre-breakfast). However, in
practice, the standard titration procedure is seldom followed,
since the patients often do not feel comfortable/confident
to adjust the dosage without the advice of a health care
professional. In addition, the risk of hypoglycemia further
undermines patient confidence.

From a control systems perspective, the insulin titration pro-
cedure can be seen as a feedback control problem, where the
insulin dosage can be determined using an integral controller.
In this paper, we consider the problem of insulin titration
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for patients with T2D. The main objective is to automatically
adjust the long acting insulin dosage, based on the daily self-
measured blood glucose (SMBG) data, to safely bring the
fasting blood glucose concentration to a desired target.

Recently, automatic dose guidance in long acting insulin
treatment for T2D using model predictive control (MPC) was
proposed in [8]. Although the MPC-based solution provided
superior performance than the standard clinical approach, it
required relatively precise parameter values to be used in
the prediction model. This work also considered an idealized
case, where the MPC algorithm was initialized with the
true physiological parameters. However, in practice, the MPC
approach would require adapting the prediction model to each
individual based on patient data, in addition to online state
and parameter estimation. The use of an MPC-based artificial
pancreas developed for T1D was also recently assessed for
closed-loop insulin control in T2D [9], which also required
updating the model parameters to each patient, and it was
also concluded that the accuracy of the model predictions
affected the actual target glucose concentration. The highly
heterogeneous nature of T2D, thus makes it challenging to to
use model-based control strategies.

To circumvent the modeling-related issues, we propose
a model-free insulin titration approach, which is especially
advantageous, given the heterogeneous nature of T2D. The
proposed method is based on extremum seeking control. We
show that the proposed model-free insulin titration approach
is simple to use, and the model-free nature of the algorithm
makes it applicable to a wide range of T2D patients without
the need to tailor the algorithm or fit a model using patient
data. Furthermore, we also show that the proposed algorithm
can handle, inter- and intra-patient variations.

In the context of closed-loop insulin control, extremum
seeking control has been previously studied only for target
zone adjustment in the treatment of T1D, where the target
range used by the MPC-based artificial pancreas is determined
by an extremum seeking control layer above [10]. To the
best of our knowledge, the use of extremum seeking control
for insulin titration problems and for T2D has not been
studied before in the literature. Furthermore, note that the
authors in [10] considered the classical extremum seeking
algorithm that is based on sinusoidal perturbation, which is
not viable for T2D since the insulin is injected once day
(i.e. actuation limitations). The fundamental differences in the
sensing and actuation available in T1D and T2D limits what
control algorithms can be used.

The main contribution of this paper is the application of
recursive least square-based extremum seeking control to au-
tomatically titrate long acting insulin dosage for patients with
T2D. The reminder of the paper is structured as follows. The
proposed model-free insulin titration algorithm is presented in
Section II. The virtual patient model used for the in silico
simulations is presented in Section III. The standard-of-care
approach used to benchmark the proposed method, and the
results from the in silico simulation studies are presented in
Section IV, before concluding the paper in Section V.

II. MODEL-FREE INSULIN TITRATION
ALGORITHM

The main objective is to automatically adjust the long acting
basal insulin dosage, u(t), each day using only the daily
self-measured blood glucose concentration y(t) information
(standard finger prick test), such that the fasting glucose level
is steered to the target zone of 4 – 6 mmol/L.

In order to automatically adjust the insulin dosage, we de-
fine a penalty function to steer the blood glucose concentration
to a target of 5 mmol/L, as shown below,

J(y) = (y − 5)2 + ρ(min(0, y − 5))2 (1)

The first term penalizes the deviations from the target of
5 mmol/L. The second term mimics a soft constraint on the
glucose level with a low limit of 5 mmol/L, which is added to
highly discourage low blood glucose concentration since this
leads to hypoglycemia, which is undesirable.

The pre-breakfast SMBG measurement y = f(u) can be
assumed to be the steady-state blood glucose concentration as
a function of the long acting insulin, and thus the penalty func-
tion J(y) corresponds to the steady-state cost measurement.
As mentioned earlier, the steady-state effect of long acting
insulin on the pre-breakfast SMBG measurement y = f(u)
is unknown. Therefore, J(f(u)) can be seen as a static map
between the cost function and the long acting insulin, which
has a unique minimum u∗ due to the quadratic penalty function
(1).

We now propose to use a recursive least square-based
extremum seeking control to estimate the steady-state gradient
Ju of the static map, which is then driven to zero using an
integral action. The SMBG measurement y(k) obtained on the
kth day and the insulin dosage administered the previous day
u(k − 1) are used to fit a local linear static function of the
form,

J(y(k)) =
[
u(k − 1) 1

] [Ju
m

]
= φT(k)θ(k) (2)

Note that the effect of insulin on the SMBG is not instan-
taneous and there is a measurement delay of 1 day, that is,
the effect of the administered insulin is only observed in the
SMBG measurements the following day. Therefore (2) fits
u(k − 1) to J(y(k)).

When a new observation yk is available on the kth day, the
steady-state cost gradient Ju(k) can be estimated online using
a recursive least square algorithm as shown below [11],

θ̂(k) = θ̂(k − 1) +K(k)
[
J(y(k))− φT(k)θ̂(k − 1)

]
(3)

K(k) =
P (k − 1)φ(k)

λ+ φT(k)P (k − 1)φ(k)
(4)

P (k) =
1

λ

[
P (k − 1)− P (k − 1)φ(k)φT(k)P (k − 1)

λ+ φT(k)P (k − 1)φ(k)

]
(5)

where
[
J(y(k))− φT(k)θ̂(k − 1)

]
is the prediction error,

K(k) is the gain by how much each parameter will be modified
in order to minimize the prediction error, and P (k) is the
covariance matrix. Since we are estimating a local linear model
(2), the measurements obtained a long time ago does not reflect
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Fig. 1: Model-free Insulin titration algorithm based on recur-
sive least squares estimation.

the current state of the system. Therefore, we introduce a
forgetting factor 0 < λ < 1, which allows the estimator to
discount the effect of past measurements.

The insulin dosage is then updated using a gradient descent
update u(k) = u(k−1)+KI Ĵu(k) where KI is the adaptation
gain. Fig. 1 schematically represents the proposed model-free
insulin titration algorithm. For a large KI ,where the input
can change rapidly, the forgetting factor λ must be chosen
relatively small, such that only the local effects are captured.
As with any recursive algorithm, λ is chosen such that the
information dies away with a desired time constant of 1/(1−λ)
sample intervals, thereby using only the latest measurements
where the local linear assumption holds. Rapid changes in
insulin dosage from one day to another have been known to
cause patient discomfort, and may even cause some diabetes-
related complications to worsen. Therefore, to avoid rapid
dosage changes, we bound the rate of change of insulin,
∆u(k) = KI Ĵu, between ∆uminand ∆umax, yielding

u(k) = u(k − 1) + max(∆umin,min(∆umax,KI Ĵu)) (6)

Note that this also limits the effect of the tuning parameters
such as integral gain. In order to ensure that the persistent
excitation condition is satisfied, we add a small additional
perturbation signal δ to the input, as shown in Fig. 1.

III. VIRTUAL PATIENT MODEL
In this section, we present the virtual patient model used

in the in silico study in this paper. Note that the model is
only used to simulate the virtual patients. No knowledge of
the model is used in the insulin titration algorithm.

We use a four compartment physiological model based on
the Medtronic virtual patient (MVP) model [12] modified
for T2D [8]. This model includes only the response of long
acting insulin on fasting glucose, since this is what is captured
in the SMBG measurements and this is also the desired
timescale in which the controller is designed to perform. The
insulin pharmacokinetics (PK) model describes the dynamics
of insulin transition from the injection site to the plasma. The
modified insulin PK model for T2D can be described as

İsc(t) =
1

τ

(
u(t)

CI
− Isc(t)

)
(7)

İp(t) =
1

τ
(Isc(t)− Ip(t)) (8)

where u(t) is the exogenous long acting insulin input in
[U/day], Isc and Ip are the subcutaneous and plasma insulin
concentrations in [U/L], CI is the insulin clearance rate in

[L/day], and τ is the insulin transition time constant [day].
In addition to the exogenously administered insulin u, the
pancreas also produces insulin, which must be taken into
account while modeling the insulin effect on blood glucose.
Since the endogenous insulin production in the pancreas
depends on the blood glucose concentration, this is modeled
as a simple linear expression IENDO(t) = βG(t), where G(t)
is the blood glucose concentration in [mmol/L] [8].

The pharmacodynamics (PD) model describes the combined
effect of the exogenously administered insulin and the en-
dogenous pancreatic insulin (Ip(t) + IENDO(t)) on the blood
glucose concentration, which is described by

İeff (t) = p2SI (Ip(t) + βG(t))− p2Ieff (t) (9)

Ġ(t) = −(pGEZI + Ieff (t))G(t) + pEGP +Ra (10)

where Ieff (t) is the insulin effect on blood glucose [1/L],
SI is the insulin sensitivity [1/U], pEGP is the rate of
endogenous glucose production [mmol/L·day], p2 is an inverse
time constant that captures the delay in insulin action [1/day]
and pGEZI is an inverse time constant for the glucose to
be eliminated from the plasma [1/day]. Ra is the rate of
appearance of glucose from meals [mmol/L·day]. However,
since we only consider fasting glucose conditions, we do not
include the effect of meal input, and set Ra = 0.

The combined PK-PD model describing the effect of long
acting insulin on the fasting blood glucose for patients with
T2D can be rewritten by setting Ĩsc = IscCI , Ĩp = IpCI ,
Ĩeff = IeffCI/SI and β̃ = βCI

˙̃Isc(t) =
1

τ

(
u(t)− Ĩsc(t)

)
(11)

˙̃Ip(t) =
1

τ

(
Ĩsc(t)− Ĩp(t)

)
(12)

˙̃Ieff (t) = p2

(
Ĩp(t) + β̃G(t)

)
− p2Ĩeff (t) (13)

Ġ(t) = −(pGEZI + SI Ĩeff (t))G(t) + pEGP (14)

The ODE is re-written as a stochastic differential equation
(SDE) by adding the diffusion term σdω(t) in order to capture
the day-to-day glucose variations.

dx(t) = f(x(t), u(t),p(t))dt+ σdω(t) (15)

where p := [τ, p2, pGEZI , pEGP , β̃, SI ]T are the model pa-
rameters, and x := [Ĩsc, Ĩp, Ĩeff , G]T are the states.

Long acting insulin dosage u(t) is administered to the
virtual patient and the SMBG data measures the fasting blood
glucose concentration y(t) = G(t). To simulate the virtual
patient, the SDE (15) was solved numerically using the Euler-
Maruyama method, where the sampling interval is divided into
N equal sub-interval of width ∆t > 0. Starting with the initial
condition of x(0), the SDE is numerically solved as

x(τk) = x(τk−1) + f (x(τk−1), u(τk−1),p(τk−1)) ∆t

+ σ∆Wk (16)

with ∆Wk ∼ N (0,∆T ). In this paper, we choose a sampling
time of 1h divided equally into N = 10 sub-intervals of
equal width ∆t = 6 min. The variance σ was varied in the
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simulations to simulate patients with different levels of day-to-
day glucose variations [8]. The main motivation behind using
the modified MVP model for the in silico study is that we
are mainly interested in the slow dynamics of basal insulin
on fasting glucose (captured by the sparse SMBG data). This
model has been developed and validated using sparse clinical
data, see [13], [14] and the pertinent references therein.

IV. SIMULATION RESULTS
We test the proposed model-free insulin titration algorithm

using in silico simulations using the virtual patient described
by (15). The time constant was fixed at τ = 12 h based
on the time to maximum glucose infusion rate published
in [15]. Based on the mean values published in [12], the
inverse time constants were set to p2 = 15.8 day−1 and
pGEZI = 3.31 day−1. The remaining parameters were varied
to simulate different virtual patients.

To benchmark the proposed algorithm, we implement the
standard-of-care approach to insulin titration, which is a simple
paper-based algorithm that adjust the dose by a few units using
a look-up table. In this paper, we compare with the simple
“202” titration algorithm as well as the stepwise algorithm
used in the clinical trial of insulin degludec for patients
with T2D [16]. In this approach, the dose is updated once
a week, and the dose change is based on a the SMBG
measurement. In the simple 202 method, the insulin dosage
is either increased or decreased by 2 U depending on a single
SMBG measurement according to the look-up table shown in
Table I. Whereas, in the stepwise method, the insulin dose in
updated once a week based on the average SMBG measured
over the past three days, according to the look-up table shown
in Table I. If any hypoglycemic event is recorded, then the
dosage is reduced by 2 U. Note that both the standard-of-care
methods rely on absolute SMBG measurements, as opposed
to our proposed algorithm which is based on the gradient, that
is change in SMBG per unit change in the insulin.

TABLE I: Standard-of-care titration algorithm from [16].

Method SMBG [mmol/L] Dose adjustment ∆u [U]
> 6 +2

202 4 – 6 No change
< 3.9 -2
> 9 +8

8 – 8.9 +6
7 – 7.9 +4

stepwise 5 – 6.9 +2
3.9 – 4.9 No change
3.1 – 3.8 -2
< 3.1 -4

We first simulate a single virtual patient with SI = 1.8
U−1, pEGP = 368 mmol/L/day and β̃ = 1.68 UL/mmol/day.
For the stochastic simulations, we set the variance to σ = 2I
in order to capture the average day-to-day glucose variations
as reported in literature [8]. The initial states of the virtual
patient are set to x(0) = [Ĩsc, Ĩp, Ĩeff , G]T = [0, 0, 15.2, 12]T,
with an initial insulin dosage of u(0) = 10 U. We simulate
the virtual patient for a total of 60 days.

The weighting factor for hypoglycemic blood glucose con-
centrations in the penalty function (1) is set to ρ = 8. A

Fig. 2: Simulation results showing the performance of the
proposed RLS-based model-free insulin titration algorithm
compared with the standard-of-care approach.

TABLE II: Performance of the proposed approach compared
to the standard-of care approaches.

Proposed SOC SOC
method (stepwise) (202 )

Cumulative cost 319.566 542.676 838.59
Average SMBG [mmol/L] 5.541 6.853 7.896

no. of days to target ∼10 ∼40 >60

forgetting factor of λ = 0.01 is used in the recursive least
squares estimation. The integral gain in (6) is set to KI =
1500, and the maximum and minimum dosage change each
day is limited to ∆umin = ∆umax = 8 U when outside the
target, and ∆umin = ∆umax = 2 U when the glucose reading
is within the target. These values are aligned with the stepwise
standard-of-care method. In order to ensure persistence of
excitation, we add a small additional dose of δ = ±0.5 U to
the computed insulin dosage. The simulations were performed
using MATLAB v2019b.

A. Insulin Titration
First we test the performance of the proposed model-free

method and compare it with the standard-of-care approaches.
In both the cases, the insulin titration is initiated at 10 U
insulin. Fig. 2 shows the simulation results, which illustrates
the that proposed model-free insulin titration algorithm (shown
in red cross) is able to successfully bring the blood glucose
concentration to the target zone of 4 mmol/L – 6 mmol/L,
within approximately 10 days from the start of insulin titration.
Whereas with the stepwise standard-of-care approach (shown
in light red triangle) takes more than a month to reach the
target zone, and with the 202 standard-of-care (shown in light
red square), the blood glucose concentration is not within
the target zone even after 60 days. The corresponding insulin
doses are shown in the bottom subplot. The cumulative cost of
glycemic variation over 60 days obtained by integrating (1),
and the average glucose readings of the three approaches are
summarized in Table II.
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Fig. 3: Intra-patient metabolic variations: Simulation results
showing the insulin dosage adjustment when insulin sensitivity
SI increases by 30% on day 60.

B. Variations in Insulin Sensitivity
We now test the performance of the algorithm to handle

changes in the physiological state of the patient (intra-patient
variations), which may be due to stress, physical activity, diet,
weight loss etc. We simulate a case for the same virtual patient
as above, where the insulin sensitivity SI increases on day
60 by 30%. The increased insulin sensitivity would require a
reduced insulin dosage in order to avoid hypoglycemic events.
The simulation starts with the blood glucose concentration
close to the target zone, with a corresponding initial insulin
dosage of 35 U.

Fig. 3 clearly shows that as the insulin sensitivity increases,
the insulin dosage is reduced accordingly in order to avoid
hypoglycemic events (glucose concentration < 4 mmol/L).
Fig. 3 also shows the standard-of-care approaches, where it can
be seen that 6 hypoglycemic events occurred with the stepwise
algorithm, with a couple of hypoglycemic events occurring
1 month after the change in the insulin sensitivity. With the
202 approach, more than 10 hypoglycemic events occurred
between days 60 and 120. This illustrates the that proposed
model-free insulin titration algorithm is able to successfully
adjust the dosage despite variations in the insulin sensitivity.

C. Non-adherence
The insulin titration relies on the self-measured blood

glucose data, which is sampled manually at pre-breakfast
conditions. Therefore, adherence to the treatment regimen is
expected from the patients, making this a cyber-physical-
human system (CPHS). However, it may happen that the
patient, for whatever reason, forgets to measure the pre-
breakfast blood glucose concentration on some days, and
usually also forgets to inject the insulin dosage on the same
day. It is therefore important that the insulin titration algorithm
is robust to such non-adherence.

In order to test the proposed algorithm in the case of non-
adherence to the treatment regimen, we simulate a case where
the patient forgets to record the SMBG measurement and

Fig. 4: Effect of non-adherence: Simulation results with non-
adherence, where gray solid lines indicate the days with
missing SMBG data and forgotten insulin injection.

inject insulin on some days chosen randomly. We use the
same virtual patient as in the previous cases. Fig. 4 shows
the simulation results, where the gray bar indicates the days
with non-adherence. It can be clearly seen that the proposed
algorithm is able to bring the blood glucose concentration to
the target zone despite repeated non-adherence to treatment
regimen.

D. Inter-patient variations
One of the main advantages of using a model-free insulin

titration method is that it does not require adapting the models
to individual patients, unlike previously studied methods [8],
[9]. In this section, we test the wide applicability of the
proposed algorithm on a population of 50 virtual patients
with T2D, each with different levels of insulin sensitivity,
endogenous glucose production rates, and insulin production
rates. We choose a population of 50 patients, where the
insulin sensitivity for the ith patient is randomly chosen
from S

(i)
I ∈ [1, 2.5] U −1, endogenous glucose production is

randomly chosen from p
(i)
EGP ∈ [350, 380] mmol/L/day , and

the insulin production co-efficient is randomly chosen from
β̃(i) ∈ [1.1, 1.5] UL/mmol/day. The different patients may
also have a different levels of day-to-day glycemic variations.
In order to reflect this, the variance used in the stochastic
simulations, σ is also randomly chosen for each patient from
a distribution of σ ∼ N (2, 1).

For all the 50 virtual patients, we use the same algorithm
with identical controller tuning parameters. In all the patients,
the titration begins from an initial dosage of 10 U. Fig. 5
shows the daily pre-breakfast blood glucose concentration for
each patient, where it can be clearly seen that the SMBG data
for all the 50 patients are successfully brought to the target
zone within 2 weeks from the start of insulin titration. The
histogram (bottom left subplot) also shows that 75.45% of
the SMBG measurements recorded in all the 50 patients were
within the target range of 4 mmol/L – 6 mmol/L after 10 days
from the start of insulin titration. The bottom right subplot
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Fig. 5: Inter-patient variations: (top subplot) Evolution of
SMBG for a population of 50 patients using the proposed
model-free insulin titration approach. (Bottom subplots) His-
togram and the cumulative distribution of the SMBG measure-
ments of all the 50 patients and the average, 10 days after the
start of insulin titration.

TABLE III: Percentage of time spent by the population of 50
patients in different blood glucose concentration ranges.

SMBG Severe Hypoglycemia Time-in-targethypoglycemia
in [mmol/L] < 3 3 − 4 4 − 6

All data points 0% 0.197% 63.93%
10 days after 0% 0.25% 75.45%

shows the cumulative distribution of the individual patients, as
well as the average cumulative distribution. Table III shows the
percentage of time spent by the 50 patients in different blood
glucose concentration ranges, from the start of insulin titration,
as well as 10 days after insulin titration.

More than the convergence time, safety of the dose guidance
is of primary importance, where we want to avoid hypo-
glycemic events. From Table III we can see that no severe
hypoglycemic events (SMBG < 3 mmol/L) occurred using
our proposed algorithm. We do not report hyperglycemic
(SMBG between 10 – 13.9 mmol/L) and sever hyperglycemic
(SMBG >13.9 mmol/L) events here, since these typically stem
from post-prandial excursions, which are not considered in this
study. Even otherwise it can be clearly seen from Fig. 5 that
no hyperglycemic events were observed in the SMBG mea-
surements, indicating good long-term fasting glucose control.

V. CONCLUSIONS
This paper addresses the problem of determining and main-

taining the optimal insulin dosage for T2D patients in a
model-free fashion. The proposed method uses recursive least
squares-based extremum seeking control. We showed that
the proposed model-free algorithm is able to determine the
optimal insulin dosage using only the daily self-measured
blood glucose (SMBG) data. More importantly, this method
does not require updating models or fit model parameters
to individual patients, thus making it widely applicable to
a large group of patients. Compared to the standard-of-care
approach, the proposed method was shown to perform better

in terms of days-to-convergence and reduce hypoglycemic
events. This paper is a step towards model-free algorithms for
insulin titration in T2D, and data-driven closed-loop glycemic
regulation. Future work will involve testing the proposed
algorithm on a more detailed physiological model that have
recently been developed for T2D such as [17], [18]. The
proposed method may also be used for model-free basal insulin
titration for patients in T1D.
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