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Active Attack Detection and Control in Constrained Cyber-Physical
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Abstract— This paper proposes an active attack detection
scheme for constrained cyber-physical systems. Despite passive
approaches where the detection is based on the analysis of the
input-output data, active approaches interact with the system by
designing the control input so to improve detection. This paper
focuses on the prevented actuation attack, where the attacker
prevents the exchange of information between the controller
and actuators. The proposed scheme consists of two units: 1)
detection, and 2) control. The detection unit includes a set of
parallel detectors, which are designed based on the multiple-
model adaptive estimation approach to detect the attack and to
identify the attacked actuator(s). For what regards the control
unit, a constrained optimization approach is developed to
determine the control input such that the control and detection
aims are achieved. In the formulation of the detection and
control objective functions, a probabilistic approach is used
to reap the benefits of the a priori information availability. The
effectiveness of the proposed scheme is demonstrated through
a simulation study on an irrigation channel.

I. INTRODUCTION

Cyber-Physical Systems (CPSs) often employ distributed

networks of embedded sensors and actuators that interact

with the physical environment. The availability of cheap

communication technologies (e.g., internet) has certainly

improved scalability and functionality features in several

applications. However, they have made CPSs susceptible to

cyber security threats. This makes the cyber security to be

of primary importance in safe operation of CPSs.

By assuming that sensors-to-controller and controller-to-

actuators communication channels are the only ones in CPSs

executed via internet and malicious agents can alter data

flows in these channels, in general two classes of cyber

attacks can be considered: (i) False Data Injection (FDI), and

(ii) Denials of Service (DoS). A FDI (a.k.a. deception attack)

affects the data integrity of packets by modifying their pay-

loads [1]–[3]. A DoS is the one that the attacker needs only

to disrupt the system by preventing communication between

the components. In this paper, we focus on a specific type of

DoS attack, so-called Prevented Actuation Attack (PA2) [4],

[5], where the attacker prevents the exchange of information

between the controller and the actuators. An attacker can

launch such attacks on the physical layer or cyber layer.

Examples of real-world PA2 are: sleep deprivation torture

attack [6] (a.k.a. battery exhaustion attack) that exhausts

the battery of a surveillance robot or a medical implant
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until it can no longer function; door lock attack [7] that

suppresses the operation of a smart door by injecting ‘close’

command every time an ‘open’ command is received; and

fatigue bearing attack [8] that restrains the operation of the

lubricant system in wind turbines to damage gearboxess.

Regardless of the type of attack, attack detection ap-

proaches presented in the literature can be classified as: (i)

passive approaches, and (ii) active approaches. Note that

we use the same terminology of the fault literature [9] to

classify attack detection approaches, as faults and attacks

usually manifest themselves similarly in control systems

despite their natural differences. In passive approaches, the

input-output data of the system are measured (remotely or

on-site), analyzed for any possible stealthy behavior, and then

a decision about an attack is made. The passive approaches

are widely studied and commonly used in many today’s

applications, e.g., [10]–[14]. However, they might not be able

to recognize an attack when the input-output data are not

informative enough. Also, they do not address stability/safety

of the system during detection horizon, a time interval from

the instant an attack occurs to the instant when it is detected.

The active approaches interact with the system during the

detection horizon by means of a suitably designed input

signal that is injected into the system to increase the quality

of detection, shorten the detection horizon, and enforce

stability/safety during the detection horizon. Contrary to the

passive approaches, the active approaches are historically

younger and still under development. To the best of the

authors’ knowledge, the only existing active attack detection

approach in the literature is the physical authentication

(a.k.a. digital watermarking) [15]–[17]. The core idea of this

method is to inject a known noisy input to the system and

observe its effect on the output of the system. Thus, if an

attacker is unaware of this physical watermark, the system

cannot be adequately emulated, as the attacker is unable to

consistently generate the component of the output associated

with this known noisy input. The physical authentication,

which is mainly used in detection of replay attack (a.k.a.

playback attack) [18], can be effective if the noise injected

at the system input is large enough to achieve good detection

performance, which may degrade the control performance.

Moreover, this method injects the noisy input irrespective

of the probability of attack occurrence, which leads to

unneeded loss in control performance. Furthermore, in the

case of constrained systems [19]–[21], as shown in [22],

the extra uncertainty injected to the system due to the noisy

input should be taken into account in the design procedure,

which leads to tighter constraints, and consequently more
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conservative behavior.

This paper answers the following question: How to deter-

mine the control input sequence for a constrained CPS such

as to improve the detection performance without degrad-

ing the control performance? Inspired by [23], this paper

answers this question in the case of PA2. The proposed

structure consists of two units: (i) detection unit, and (ii)

control unit. The detection unit uses a priori information and

input-output data of the system over the detection horizon

with a certain length to generate a decision variable which

represents the situation of the system. More precisely, the

detection unit recognizes the existence/inexistence of PA2

and distinguishes attacked actuators. The control unit gener-

ates the control input which is optimal according to a cost

function and guarantees constraint satisfaction at all times.

Both control and detection aims are defined in the form of

stochastic objective functions, i.e., they are uncertain due

to noises and initial condition. The open-loop information

processing strategy [24] is then used to express the stochastic

objective functions as deterministic functions. Finally, in

order to evaluate the quality of the control input sequence in

terms of detection and control aims, a compromise between

the two aims is defined in the form of a multi-objective

optimization problem whose solution can be computed by

means of available optimization tools.

II. PROBLEM STATEMENT

Consider the following discrete-time LTI system:

xk+1 =Axk +Buk + wk, (1)

yk =Cxk + vk, (2)

where xk ∈ R
n is the state vector at time k, uk ∈ R

p

is the control input at time k, yk ∈ R
m is the vector of

measurements from the sensors at time k, and the process

noise wk ∈ R
n and the measurement noise vk ∈ R

m

are mutually independent white Gaussian noises with zero

mean and covariance matrices Hw ∈ R
n×n and Hv ∈

R
m×m, respectively. We assume that the initial state x0 is

independent of wk and vk, and has a Gaussian distribution

with the known mean x̄0 and covariance matrix Hx,(0,0).

In mathematical terms, the PA2 on the i-th actuator is

equivalent to zeroing the i-th column in the matrix B. Thus,

the dynamics of attack-free and under attack systems can be

expressed using a single difference equation in the following

form:

xk+1|µ =Axk|µ +Bµuk + wk, (3)

yk|µ =Cxk|µ + vk, (4)

where µ ∈ {µ1, · · · , µ2p} is the index of the mode of the

system, each µi having a known distribution P (µi), Bµ is the

corresponding input matrix, xk|µ is the state of the system

operating in mode µ with x0|µ = x0, and yk|µ is the output

of the system operating in mode µ.

Suppose that the system is subject to the following expec-

tational linear constraints:

E
[

Gxxk|µi
+Guuk

]

≤ g, ∀k ≥ 0, i ∈ {1, · · · , 2p} (5)

where E[·] is the expectation function, and Gx ∈ R
nc×n,

Gu ∈ R
nc×p, and g ∈ R

nc , with nc as the number of

constraints.

Problem 1: Consider system (3)-(4) which is subject to

constraints (5). Suppose N > 0 as the detection horizon,

chosen by the designer. Find a control sequence uk, k =
0, · · · , N − 1 such that1 at time N the mode of the system

is identified with high probability of correctness, while

optimal control performance and constraint satisfaction are

guaranteed during the detection horizon.

Before starting with the solution of Problem 1, let us

compute the conditional probability density functions of the

state and output. According to (3), for the control sequence

u0, · · · , uN−1, the mean value of the state at time k is

x̄k|µ = Akx̄0|µ +Ak−1Bµu0 + · · ·+Bµuk−1, (6)

and the covariance matrix of the state at times k and l (k ≥ l)

can be computed as

Hx,(k,l)|µ :=E
{

(xk|µ − x̄k|µ)(xl|µ − x̄l|µ)
T
}

=AkHx,(0,0)

(

Al
)T

+Ak−1Hw

(

Al−1
)T

+Ak−2Hw

(

Al−2
)T

+ · · ·+Ak−lHw, (7)

where Hx,(k,l)|µ =
(

Hx,(l,k)|µ

)T
∈ R

n×n. Therefore, the

conditional probability density function of the state for the

interval [0, N ] can be expressed as:

P
(

x0:N

∣

∣µ, u0:N−1

)

∼ N
(

x̄0:N |µ, Hx|µ

)

, (8)

where x0:N := [(x0)
T , · · · , (xN )T ]T ∈ R

n(N+1),

u0:N−1 := [(u0)
T , · · · , (uN−1)

T ]T ∈ R
pN , x̄0:N |µ :=

[(x̄0|µ)
T , · · · , (x̄N |µ)

T ]T ∈ R
n(N+1), and Hx,(i−1,j−1)|µ is

the element (i.j) of Hx|µ ∈ R
n(N+1)×n(N+1).

Similarly, the conditional probability density function of

the output for the the interval [0, N ] can be expressed as

P
(

y0:N
∣

∣µ, u0:N−1

)

∼ N
(

ȳ0:N |µ, Hy|µ

)

, (9)

where y0:N := [(y0)
T , · · · , (yN )T ]T ∈ R

m(N+1), and

ȳ0:N |µ := [(ȳ0|µ)
T , · · · , (ȳN |µ)

T ]T ∈ R
m(N+1) with ȳk|µ =

Cx̄k|µ, k = 0, · · · , N as the mean value of the output at

time k. Also, Hy|µ ∈ R
m(N+1)×m(N+1) is the covariance

matrix of the output, where the (i, j) element is

Hy,(i,j)|µ =

{

CHx,(i−1,j−1)|µC
T , i > j

CHx,(i−1,j−1)|µC
T +Hv i = j

. (10)

III. DETECTION UNIT

The system (3)-(4) can be seen as a 2p-model system,

where each model corresponds to one mode. Thus, in order

to detect existence/inexistence of PA2, and to identify which

actuator(s) is under attack, it is only needed to identify the

true µ at the end of detection horizon. The fact that one

of the 2p models is the true one can be modeled by a

hypothesis random variable that must belong to a discrete

1Without loss of generality and for the sake of simplicity we assume the
detection horizon starts from 0.



set of hypothesis {µ1, · · · , µ2p}, where the event µi means

that the i-th model is the one that is generating the data.

One Bayesian approach to hypothesis testing is to base

decisions on the posterior probabilities, i.e., the probability

of the mode µi conditioned by the input-output data. In

mathematical terms, the posterior probabilities at time k are

denoted as P
(

µi

∣

∣y0:k, u0:k−1

)

, where at time k = 0 the

posterior probabilities are equal to the prior probabilities,

i.e., P
(

µi

∣

∣uT
0

)

= P (µi).
The conditioned posterior probabilities can be computed

using the Multiple-Model Adaptive Estimator (MMAE)

structure [25]–[27]. The MMAE (a.k.a. partitioned algo-

rithm) involves the parallel operation of 2p Kalman filters

(each matched to one of the postulated models), where the

residuals of the Kalman filters are used to compute the

conditional posterior probabilities. The rationale is that the

highest posterior probability corresponds to the true model

of the system. It is shown that the correct model can be

identified “almost surely” [28], [29].

It is easy to show that when the attack happens sometime

within a detection horizon, it might remain undetected until

the end of the following detection horizon. It can be also

shown that in the case of a smart attack (i.e., the attack

happens sometime within a detection horizon and lasts for a

wisely selected period of time), a single detector might not

be adequate to detect the attack. Therefore, we propose to

deploy N parallel detectors, where the d-th detector identifies

the mode µ̂d via

µ̂d = arg max
i∈{1,2,··· ,2p}

P
(

µi

∣

∣y0:N , u0:N−1

)

. (11)

We assume that every detector identifies the mode of

the system only in N time steps. Note that N defines the

the trade-off between the detection quality and detection

performance. Large values of N decreases the probability

of making an incorrect decision during the transient of the

posterior probabilities. However, when the attack duration is

too small compared to the length of the detection horizon,

the attack might remain undetected.

IV. CONTROL UNIT

A. Control Objective Function

The control aim is to track the desired reference rk ∈
R

m while penalizing the control effort. The control objective

function can be formulated as

Jc(u0:N−1) = E

[

N
∑

k=0

‖yk − rk‖
2
Q +

N−1
∑

k=0

‖uk‖
2
R

]

(12)

where Q = QT ∈ R
m×m is a positive semi-definite matrix

and R = RT ∈ R
p×p is a positive definite matrix.

The objective function (12) is a stochastic function, where

the uncertainties are due to noises and the initial condition.

In this paper, instead of using deterministic approaches (i.e.,

assuming uncertainties as upper-bounded signals), we will

focus on probabilistic approaches, where available a priori

information can be used in obtaining the optimal control

sequence. In particular, we will use the open loop approach.

This approach is based on the information available at the

beginning of each detection horizon (i.e., x̄0 and Hx,(0,0)),

while the measurements during the detection horizon are not

used.

Theorem 1: Consider system (3)-(4), and control objective

function (12). Suppose that the open loop approach is used

to determine the control sequence, i.e., the entire control

sequence u0:N−1 is determined at the beginning of the

prediction horizon. Then, control objective function (12) can

be expressed as an explicit function of the control sequence.

Proof: When the open loop approach is used, the

objective function (12) can be expressed as

Jc(·) =Tr

(

Q

N
∑

k=0

E
[

yky
T
k

∣

∣

∣
u0:N−1

]

)

+
N
∑

k=0

rTk Qrk

− 2

N
∑

k=0

rTk QE
[

yk

∣

∣

∣u0:N−1

]

+

N−1
∑

k=0

uT
kRuk, (13)

where Tr(·) is the trace function. We know that2

E
[

yky
T
k

∣

∣u0:N−1

]

=
2p
∑

i=1

P (µi)
(

ȳk|µi
ȳTk|µi

+Hy,(k,k)|µi

)

,

(14)

where Cov(·) is the covariance function. Thus, the control

objective function can be rewritten as

Jc(·) =Tr

(

Q

N
∑

k=0

2p
∑

i=1

P (µi)
(

ȳk|µi
ȳTk|µi

+Hy,(k,k)|µi

)

)

+
N−1
∑

k=0

uT
kRuk +

N
∑

k=0

rTk Qrk

− 2
N
∑

k=0

2p
∑

i=1

P (µi)r
T
k Qȳk|µi

, (15)

which due to the fact that ȳk|µ = Cx̄k|µ, it implies that:

Jc(·) =
N
∑

k=0

2p
∑

i=1

P (µi)x̄
T
k|µi

CTQCx̄k|µi
+

N−1
∑

k=0

uT
kRuk

− 2
N
∑

k=0

2p
∑

i=1

P (µi)r
T
k QCx̄k|µi

+
N
∑

k=0

rTk Qrk

+ Tr

(

Q

N
∑

k=0

2p
∑

i=1

P (µi)Hy,(k,k)|µi

)

. (16)

Finally, according to (6), (16) can be rewritten as

Jc(·) =
N
∑

k=0

2p
∑

i=1

P (µi)u
T
0:k−1F1u0:k−1 +

N−1
∑

k=0

uT
kRuk

+

N
∑

k=0

2p
∑

i=1

P (µi)F2u0:k−1 + F3, (17)

where F1, F2, and F3 are given in (18)-(20), respectively.

This completes the proof.

2Cov(Y, Y ) = E{Y Y T } − E{Y } (E{Y })T for the random vector Y .



B. Detection Objective Function

Suppose that the detector given in (11) is used to identify

the mode of the system. In order to determine the control

sequence during the detection horizon such that the proba-

bility of an incorrect identification is minimized, we can use

the following detection objective function

Jd(u0:N ) , E
[

σ(µ̂1)
]

, (21)

where σ(µ̂1) is zero when the identified mode is the actual

mode of the system, and is non-zero (we set it to 1 for

simplicity) otherwise. Note that since the control sequence

u0:N−1 is assumed to be applied at time k = 0, only the first

detection horizon is taken into account in the formulation

of the detection objective function. In other words, the

determined control signal is optimal only for Detector#1.

Theorem 2: Consider system (3)-(4), and detection objec-

tive function (21). Suppose that the open loop approach is

used to determine the control sequence. Then, the detection

objective function can be upper bounded with an explicit

function of the control sequence.

Proof: By using the open loop approach, the detection

objective function (21) can be expressed as

Jd(·) =E
[

σ(µ̂1)
∣

∣u0:N−1

]

=

∫

Rm(N+1)

2p
∑

i=1

σ(µ̂1)P
(

µi

∣

∣y0:N , u0:N−1

)

·

P (y0:N
∣

∣u0:N−1)dy0:N , (22)

which according to Bayes’ theorem, it implies that

Jd(·) =

∫

Rm(N+1)

2p
∑

i=1

σ(µ̂1)P (y0:N
∣

∣µi, u0:N−1)P (µi) dy0:N ,

(23)

which is concluded due to the fact3 that the probability of

the mode µi conditioned by only input data is equal to the

probability of the mode µi.

The right side of (23) cannot be computed analytically and

its numerical evaluation is computationally expensive. Due

3P (µi|u0:N−1) =
P (u0:N−1|µi)

P (u0:N−1)
P (µi) = P (µi), since u0:N−1 is

deterministic, and consequently P (u0:N−1|µi) = P (u0:N−1) = 1.

to this reason, in the following we will find an upper bound

for the detection objective function Jd(u0, · · · , uN−1).

Since 0 ≤ σ(µ̂1) ≤ 1, it implies that:

Jd(·) ≤

∫

Rm(N+1)

2p
∑

i=1

P (y0:N
∣

∣µi, u0:N−1)P (µi) dy0:N . (24)

Following the same arguments presented in [30], the right

side of (24) can be upper bounded as

∫

Rm(N+1)

2p
∑

µ=1

P (y0:N
∣

∣µi, u0:N−1)P (µi) dy0:N ≤ Ĵd(u0:N ),

(25)

where

Ĵd(u0:N ) =
2p
∑

i=1

2p
∑

j=i+1

√

P (µi)P (µj)e
−φij , (26)

with

φij =
1

4

(

ȳ0:N |µj
− ȳ0:N |µi

)T (
Hy|µi

+Hy|µj

)−1
·

(

ȳ0:N |µj
− ȳ0:N |µi

)

+
1

2
ln





det
(

Hy|µi
+Hy|µj

2

)

√

det(Hy|µi
)det(Hy|µj

)





(27)

where det(·) is the determinant function. It is noteworthy

that according to (6)-(7), (10), and since ȳk|µi
= Cx̄k|µi

,

the upper bound Ĵd(·) given in (26) is an explicit function

of the control sequence. This completes the proof.

C. Constraints

By using the open loop approach, the expectational con-

straints given in (5) take the following form:

E
[

Gxxk|µi
+Guuk

∣

∣u0:k−1

]

≤ g ⇒

Gx(A
kx̄0|µi

+Ak−1Bµi
u0 + · · ·+Bµi

uk−1)

+Guuk ≤ g, (28)

which is an explicit function of the control sequence.

F1 =









BT
µi
(Ak−1)TCTQCAk−1Bµi

· · · BT
µi
(Ak−1)TCTQCBµi

...
. . .

...

(Bµi
)TCTQCAk−1Bµi

· · · (Bµi
)TCTQCBµi









, (18)

F2 =2(x̄0|µi
)T (Ak)TQ

[

Ak−1Bµi
Ak−2Bµi

· · · Bµi

]

− 2rTk QC
[

Ak−1Bµi
Ak−2Bµi

· · · Bµi

]

, (19)

F3 =

N
∑

k=0

2p
∑

i=0

P (µi)(x̄0|µi
)T (Ak)TCTQCAkx̄0|µi

+ Tr

(

Q

N
∑

k=0

2p
∑

i=1

P (µi)Hy,(k,k)|µi

)

+

N
∑

k=0

rTk Qrk

+

N
∑

k=0

2p
∑

i=0

P (µi)r
TQCAkx̄0|µi

. (20)



D. Proposed Solution

One possible way to pursue both control and detection

aims is to let one of the objective functions to take arbitrary

value up to a known upper limit value, and then to enforce

this as a constraint and minimize the other objective function.

Therefore, the following two optimization problems can be

considered

u∗
0:N−1 =











arg min
u0:N−1

Jc(·) given in (17)

s.t. (28) is satisfied ∀i, ∀k ≥ 0

Ĵd(·) given in (26) ≤ J̄d

, (29)

or

u∗
0:N−1 =











arg min
u0:N−1

Ĵd(·) given in (26)

s.t. (28) is satisfied ∀i, ∀k ≥ 0

Jc(·) given in (17) ≤ J̄c

, (30)

where J̄d and J̄c are maximum acceptable levels of the

detection and control objective functions, respectively.

The objective function (17) and constraints given in (28)

are convex in u0:N−1. The objective function (26) is concave,

as φij as in (27) is a quadratic function of u0:N−1 (with a

positive definite matrix), and consequently convex in u0:N−1.

Thus, problems (29)-(30) are in general non-convex. We use

bmibnb [31] to numerically compute their solutions.

V. SIMULATION STUDY– IRRIGATION CHANNEL

In this section we will use the developed method to control

the level of water in pools 9 and 10 of the Haughton main

channel, as shown in Fig. 1. The water levels in the channel

are controlled by overshot gates located along the channel.

The stretch of a channel between two gates is referred to as a

reach or a pool. We assume that the communication between

the controller and the gates is through internet.

The water level in the g-th pool (g ∈ {9, 10}) of the

irrigation channel can be modeled as [32]

ẏg(t) = αg−1,inh
3/2
g−1(t− τg−1)− αg,outh

3/2
g (t) + dg−1(t),

(31)

where yg(t) is the water level in the pool, hg(t) is the head

over the gate (the height of water above the gate), τg is

the time delay which accounts for the time it takes for the

water to travel from the upstream gate to the downstream

gate in the g-th pool, dg(t) represents offtakes to farms and

side channels, and αg,in and αg,out are constants which

incorporates the effect of the discharge coefficients. The

real value of the parameters is given in TABLE I. For

the sake of simplicity we assume there is no offtake, i.e.,

dg = 0, g = 8, 9.

The sampling time is 10 [min], and the control signal is

the head over the gate. We assume that initial water level in

pool 9 and 10 is 6.60 [m] and 5.60 [m], respectively. Also,

we assume that wk ∼ N (0, 0.3I8) and vk ∼ N (0, 0.3I2),
where I2 is the 2×2 identity matrix and 0 is the zero vector

with appropriate size. The water level in pools should not

exceed 15 [m]. The system is subject to actuator saturation

[33], i.e., the control signals cannot be negative.

Fig. 1. Side view of the Haughton main channel; pools 9 and 10.

TABLE I

PARAMETERS OF THE HAUGHTON MAIN CHANNEL [34].

Parameter g = 8 g = 9 g = 10
αg,in [1/m2] 0.0208 0.0700 0.0142

αg,out [1/m2] 0.0278 0.0614 0.0156
τg [min] 6 3 16

Since there are three actuators, eight different modes can

be defined. We assume that a priori probability of the i-th

mode is P (µi) = 0.125, ∀i.
Suppose that Q = I2, R = I3, the detection horizon is

200 [min], and the level of detection and control objective

functions must not exceed 1 and 2000, respectively.

We assume that for k ∈ [0, 80], [200, 300], [360, 480],
[580, 700] the mode of the system is 1, for k ∈ [80, 200] the

mode of the system is 8, for k ∈ [300, 360] the mode of the

system is 2, and for k ∈ [480, 580] the mode of the system

is 7. Note that for comparison purposes, we also simulate a

pure control formulation, i.e.,

u∗
0:N−1 =

{

arg min
u0:N−1

Jc(·) given in (17)

s.t. (28) is satisfied ∀i, ∀k ≥ 0
. (33)

The achieved normalized values of the control and detec-

tion objection functions are shown in Fig. 2 and 3, where

control and detection costs obtained by the formulation (33)

are assumed as the base unit quantity for control and detec-

tion costs, respectively. As expected, compromise between

control and detection aims increases the control cost Jc.

However, it decreases the detection cost Ĵd which means

that probability of misidentification is minimized.

VI. CONCLUSION

This paper proposed an optimization approach for active

attack detection and control of constrained CPSs systems

subject to expectational linear constraints. This paper mainly

focused on PA2 attack, where the attacker prevents the

exchange of information between the controller and the

actuators. A set of parallel detectors based on hypothesis

testing approach was proposed. Using a probabilistic ap-

proach to deal with uncertainties, the detection and control

aims were formulated as two separate stochastic objec-

tive functions. The open loop approach was deployed to

transfer the stochastic functions to deterministic ones. Two

alternative compromise between detection and control aims

were presented in the form of a constrained optimization

problem. The effectiveness of the proposed active approach

was validated through simulation studies.



Fig. 2. Normalized control cost by formulations (33), (29), and (30).

Fig. 3. Normalized detection cost by formulations (33), (29), and (30).
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