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Guaranteed Interval State Estimation for Linear Parameter Varying
Systems with Unknown Inputs

L. Meyer1

Abstract— This paper investigates the construction of interval
state observer for Linear Parameter Varying (LPV) systems
affected by Unknown Input (UI) and bounded perturbations
in both state and measurement equations. The parameter
may depend on measurement or other exogenous measurable
variables and is bounded in a compact set. The use of Sobolev
spaces frame as well as High Order Sliding Mode (HOSM)
differentiator enables us to properly access to the successive
output derivatives, and thus to obtain an easily attainable rank
condition for the decoupling of the UI from the state estimation
error. In particular, the proposed rank condition relaxes the
classical and widely used one. An interval state observer is
provided and its boundedness is proved. Finally, an example
illustrates the theoretical contribution.

Index Terms— Interval Observer, Unknown Input, High Or-
der Sliding Mode, Linear Parameter Varying Systems

I. Introduction

The problem of state estimation has been of great interest
in the field of automatic and control systems for the last
decades, and a lot of challenges is still present. Among the
famous observers, we can cite the Luenberg, Kalman or H∞
observers [1][2]. When the studied system is perturbed by
some noise or any unknown perturbation, these observers
cannot guarantee an exact estimation (even if it can be very
good). For some critical application, such an inexact point-
wise estimation is not acceptable, and a guarantee of the true
state inside given bounds (an interval) is needed.

Several approaches of interval estimation have been de-
veloped in that direction, and among them, the algebraic
approach [3], as well as the monotone (or cooperative)
system approach [4][5] are of main importance. In that
former domain, in which the present paper takes place, a
lot of results have already been established. In discrete-time
case, we can cite among others the work done in [6] for
Linear Time Invariant (LTI) systems or in [7] for Linear
Time Varying (LTV) systems. In continuous-time case, in
which the present paper belongs, several observers have been
developed for linear and some classes of nonlinear systems
[8][5].

Beyond LTI and LTV systems, another class of systems is
of great importance: the Linear Parameter Varying (LPV)
systems whose matrices depend on bounded parameters
(which may depend on internal or external variables). This
kind of systems is of great importance are they are closer
to non linear systems than the other classical kind of linear

1 DTIS, ONERA, Univ Paris Saclay, Palaiseau, France. Corresponding
author: luc.meyer@onera.fr

systems (LTI, LTV), whereas most of linear mathematical
techniques can be applied on them. In the field of cooperative
interval theory, only few works have been done on LPV
systems: [4][9][10][11][12]. Both first ones are concerned
with the state observation of an continuous-time LPV system
without considering any UI. The third one is concerned
with the control of such a system. [11] and [13] have dealt
with fault diagnosis in LPV systems, and does not consider
any perturbation nor unknown input in the measurement
equation.

Finally, [12] consider the construction of an interval ob-
server for discrete-time LPV systems with unknown inputs,
and with known parameter.

The present paper deals with continuous-time LPV sys-
tems in the presence of an Unknown Inputs. Let consider
the continuous LPV system described by:

ẋ(t) = Aρx(t) + Dρd(t) + Fρw(t)
y(t) = Cρx(t) + Eρd(t) + v(t)
ψ(t) = Cρx(t) + Eρd(t)

, (1)

where x ∈ Rnx is the state of the system, d ∈ Rnd denotes
the Unknown Input (UI) vector, y ∈ Rny is the output, and
ψ ∈ Rny is the free-noise output. w ∈ Rny and v ∈ Rny are
respectively the state and measurement perturbations. Aρ,
Cρ, Fρ, Dρ and Eρ are parameter varying matrices with
appropriate dimensions, ρ ∈Ω being the parameter. Ω ⊂ Rnρ

is assumed to be a convex and compact set. In the present
paper, the parameter ρ is assumed to be known.

The main goal of this paper is to propose a way of
making a guaranteed estimation of the state of system (1)
using cooperative interval approach. Only few works have
been done in that sense. In LTI case, without any unknown
input on the measurement equation (matrix E is null), the
problem has been solved in [14] under the specific condition
rank(CD) = rank(D). This condition enables the width of the
state estimation interval not to be affected by the presence
of the UI.

In a continuous-time LPV system, in the case both UI and
bounded perturbations are present in both state and measure-
ment equation, and in the case the condition rank(CD) =

rank(D) is not satisfied, no observer has been developed to
the best of the authors knowledge. The novelty of the present
work is to treat those cases in a unified way. More precisely,
the present work focuses on the state interval estimations of
the continuous LPV system (1). One of the main difficulty

 



of dealing with UI in continuous-state systems, is that the
decoupling of the UI needs to compute the derivative of
successive output derivatives, and derivation of a noisy
equation is not easy and raises several issues. In this paper,
this derivation is made thanks to the use of High Order
Sliding Mode differentiator.

The paper is organized as follow. Some preliminaries are
introduced in section II. The main results are given and
proved in section III. Finally, an example illustrating the
theoretical contribution is given in section IV.

II. Preliminaries

A. Notations

For any matrix A ∈Mn,p(R), tr(A) denotes its trace, AT its
transpose, and A† its pseudo-inverse. If A = AT ∈Mn,n(R) is
a symmetric matrix, then A� 0 (resp. A≺ 0, A� 0, and A� 0)
means that A is a positive definite (resp. negative definite,
nonnegative, nonpositive) matrix.

The operators ≤, ≥, < and > are understood component
wise for vectors and matrices, and the notation x ∈ [x; x]
means that x ≤ x ≤ x (where x is any vector or matrix). If
A ∈Mn,m(R), let set A+ = max{0,A}, A− = A−A+ (such that
A = A+ + A− with A+ ≥ 0 and A− ≤ 0). |A| = A+ −A− is the
element-wise absolute value of A. Note that for any matrices
A and B with compatible dimensions, |AB| ≤ |A|.|B| and |A +

B| ≤ |A|+ |B|.
Finally, for n ≥ 1 and r ≥ 1, let set Un,r =

[
In 0n,r×n

]
.

B. Definitions and useful properties

Let recall some definitions and useful properties.
Lemma 1 (Relation Order [4]): Let be a vector x ∈ [x; x]

and a matrix A ∈ [A; A]. Then:

A+x+ +A
+

x−+A−x+ +A
−

x− ≤ Ax≤ A
+

x+ +A+x−+A
−

x+ +A−x−.
(2)

Definition 1: Let A = (ai, j) ∈Mn,n(R) be a square matrix.
A is said to be Metzler if ai, j ≥ 0 for i , j.

Lemma 2 (Cooperative property [15]): Given a non-
autonomous system described by ẋ(t) = Ax(t)+ B(t, x), where
x ∈ Rn

+, A is Metzler and B : R+ ×R
n
+ → R

n
+ is a map such

that B(t, x) ≥ 0 for all t ≥ 0 and x ≥ 0. Then, x(t) ≥ 0, ∀t ≥ 0,
provided that x(0) ≥ 0.

Lemma 3 (Asymptotic convergence): Given a system de-
scribed by ẋ(t) = A(t)x(t)+ B(t) where A(t) is Metzlez for all
t ≥ 0, A(t) ≤ A,∀t ≥ 0, 0 ≤ B(t) ≤ B, ∀t ≥ 0, and A is Hurwitz.
Then:

0 ≤ x(t) ≤ xm(t), ∀t ≥ 0, (3)

where xm(t) is solution of ẋm(t) = Axm(t) + B, and xm(0) =

x(0) ≥ 0. Besides:

lim
t→∞

x(t) ≤ −A
−1

B, (4)

providing that x(0) ≥ 0.
Proof: Let consider the unknown vector xe = xm− x. It

comes that ẋe = Axe + Ae(t)x+ Be(t), where Ae(t) = A−A(t) ≥

0 and Be(t) = B − B(t) ≥ 0. Using lemma 2 on equation
ẋ(t) = A(t)x(t) + B(t), it comes that xm(t) ≥ 0 for all t ≥ 0,
and thus Ae(t)x + Be(t) ≥ 0, which leads to xe(t) ≥ 0,∀t ≥ 0,
again thanks to lemma 2 (recall that A is Metzler). Thus,
equation (3) holds. Besides, because A is Hurwitz, it comes:
limt→∞xm(t) = −A

−1
B (note that A

−1
exists as A is Hurwitz,

and thus 0 is not an eigenvalue of A). Then, thanks to
equation (3), the second result of the lemma is proved.

C. About the parameter varying matrices

Throughout all this paper, the following assumption on the
parameter ρ holds.

Assumption 1: All LPV matrices depend continuously on
the parameter ρ ∈Ω.

Remark 1: Ω being a compact, Assumption 1 implies that
for each matrix Mρ, the subset {Mρ,ρ ∈Ω} is also a compact
(this is due to Heine theorem which states that the image of
a compact set by a continuous function is a compact set),
and thus is bounded. In particular, the sum, the difference or
any product of such matrices stay bounded. The inverse of
such an LPV matrix stays bounded if for all possible values
of the parameter, the inverse exists.

D. Sobolev Spaces and HOSM differentiator

The main difficulty in continuous observation of systems
affected by UI is the derivation of the outputs. Indeed, the
derivative is needed in order to decouple the state estimation
error from the UI (so that the estimation is guaranteed
regardless of the UI variations). If the output is noise-free,
there is no difficulty to do that, and any differentiator can be
used. However, as it is the case in this paper, the presence
of noise in the output is a big difficulty while making the
derivation of it. This justify the following assumption.

Assumption 2: The noises w (resp. v) are assumed to be
s− 1 (resp. s) times differentiable, and all their respective
derivatives are bounded: |w| ≤ w, |ẇ| ≤ ẇ, ..., |w(s−1)| ≤ w(s−1),
|v| ≤ v, |v̇| ≤ v̇, ..., |v(s)| ≤ v(s), where w, ẇ, ..., w(s−1), v, v̇ and
v(s) are positive constants.

In a more formal way, and as in [16], the previous
assumption can be stated under the frame of Sobolev spaces.
A Sobolev space is a normed vector space, whose elements
are functions such that their norm and the norm of their
derivatives up to a given order are part of Lp for a given p.
More formally, the following definition holds.

Definition 2: Let be s and p two integers (possibly ∞).
The Sobolev space Ws,p

n is defined by:

W
s,p
n = {z : [0,∞]→ Rn |

∂iz
∂ti ∈ L

n
p([0,∞]),∀i = 0, ..., s}.

(5)
The associated norm is the following:

||z||ns,p = [
∑s

i=0(|| ∂
iz(t)
∂ti ||L

n
p )p]1/p = (

∑s
i=0

∫ +∞

0 ||
∂iz(t)
∂ti ||

pdt)1/p

(6)
Now, assumption 2 can be stated as:

 



Assumption 3: There exist an integer s such that w ∈
W

s−1,∞
nw , v ∈Ws,∞

ny and ρ ∈Ws,∞
nρ .

Remark 2: In order to complete remark 1 it is worth
noting that all matrices depending continuously of ρ or one
of its successive derivatives till the order s are bounded. And
it is also the case of the sum, the difference, the product or
the inverse (provided that it exists) of such matrices.

Besides the previous assumption, the output and the Un-
known Input (UI) vector are also assumed to be s times
differentiable (without bounded assumption here).

Assumption 4: The output y and the UI vector d in (1)
are both s times differentiable.

In a practical point of view, even if the noises are bounded,
the derivation remains a problem, as classical method of
derivation (as Euler differentiator) can introduce additive
perturbations. Thus, and in order to tackle this problem, the
calculation of the successive derivatives of y in the presence
of the noise v is done thanks to the following High Order
Sliding Mode differentiator detailled [17]:

q̇0 = ν0, ν0 = −λ0|q0− y(t)|
s

s+1 sign(q0− y(t)) + q1

q̇i = νi, i = 1, ..., s−1

νi = −λi|qi− νi−1|
s−i

s−i+1 sign(qi− νi−1) + qi+1

q̇s = −λssign(qs− νs−1)
(7)

where λ, k = 0, ..., s are positive constants to be tuned (a
procedure is proposed in [17]).

The values q, k = 1..s, solutions of (7), are approximations
of the successive derivatives of the free-output ψ. Due to the
presence of the noise, the differentiation suffer from some
estimation error (error between q and ψ(k)). An upper bound
of this error is given by the following theorem.

Theorem 4: [17] Let y = ψ + v : R+ → R be a s times
continuously differentiable signal, with |v| ≤ v, then there
exist 0 ≤ T < ∞, and some constants µ > 0, k = 0, ..., s
(dependent on λ, k = 0, ..., s only) such that for all t ≥ T :

|q(t)−ψ(k)(t)| ≤ µ|v(t)|
s−k+1

s+1 , k = 0, ..., s. (8)
The previous theorem claims that the errors on the calcula-
tion of the successive derivatives of ψ with (7) are bounded.
Using the bounds given by that theorem, it comes any
k = 0, ..., s, and t ≥ T :

q(t) = ψ(k)(t) +β(t), (9)

where |β(t)| ≤ β := µv
s−k+1

s+1 for any t ≥ T .

E. Some useful relationships

Before establishing the main results, let state some useful
relationships. The first one is the compact form of the
expression of the output, as well as its successive derivative
in a unique vector: it can be established (the calculation is
straightforward using the previous notations) that for all r ≥ 1
and s ≤ r, y(s) is under the form:

y(s) =As
r,ρx +Ds

r,ρd̃s +F s
r,ρw̃s + ṽs, (10)

where d̃s =
[
d ḋ ... d(s)

]T
, w̃s =

[
w ẇ ... w(s−1)

]T
,

ṽs =
[
β0 β1 ... βs

]T
, and the matrices As

r,ρ, D
s
r,ρ and F s

r,ρ
are given recursively by:
As+1

r,ρ = Ȧs
r,ρ +As

r,ρAρ, with A0
r,ρ = Cρ,

Ds+1
r,ρ =

[
As

r,ρDρ Ds
r,ρ

]
+
[
Ḋs

r,ρ 0ny,nd

]
, with D0

r,ρ = Eρ, and
F s+1

r,ρ =
[
As

r,ρFρ F s
r,ρ

]
+
[
Ḟ s

r,ρ 0ny,nw

]
, with F 0

r,ρ = 0ny,nw .
Therefore, it comes that:

Yr =Ar,ρx +Dr,ρd̃r +Fr,ρw̃r + ṽr, (11)

where Yr =


q0
q1
...
qr

, and Ar,ρ =


A0

r,ρ
A1

r,ρ
A2

r,ρ
...
Ar

r,ρ

, Dr,ρ =


D0

r,ρ 0ny,rnd

D1
r,ρ 0ny,(r−1)nd

D2
r,ρ 0ny,(r−2)nd

...
Dr

r,ρ


and Fr,ρ =


F 0

r,ρ 0ny,rnw

F 1
r,ρ 0ny,(r−1)nw

F 2
r,ρ 0ny,(r−2)nw

...
F r

r,ρ

.
Besides, and according to equation (9), the following

inequalities holds for any time t ≥ T (with T given by
theorem 4):

w̃r ≤Wr, ṽr ≤ Vr, (12)

where Wr =
[
w ẇ ... w(r−1)

]T
and Vr =[

β0 β1 ... βr

]T
.

III. Main result

A. Assumptions

In order to establish the main results of the paper, the
needed assumptions are introduced here. The first assumption
states a rank condition in order to decouple the unknown
input from the observer estimation error (in that way the
unknown input won’t have any impact on the estimation
performance).

Assumption 5: There exists an integer r such that:

rank(Dr,ρ) = rank(
[
Dr,ρ

DρUnd ,r

]
), ∀ρ ∈Ω (13)

This assumption relaxes the rank assumption rank(CρDρ) =

rank(Dρ) of [14]. This former is equivalent to the case in
which Eρ = 0 and r = 1.

According to assumption 5, for any ρ ∈ Ω, there exists a
gain Kρ satisfying the following equation:

KρDr,ρ = DρUnd ,r, (14)

and the solution is given by:

Kρ = Gρ + XρHρ, (15)

where Gρ = DρUnd ,rD
+
r,ρ, H = I(r+1)ny −Dr,ρD

†
r,ρ, and Xρ is

any arbitrary (gain) matrix (which means that for any matrix
Xρ, Kρ given by (15) is solution of equation (14)).

 



The second assumption ensures the stability of the ob-
server, as well as the desired order relation between the lower
bound x, the state x and the upper bound x: x ≤ x ≤ x.

Assumption 6: There exist a constant transformation ma-
trix T ∈GLnx (R), and for any ρ ∈Ω, there exist a gain matrix
Xρ ∈Mnx,(r+1)nd (R), such that:

1) the matrix Nρ is Hurwitz,
2) the matrix TNρT

−1 is Metzler,
where Nρ = Aρ−KρAr,ρ = Aρ−GρAr,ρ−XρHρAr,ρ.

The Hurwitz property is needed in order to make a stable
observer, whereas the Metzler property is needed in order to
satisfy the increasing order of the state bounds: x ≤ x ≤ x.

Note that the transformation with the invertible matrix T
conserves the eigenvalues of Nρ, and thus T NρT−1 has the
same eigenvalues (with multiplicity) as Nρ and is therefore
also Hurwitz. Thus, the design principle consists in con-
structing Xρ such that Nρ is Hurwitz, and then T such that
TNρT

−1 is Metzler for any ρ ∈Ω.
The following lemma can be applied in some case in order

to prove the existence of a matrix T satisfying assumption
6.

Lemma 5 (Coordinates Transformation property [9]):
Let Nρ be a matrix satisfying the interval constraint:
N0 − Ñ ≤ Nρ ≤ N0 + Ñ, for all ρ ∈ Ω, with constant matrices
N0 = NT

0 and Ñ ≥ 0. If there exist a constant µ ∈ R+ and a
diagonal matrix ∆ such that µ ≥ n||Ñ||max, and the Metzler
matrix µ1n,n − ∆ has the same eigenvalues as N0 (where
1n,n is the matrix whose all elements are equal to 1). Then,
there exists an orthogonal matrix T such that TNρT

−1 is
Metzler for any ρ ∈Ω.
If lemma 5 cannot be applied, other methods exist in order
to construct a matrix T satisfying 6. For example a sylvester
approach can be used [5], or a time varying similarity
transformation [18].

By making the non singular transformation z = T x sug-
gested by assumption 6, system (1) is described in the new
coordinates by:ż = TAρT −1z +TDρd +TFρw

y = CρT
−1z + Eρd + v

. (16)

B. Main results

Let consider the following observer structure:ż = TNρT
−1z +TKρYr + (L+

ρ −L−ρ )Wr + (M+
ρ −M−ρ )Vr

ż = TNρT
−1z +TKρYr − (L+

ρ −L−ρ )Wr − (M+
ρ −M−ρ )Vr

,

(17)
where Lρ = T (KρFr,ρ−FρUr−1,nw ) and Mρ = TKρ.

Theorem 6: Let assume that the parameter ρ ∈Ω is known
at any time. Let assumptions 1, 3, 4, 5 and 6 hold. Then,
let consider the time instant T ≥ 0 given by theorem 4 from
which equation (8) holds, and let assume that z(T ) ≤ z(T ) ≤
z(T ). Then the following relation holds for any t ≥ T :

z(t) ≤ z(t) ≤ z(t). (18)

Besides, there exists γz > 0 such that:

lim
t→∞

ez(t) ≤ γz, (19)

where ez(t) = z(t)z(t) is the total interval error.
Note that equation (19) gives an asymptotic bound of the
width of the interval observer.

Proof: In the following proof, the variables are consid-
ered at a time t ≥ T . In particular, relations (12) hold. Let
calculate the dynamics of the upper and lower interval errors.
It comes:

ėz = ż− ż
= TNρT

−1z +TKρYr + (L+
ρ −L−ρ )Wr + (M+

ρ −M−ρ )Vr
−TAρT −1z−TDρd−TFρw
= TNρT

−1ez +T (Nρ + KρAr,ρ −Aρ)T −1z +T (KρDr,ρ −DρUr,nd )d̃r
+Lρw̃r + Mρṽr + (L+

ρ −L−ρ )Wr + (M+
ρ −M−ρ )Vr

(20)
and similarly:

ėz = ż− ż
= TNρT

−1ez +T (Aρ −KρAr,ρ −Nρ)T −1z +T (DρUr,nd −KρDr,ρ)d̃r

−Lρw̃r −Mρṽr + (L+
ρ −L−ρ )Wr + (M+

ρ −M−ρ )Vr.
(21)

Then, from the definition of Nρ in assumption 6 and from
the definition of Kρ in assumption 5, the following equalities
hold: 0 = Nρ + KρAr,ρ−Aρ

0 = KρDr,ρ−DρUr,nd

. (22)

Besides, recalling that Lρ = L+
ρ + L−ρ and Mρ = M+

ρ + M−ρ , it
comes:

ėz = TNρT
−1ez + L+

ρ (Wr + w̃r)−L−ρ (Wr − w̃r)
+M+

ρ (Vr + ṽr)−M−ρ (Vr − ṽr)
ėz = TNT −1ez + L+

ρ (Wr − w̃r)−L−ρ (Wr + w̃r)
+M+

ρ (Vr − ṽr)−M−ρ (Vr + ṽr)

. (23)

Let set: Jρ = TNρT
−1, S ρ = L+

ρ (Wr + w̃r)− L−ρ (Wr − w̃r) +

M+
ρ (Vr + ṽr)−M−ρ (Vr − ṽr) and S ρ = L+

ρ (Wr − w̃r)− L−ρ (Wr +

w̃r)+ M+
ρ (Wr− ṽr)−M−ρ (Vr + ṽr). The interval errors become:ėz = Jρez + S ρ

ėz = Jρez + S ρ

. (24)

Recalling that |w̃r | ≤ Wr and |ṽr | ≤ Vr, it comes that S ρ ≥

0 and S ρ ≥ 0. Besides, from assumption 6, Jρ is Metlzler.
Therefore, according to lemma 2 with initial time t = T , and
using the initial order relation z(T ) ≤ z(T ) ≤ z(T ), it comes
that for all t ≥ T , ez(t) ≥ 0 and ez(t) ≥ 0, which proves the
first statement of the theorem.

In order to prove the second statement, let us define the
total non-negative error: ez = ez + ez. It comes:

ėz(t) = Jρez(t) + S ρ, (25)

with S ρ = S ρ + S ρ = 2|L+
ρ − L−ρ |Wr + 2|M+

ρ −M−ρ |Vr. J being
Metzler and Hurwitz according to assumption 6, and S ρ

being positive, lemma 3 can be applied and leads to :

lim
t→∞

ez ≤ γz, (26)

 



where γz = −J−1S , with J = sup{Jρ,ρ ∈ Ω} and S =

sup{S ρ,ρ ∈ Ω}, which proves the second statement of the
theorem and concludes the proof.

From the observer defined in equations (17) and theorem
6, the solution x of system (1) is given by the following
corollary from [19].

Corollary 7 ([19]): Let consider the following equations:x(t) = S+z(t) +S−z(t)
x(t) = S+z(t) +S−z(t)

, (27)

with S = T −1. Then, under the conditions of theorem 6, and
providing that x(T ) ≤ x(T ) ≤ x(T ), there exist a time instant
T such that:

1)
x(t) ≤ x(t) ≤ x(t), ∀t ≥ T, (28)

2) the total non-negative error ex = ex + ex satisfies:

limt→∞ex ≤ γx := |S|γz, (29)

where ez = z− z and ez = z− z are the upper and lower bound
errors.

IV. Illustrative example

Consider the following LTI system:
ẋ =


0 1 0
0 0 1
−2 −3 −2

 x +


4 1
0 1
0 0

d +


0
1
−1

w
y =

1 0 0
0 0 1

 x + v

, (30)

where x ∈ R3, y ∈ R2, d ∈ R2, v ∈ R3 and w ∈ R2. The noises
are simulated according to w = 0.5cos(4t + 0.4) and v =

−0.8sin(1.2t + 0.7)
[
1 −1

]T
. Thus, the noises and all their

derivatives are bounded and assumption 3 holds. The un-
known input is simulated to be: d(t) =

[
12cos(t) −4sin(t)

]T
.

We can see that, in this example rank(CD) , rank(D), and
thus, the observer given in [14] cannot be applied. However,

for r = 2, rank(Dr) = rank(
[
Dr

UrD

]
) = 3, and thus assumption 5

is satisfied. Then, the pair (A−GAr,HAr) being observable,
X can be chosen such that N is Hurwitz. Finally, the matrix
T is constructed using a Sylvester transformation.

Simulation is launched during 10 seconds with a constant
time step equal to 10−4. The estimations of the successive
output derivatives are obtained using the HOSM differen-
tiator presented in equations (7) with s = 2, λ0 = 2.0L1/3,
λ1 = 1.5L1/2, λ2 = 1.1L, according to [20] and [17], where L
is an estimation of the upper bound of the norm of the (s+1)-
th derivative of ψ : ψ(s+1) < L. The results are presented on
figures 1 (the estimation for x3 gives similar results and is
given due to a lack of space).

In that particular example, the boundedness of the output
derivatives estimation errors was not achieved in the first time

of the simulation, but a bit later (after about 1 second) due to
the form of the signal. In fact, it is consistent with theorem 4
which states that the boundedness is true after a certain time
T (here, T = 1s). A way of dealing with that is to take for the
interval observers the lowest and highest possible values of
x (as it is usually taken for the initialization of the observers
when no other prior knowledge are available) up to the time
T . Besides T is estimated by looking for the instant from
which the difference between the measured output and the
output calculated by the HOSM is lowest than the associated
bound given by theorem 4 (more on this in [20] or [17]).
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Fig. 1: Example LTI: State Interval Estimation

V. Conclusions
In this paper, state observers for LPV systems with Un-

known Inputs are proposed. The use of Sobolev spaces as
well as HOSM differentiator enables to guarantee bounded-
ness of output derivatives (with knowledge of the derivative),
when the output is affected by perturbations belonging to
Sobolev spaces. Based on that, state observers are proposed
for Linear Parameter Varying systems with UI, when the
parameter (as well as its derivatives) is known. A Theorem
is given for the guaranteed estimation, as well as for the
(asymptotic) boundededness of the estimation error. Finally,
an example illustrates the theoretical contribution of the
paper.

As a future work, the study of the case in which the
parameter is not known may be treated.
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