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Abstract— This paper considers the rigid body attitude
stabilization problem with actuator saturation. This problem
has been considered in the literature before, but most
approaches achieve stability at the expense of strict con-
straints on the control gains, thereby limiting small-signal
performance. The approach proposed here removes the
constraints on the gains of the nominal controller and
instead deals with the control constraints through an anti-
windup mechanism, effectively allowing for more freedom
in small signal behavior whilst preserving stability in the
large. Although the rigid body stabilization problem is in-
herently nonlinear, the spirit of the results developed here
resemble constrained-control results for linear systems
containing imaginary axis poles, despite some subtle dif-
ferences which need careful consideration.

Index Terms— Constrained control; aerospace; Lya-
punov methods

I. INTRODUCTION

THE attitude control problem for rigid bodies has been
studied for many years and is the subject of numerous

papers [1]–[3]. It is of vital importance in the aerospace/space
industries, especially in application to satellites, landers and
UAV’s. The attitude control problem has a nonlinear, yet
tractable, structure: thus many papers ( [1], [2], [4] and ref-
erences therein) have proposed controllers, and accompanying
nonlinear stability analyses, which demonstrate how (almost)
global stability, or similar, can be achieved for such systems.

Like all controllers, however, those responsible for attitude
control have to contend with actuator saturation. This con-
strained version of the attitude control problem has thus been
studied widely and various approaches have been proposed -
[5], [6] and references therein. For instance, [7] considers the
attitude control problem using similar ideas to those proposed
in [8] for linear integrator chains; almost global stability is
proved using PD controllers. In [9], constrained stabilization
using reaction wheels and adaptive control is considered.
In [5], [10], the controller is partitioned and almost global
stability is proved; the controller again has a PD structure. In
the aforementioned papers a “one-shot” controller is developed
and is responsible for both nominal (unsaturated) and con-
strained (saturated) performance. Consequently, at least part of
the controller is restricted to be “small” to ensure satisfactory
large-signal (“almost global”) behavior. This is consistent with
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constrained control of linear systems where low-gain control (
[11]) can be exploited to design linear controllers that enforce
global, or semi-global, stability requirements. In [12] the con-
strained attitude control problem is considered by linearizing
the attitude dynamics and applying linear constrained control
ideas.

The main issue with most of the above approaches is that
the price paid for (almost) global-stability is some sort of
restriction on the controller. For example, in [5] and [7] the
proportional part of the PD controller is restricted to ensure
global stability. To overcome limitations such as these, the
approach here follows the anti-windup paradigm inherited
from the constrained linear system literature (e.g. [13]–[15]).
In the anti-windup approach, the so-called nominal controller
is responsible for controlling the system when saturation is
absent, with the so-called anti-windup (AW) compensator
being activated when saturation occurs, before relinquishing
full control once more to the nominal controller after saturation
has ceased. The appeal of this approach is that there are
no constraints on the nominal controller and that the AW
compensator is solely responsible for preserving stability and
performance when saturation occurs. Moreover, the design of
the two control elements is done independently.

Therefore, this paper proposes an AW technique for the
constrained rigid body stabilization problem, where the non-
linearities in the plant dynamics are accounted for directly. The
scheme provides global (but not finite-gain) L2 performance,
which effectively ensures that, under natural conditions, the
AW compensator will guarantee a return to ideal, unsaturated
behavior - as is typical in the AW approach [13], [15]. The
novelty of the scheme is that it can cope with the non-globally-
Lipschitz and “un-matched” nonlinearities which the technique
of [16] requires. Also, the guarantees provided here are global;
the approaches of [17] and [18] could be applied, but would
naturally result in local results, which is less than one expects,
given the (almost) global results of [5], [7] and others.

II. PROBLEM FORMULATION

A. Notation

The saturation and deadzone nonlinearities play a central
role in the paper and are defined as

satū(u) :=
[

satū1
(u1) . . . satūm

(um)
]′

(1)

where, with some abuse of notation, satūi
(ui) =

sign(ui) min {|ui|, ūi} and ūi > 0. The deadzone is the
complement of the saturation and is given by

Dzū(u) = u− satū(u) (2)



The cross product of two vectors a, b ∈ R3 is expressed in
matrix form as

a× b =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


︸ ︷︷ ︸

=:[a]×

b

where [a]× is a skew-symmetric matrix. The space L2 is,
similar to [19], used to formally define desirable properties
of the AW compensator. A vector x(t) is said to belong to the
space L2 if its L2 norm is finite i.e.

‖x‖2 :=

∫ ∞
0

‖x(t)‖2 dt <∞

For convenience, 1m denotes a m-dimensional vector with
unity elements. The remaining notation is standard.

B. Unit Quarternion
The plant is modeled using unit quaternions, a good sum-

mary of which can be found in [20]. The Hamilton convention
is followed with q ∈ H being defined as

q =

[
q0

~q

]
=

[
cosβ/2
~e sinβ/2

]
∈ H (3)

where ~e is the Euler axis and β is the rotation angle around
the Euler axis. q0 and ~q are the scalar and vector parts of the
quaternion, respectively. The unit quaternion does not evolve
on a standard linear vector space, but rather on the set

H :=
{
q : q2

0 + ~q ′~q = 1, q0 ∈ R, ~q ∈ R3
}

(4)

The conjugate of a unit quaternion q ∈ H is given as

q∗ =

[
q0

−~q

]
(5)

and the quaternion product between two unit quaternions
qa, qb ∈ H is given by

qa ⊗ qb =

[
qa0qb0 − ~q ′a ~qb

qa0~qb + qb0~qa + ~qa × ~qb

]
(6)

The quaternion error between qa, qb ∈ H is defined as

qe := q∗a ⊗ qb
The rotation matrix, R(q), describing the attitude of a rigid
body, can be expressed via the following identity.

R(q) = I3 + 2q0[ ~q ]× + 2([ ~q ]×)2 (7)

The rotation matrix is orthogonal and hence R(q)−1 = R(q)′.
Note that Ṙ(q) = R(q)[~ω]× where ~ω ∈ R3 is the angular
velocity of the rigid body, expressed in body axis coordinates.

C. Plant Dynamics
The dynamics of a rigid body can be expressed via the kine-

matics using quaternions, and the angular velocity dynamics,
expressed in the body axis. The kinematics are given by[

q̇0

~̇q

]
=

1

2

[
−~q ′

q0I3 + [ ~q ]×

]
︸ ︷︷ ︸

T (q)

~ω (8)

This can be combined with the angular velocity dynamics to
obtain the plant equations as

q̇ = T (q)~ω (9)

J~̇ω = −~ω × J~ω + u+ ud (10)

where J > 0 is the positive definite inertia matrix; u ∈ R3 is
a vector of control input torques; and ud ∈ R3 is a vector of
disturbance torques.

D. Controller Dynamics and Closed-loop
Keeping with much of the attitude control literature, the

nominal controller is assumed to be of PD type. This is not
necessary but will simplify presentation. Therefore, noting the
plant (9)-(10) contains no saturation, the controller is

u = K1~q +K2~ω (11)

where K1,K2 ∈ R3×3 are matrices which are designed such
that the interconnection of (9), (10) and (11) is (almost)
globally asymptotically stable. These controller gains can be
constructed according to [1], [7] and yield the closed loop:{

q̇ = T (q)~ω

J~̇ω = −~ω × J~ω +K1~q +K2~ω + ud
(12)

This system is referred to as the nominal closed-loop system.
It is a standing assumption throughout the paper that this
system has favorable stability and performance properties
and represents, in some sense, ideal behavior. The following
formal assumption is made.

Assumption 1: K1,K2 and ud(t) are such that ~ω(t) in (12)
is bounded for all t ≥ 0 and such that limt→∞ ~ω(t) = 0.

Assumption 1 is stronger than that used in linear AW (see
[19]) due to the additional constraint on ~ω. This is because, as
demonstrated later, the AW compensator is driven not only by
the deadzone function (as in standard linear AW) but also by
the states of the nominal system. A wider class of disturbances
may be included if a more sophisticated controller is used.

III. ANTI-WINDUP STRUCTURE
A. Saturated Closed-loop System

A more realistic model of the control input torques is

u = satū(us) (13)

The control signal us is generated by supplementing the nom-
inal control signal (11) with outputs from an AW compensator
in the following manner:

us = K1~qe +K2~ωe + Λ1~qa + Λ2~ωa (14)

where

~ωe = ~ω −R(qe)~ωa (15)
qe = q∗a ⊗ q (16)

with qa = [qa0, ~qa]′ ∈ H and ~ωa ∈ R3 being states of the AW
compensator, and Λ1,Λ2 ∈ R3×3 gains which represent the
design freedom in the AW compensator. Inspired by [16] (see
also [19], [21]), the AW compensator has the form{

q̇a = T (qa)~ωa
JR(qe)~̇ωa = F (~ω, ~ωa)−Dzū(us)+Λ1~qa+Λ2~ωa

(17)
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Fig. 1. Partitioning of system with saturation and anti-windup.

Section IV will show how the function F (·, ·) : R3×R3 7→ R3

and the gains Λ1 and Λ2 can be chosen to bestow certain
stability and performance properties on the closed-loop.

B. Anti-windup objectives
The objectives of linear AW design were formalized in [19]

(and [13], [22]) and, in essence, require that (i) in the absence
of saturation, nominal control continues unimpeded; and (ii)
after saturation has ceased nominal behavior will resume.
These notions are illustrated in Fig. 1, where the real state (x)
is the sum/difference of the states of a system representing
the ideal (unsaturated) system (xe) and those of a system
representing a perturbation due to saturation and AW (xa). If
saturation does not take place in steady state, one expects the
perturbation system states (xa) to converge to zero, meaning
the actual states (x) then converge to the ideal states (xe).

The above approach is adopted here and achieved using a
coordinate transformation. First, F (~ω, ~ωa) is chosen as

F (~ω, ~ωa) = −~ω × J~ω + ~ωe × J~ωe − JR(qe)[~ωe]
×~ωa (18)

Then, pre-multiplying the derivative of (15) by J and using
(10), (13) and (17) yields:

J~̇ωe = −~ω × J~ω + satū(us)− F (~ω, ~ωa) + Dzū(us)

− Λ1~qa − Λ2~ωa − JṘ(qe)~ωa + ud

= −~ωe × J~ωe + us − Λ1~qa − Λ2~ωa + ud

= −~ωe × J~ωe +K1~qe +K2~ωe + ud (19)

Differentiating equation (16) yields:

q̇e =
d

dt
(~q ∗a )⊗ ~q + ~q ∗a ⊗ ~̇q (20)

Using the expressions for ~̇qa and ~̇q from equations (17) and
(9), and the error definitions from (15) and (16), after lengthy
algebra (see Section 6 of [20]) it can be proved that

q̇e = T (qe)~ωe (21)

In the (qe, ~ωe, qa, ~ωa) coordinates, the system dynamics are{
q̇e = T (qe)~ωe

J~̇ωe = −~ωe × J~ωe +K1~qe +K2~ωe + ud
(22){

q̇a = T (qa)~ωa
JR(qe)~̇ωa = F (~ω, ~ωa)−Dzū(us)+Λ1~qa+Λ2~ωa

(23)

Equations (22)-(23) represent the dynamics of the real, physi-
cal system, but they have an alluring form: (22) has precisely
the same form as (12) and, by the standing assumption and
Assumption 1, behaves in a desirable manner and is such that
limt→∞ ~ωe(t) = 0. The physical states of interest are q and
~ω and, by equations (15)-(16), convergence to ideal behavior
is guaranteed if they converge to the ideal states qe and ~ωe.

IV. MAIN RESULTS

A. Two useful Lemmas

Proofs of these Lemmas are provided in the Appendix.
Lemma 1: Consider the signals u1(t), u2(t) ∈ Rm and

assume that Dzū−v̄(u1) ∈ L2 where ū and v̄ are vectors
with positive elements and are such that ūi − v̄i > 0 for all
i ∈ {1, . . . ,m}. Then

Dzū(u1 + u2) ∈ L2

if |u2,i(t)| < v̄i for all i ∈ {1, . . . ,m} and all t ≥ 0.
Lemma 2: Consider two scalars wi, ui ∈ R and a positive

scalar ūi. Suppose |wi| < ūi. Then, with ε = ūi − |wi| > 0,
the following inequality holds:

ui[wi − satūi
(wi − ui)] ≥ min{ε|ui|, |ui|2} ∀ui ∈ R (24)

B. Anti-windup Design

Theorem 1: Consider the closed-loop saturated system
given by (9), (10), (13), (14), (17) and (18). Let Assumption
1 be satisfied and let the AW gains be chosen as

Λ1 = −λ1R(qe) Λ2 = −Λ̃2R(qe)

where Λ̃2 > 0 is a diagonal matrix and λ1 > 0 is a
positive scalar. Let unom = K1~qe+K2~ωe. Then the following
properties hold:

1) If the initial AW states satisfy

{qa0(0), ~qa(0), ω̃a(0)} = {1, 03, 03}

and Dzū(unom) = 0 ∀t ≥ 0 then ~qa = 0 and ~ωa = 0
for all t ≥ 0.

2) If Dzū−λ113
(unom) ∈ L2 then limt→∞ ~qa(t) = 0 and

limt→∞ ~ωa(t) = 0.
In the above theorem, unom represents the control signal as-

sociated with the system (22), which has the same form as the
ideal unconstrained system (9)-(11); thus unom represents the
nominal (ideal) control signal. Therefore, Item 1 of Theorem
1 ensures that if the ideal control signal does not saturate, then
the AW compensator is never activated in the physical system.
Item 2 then effectively ensures that, if the ideal control signal
unom eventually falls to levels strictly within the saturation
bounds (|unom,i| ≤ ūi − λ1), then the AW states decay to
zero. By equations (15)-(16), this implies that, as t→∞

~ω → ~ωe and ~q → ~qe

and hence nominal behaviour will resume asymptotically in
the physical system (see Figure 1 and also Section IV-D).

C. Proof of Theorem 1

The proof of Theorem 1 is given in several parts below.
1) Analysis of anti-windup dynamics: The system (9), (10),

(13), (14), (17) and (18) can be re-written as equations (22)-
(23), and, since system (22) represents the nominal system,
the proof of convergence to nominal behavior purely involves
an analysis of the AW dynamics in equation (23). It is more
convenient to analyze the AW dynamics using the ω̃a :=
R(qe)~ωa coordinates. Since R(qe) is an orthogonal matrix,



the mapping ~ωa 7→ ω̃a is bijective and hence convergence of
ω̃a implies convergence of ~ωa. Thus, ˙̃ωa is given by,

˙̃ωa = R(qe)~̇ωa +R(qe)[~ωe]
×~ωa (25)

Using equations (17) and (18), it follows that

J ˙̃ωa= F (~ω, ~ωa)−Dz(us)+Λ1~qa+Λ2~ωa+JR(qe)[~ωe]
×~ωa

= −~ω × J~ω+~ωe × J~ωe−Dz(us)+Λ1~qa+Λ2R
′(qe)ω̃a

(26)

It is convenient to define

F̃ (~ωe, ω̃a) := −~ω × J~ω + ~ωe × J~ωe (27)
= −~ωe × Jω̃a − ω̃a × J(~ωe + ω̃a) (28)

The dynamics (23) can then equivalently be written as{
q̇a = T (qe)R

′(qe)ω̃a
J ˙̃ωa = F̃ (~ωe, ω̃a)−Dzū(us)+Λ1~qa+Λ2R

′(qe)ω̃a
(29)

and the control signal (14) can be equivalently written as

us = K1~qe +K2~ωe + Λ1~qa + Λ2R
′(qe)ω̃a (30)

Subsequent analysis will use equations (29) and (30).
2) Proof of Item 1: The dynamics (29) are driven by the

control signal us and some states of the ideal system ~ωe.
However, because the initial AW compensator state is

{qa0(0), ~qa(0), ω̃a(0)} = {1, 03, 03}

which is an equilibrium point of the system (29), then us(0) =
unom(0). Therefore if Dzū(unom) = 0 for all t ≥ 0, then the
states will not diverge from this equilibrium point.

3) Proof of Item 2 - Lyapunov function: Consider the follow-
ing Lyapunov function, as used, for example, in [7]:

V =
1

2
ω̃′aJω̃a + 2(1− qa0)η (31)

where η > 0 is a scalar to be determined. Note that V > 0
for all (qa, ω̃a) ∈ H× R3. The time derivative is

V̇ = ω̃′a

[
F̃ (~ωe, ω̃a)−Dzū(us) + Λ1~qa + Λ2R

′(qe)ω̃a

]
+ η~q ′a R

′(qe)ω̃a

= ω̃′a [−~ωe × Jω̃a − ω̃a × J(~ωe + ω̃a)]

+ ω̃′a [−Dzū(us)+Λ1~qa+Λ2R
′(qe)ω̃a]+η~q ′a R

′(qe)ω̃a

= −ω̃′a[~ωe]
×Jω̃a

+ ω̃′a [−Dzū(us) + Λ1~qa + Λ2R
′(qe)ω̃a] + ηω̃′aR(qe)~qa

(32)

Choosing Λ1 = −λ1R(qe), and η = λ1 gives

V̇ = −ω̃′a[~ωe]
×Jω̃a − ω̃′a(Dzū(us)− Λ2R

′(qe)ω̃a)

= −ω̃′a[~ωe]
×Jω̃a − ω̃′a(us − satū(us)− Λ2R

′(qe)ω̃a)

Recalling unom = K1~qe +K2~ωe and using (14), then gives

V̇ = −ω̃′a[~ωe]
×Jω̃a − ω̃′a(unom − λ1R(qe)~qa − satū(us))

(33)

Defining ũ := unom − λ1R(qe)~qa this becomes

V̇ = −ω̃′a[~ωe]
×Jω̃a − ω̃′a(ũ− satū(ũ+ Λ2R

′(qe)ω̃a)) (34)

Choosing Λ2 = −Λ̃2R(qe), as stipulated, then gives

V̇ = −ω̃′a[~ωe]
×Jω̃a − ω̃′a(ũ− satū(ũ− Λ̃2ω̃a))

= −ω̃′a[~ωe]
×Jω̃a − u′aΛ̃−1

2 (ũ− satū(ũ− ua)) (35)

where ua := Λ̃2ω̃a. Noting that, for ρ1 = λmax(J),

−ω̃′a[~ωe]
×Jω̃a ≤ ρ1‖~ωe‖ ‖ω̃a‖2 =

3∑
i=1

ρ1‖~ωe‖ |ω̃a,i|2

V̇ can be bounded by,

V̇ ≤
3∑
i=1

ρ1‖~ωe‖|ω̃a,i|2 − λ̃−1
2,iua,i(ũi − satūi

(ũi − ua,i))︸ ︷︷ ︸
Wi

(36)

where ua,i = λ2,iω̃a,i and Λ̃2 = diag(λ̃2,1, λ̃2,2, λ̃2,3).
Therefore, V̇ will be negative semi-definite if

Wi ≤ −αi(|ω̃a,i|) ∀ ω̃a,i 6= 0 ∀i ∈ {1, 2, 3} (37)

where αi(·) are positive definite functions determined below.
4) Proof of Item 2 - Lemmas: Recall that ũ = unom −

λ1R(qe)~qa and observe that

|(λ1R(qe)~qa)i| ≤ λ1‖R(qe)‖‖qa‖ ≤ λ1

By the statement of Item 2, Dzū−λ113(unom) ∈ L2. Thus, by
Lemma 1 it follows that

Dzū(unom − λ1R(qe)~qa) = Dzū(ũ) ∈ L2

Noting absolute continuity of ũ, this implies that there exists
a finite time t1 > 0 such that

|ũi| < ūi ∀t > t1 ∀i ∈ {1, 2, 3}

Therefore, applying Lemma 2 to Wi in equation (36) we have,
for t > t1,

Wi ≤ ρ1‖~ωe‖ |ω̃a,i|2 − λ̃−1
2,i min

{
εi|ua,i|, |ua,i|2

}
= ρ1‖~ωe‖ |ω̃a,i|2 −min

{
εi|ω̃a,i|, λ̃2,i|ω̃a,i|2

}
(38)

for some εi > 0. Next, due to the structure of (22), Assumption
1 implies ~ωe asymptotically converges to zero, so there is a
time t2 > t1 where ‖~ωe‖ ≤ δ(t2) for some arbitrarily small
δ(t2) (by choosing t2 large enough). Hence, for all t > t2 we
have

Wi ≤ ρ1δ(t2)|ω̃a,i|2 −min
{
εi|ω̃a,i|, λ̃2,i|ω̃a,i|2

}
(39)

Now for each i consider two cases:
A) : εi|ω̃a,i| < λ̃2,i|ω̃a,i|2. This obviously implies

εi < λ̃2,i|ω̃a,i| (40)

and, by equation (36), that Wi is bounded by

Wi ≤ −|ω̃a,i|(εi − ρ1δ(t2)|ω̃a,i|) (41)

Thus Wi < 0 ∀ω̃a,i 6= 0 if εi > ρ1δ(t2)|ω̃a,i|.
Combining this with inequality (40), gives the inequality

ρ1δ(t2)|ω̃a,i| < λ2,i|ω̃a,i‖ ⇒ ρ1δ(t2) < λ2,i (42)

Note this inequality holds for sufficiently small δ(t2).



B) : εi|ω̃a,i| > λ̃2,i|ω̃a,i|2. In this case Wi is bounded by

Wi ≤ ρ1δ(t2)|ω̃a,i|2 − λ̃2,i|ω̃a,i|2

Thus Wi < 0 ∀ω̃a,i 6= 0 under the same conditions as
given in inequality (42).

Thus t2 can always be chosen sufficiently large so that δ(t2)
is sufficiently small to satisfy inequality (42) for each i =
{1, 2, 3}. This implies for all t2 > 0

V̇ ≤ −
3∑
i=1

αi(|ω̃a,i|) ≤ −α(‖ω̃a‖) (43)

for some positive definite functions αi(.) and α(.). Hence,
V̇ is negative semi-definite and, from La Salle’s invariance
principle, the state (qa, ω̃a) converges to the largest invariant
set such that V̇ = 0, i.e. the state-converges to

Ω :=
{
qa ∈ H, ω̃a ∈ R3 : V̇ = 0

}
= {qa ∈ H, ω̃a = 03}

Using the dynamics (29), this implies that ~qa → 0 (and hence
qa0 → ±1). Also, since ω̃a = R(qe)~ωa, then ω̃a → 0 implies
convergence of ~ωa to zero. ��

D. Convergence to nominal behavior

Theorem 1 effectively shows that if the ideal control signal
unom eventually falls to values within the saturation limits, the
AW states ~ωa and ~qa converge to zero, and hence the scalar
quaternion qa0 converges ±1. Expanding (16) gives

qe =

[
qe0
~qe

]
=

[
q0qa0 + ~q ′~qa

−q0~qa + qa0~q − ~q × ~qa

]
and since qa0 → ±1 and ~qa → 0, this implies that q → ±qe.
Also, from (15), it is clear that ~ω → ~ωe as t→∞. Therefore
the system converges to nominal behaviour. This also implies
that the control signal us will converge to the nominal control
signal and thus, eventually, will leave the saturated regime.

E. Comments

Linearization. Linearizing the attitude dynamics of a rigid
body yields double-integrator-type behavior (see e.g. [12]).
Thus if one were to apply AW to the linearized system, the best
one could achieve would be global L2 performance, without
finite L2 gain. A similar result has been proved here without
resorting to linearization. The main difference is that, here,
convergence of the AW state requires

Dzū−λ113
(unom) ∈ L2 (44)

where scalar λ1 > 0 is chosen by the designer and must be
such that ūi − λ1 > 0. This condition is stricter than in AW
for linear systems ( [19]) where λ1 ≡ 0. As λ1 → 0, (44)
approaches the standard condition, but λ1 cannot be zero since
Lyapunov function (31) will not be positive definite.

Tuning. The designer needs to chose four parameters: Λ̃2 =
diag(λ̃2,1, λ̃2,2, λ̃2,3) and 0 < λ1 < ūi. It is less clear
how to choose these parameters. Simulations have indicated
a “sweet spot” is obtained with moderate values of all four
gains, but further investigation is required.

V. SIMULATION RESULTS
The effectiveness of the AW compensator design is il-

lustrated on a rigid body with J = diag(2, 1, 0.5) kg-m2.
Control signals us produce torques about the three principal
axes, which are bounded by ū = 0.25. For the simulations,
K1 = −2I3, K2 = −I3, λ1 = 0.1, and Λ̃2 = I3, initial
conditions of all states (both the rigid body and the AW
compensator) are zero and a disturbance torque ud is applied in
the form of a square wave with period of 8 seconds, beginning
at t = 1 second and lasts for 1.5 periods. Results presented are
Euler angles θ = [θ1 θ2 θ3]′ calculated from the quaternion
vector q [23], the angular velocities ~ω = [ω1 ω2 ω3]′ and the
control signals us = [us,1 us,2 us,3]′.

Fig. 2 illustrates the response to uniaxial disturbance ud =
[2 0 0]′. Significant improvement is achieved with AW, while
the control signal without AW “bounces” between the satura-
tion limits for almost 100 seconds.

Fig. 2. Response to disturbance ud = [2 0 0]′. With anti-windup;
without anti-windup.

Fig. 3 illustrates the response to biaxial disturbance ud =
[2 2 0]′. The settling time for θ1 and θ3 (not shown) is
similar with and without AW compensation. However, for this
particular test case, θ2 settles to the origin within 70 seconds
without AW compensation, while the same response with AW
compensation settles beyond the 100 second period presented.
Despite this, the angular velocities ~ω and the control signals
us in all three axes settle much faster with AW compensation,
e.g., ω2 approaches zero in roughly half the time with AW
compensation than without.

VI. CONCLUSIONS
This paper has considered the constrained attitude stabi-

lization problem for rigid bodies using an AW approach.
The AW approach ensures, effectively, global recovery of
unconstrained behaviour. It is emphasized that this approach
places no restrictions on the nominal controller gains: the AW
compensator takes care of the saturation present. For brevity,
the approach has been developed assuming a nominal PD
controller, which is clearly restrictive. However, an extension
to more general controllers is envisaged to be straightforward,
with few technical complications.



Fig. 3. Response to disturbance ud = [2 2 0]′. With anti-windup;
without anti-windup.

A weakness in the current approach is that the non-unique
covering of SO(3) by the quaternion representation has not
been fully addressed, meaning the AW compensator may
produce “stable” but “strange” behavior, due to the unwinding
phenomenon [3]. A more careful treatment borrowing ideas
from [7], [24] could be used to resolve this problem. This
paper has concentrated on global L2 performance, but clearly
would benefit from more specific assurances, such as (local)
finite-gain bounds, or (local) decay rate estimates. These topics
are the subject of continuing research.

APPENDIX
A. Proof of Lemma 1
‖Dzū(u1 + u2)‖ = inf

|wi|<ūi

‖u1 + u2 − w‖

= inf
|wi−u2i+u2i|<ūi

‖u1 − (w − u2)‖

≤ inf
|wi−u2i|<ūi−|u2i|

‖u1 − (w − u2)‖

≤ inf
|wi−u2i|<ūi−ψi

‖u1 − (w − u2)‖

= inf
|w̃i|<ūi−ψi

‖u1 − w̃‖ = ‖Dzū−ψ(u1)‖

Now, because x ∈ L2 iff ‖x‖ ∈ L2 the result follows. ��

B. Proof of Lemma 2
This Lemma is similar to Lemma 1 in [25].
i) |wi − ui| ≤ ūi. By direct calculation, it follows that

ui[wi − satūi
(wi − ui)] = |ui|2

ii) wi − ui > ūi. In this case satūi(wi − ui) = ūi, so

ui[wi−satūi
(wi−ui)] = |ui||wi−ūi|sign(wi−ūi)sign(ui)

Now, since wi < ūi, it is clear that

sign(wi − ūi) = −1, wi − ūi > ui

and since |wi| < ūi, this implies sign(ui) = −1. Hence,

u′i[wi − satūi(wi − ui)] = |ui||wi − ūi|
≥ |ui| ||wi| − ūi|
= |ui|(ūi − |wi|) =: |ui|ε

iii) wi − ui < −ūi. Symmetric to case ii). ��

REFERENCES

[1] J. T.-Y. Wen and K. Kreutz-Delgado, “The attitude control problem,”
IEEE T Automat Contr, vol. 36, no. 10, pp. 1148–1162, 1991.

[2] P. Tsiotras, “Further passivity results for the attitude control problem,”
IEEE T Automat Contr, vol. 43, no. 11, pp. 1597–1600, 1998.

[3] S. P. Bhat and D. S. Bernstein, “A topological obstruction to con-
tinuous global stabilization of rotational motion and the unwinding
phenomenon,” Syst Control Lett, vol. 39, no. 1, pp. 63–70, 2000.

[4] A. Tayebi, “Unit quaternion-based output feedback for the attitude
tracking problem,” IEEE Transactions on Automatic Control, vol. 53,
no. 6, pp. 1516–1520, 2008.

[5] J. R. Forbes, “Attitude control with active actuator saturation preven-
tion,” Acta Astronautica, vol. 107, pp. 187–195, 2015.

[6] B. Jiang, Q. Hu, and M. I. Friswell, “Fixed-time attitude control for
rigid spacecraft with actuator saturation and faults,” IEEE Transactions
on Control Systems Technology, vol. 24, no. 5, pp. 1892–1898, 2016.

[7] J. F. Guerrero-Castellanos, N. Marchand, A. Hably, S. Lesecq, and
J. Delamare, “Bounded attitude control of rigid bodies: Real-time ex-
perimentation to a quadrotor mini-helicopter,” Cont. Eng. Prac., vol. 19,
no. 8, pp. 790–797, 2011.

[8] A. R. Teel, “Global stabilization and restricted tracking for multiple
integrators with bounded controls,” Syst Control Lett, vol. 18, no. 3, pp.
165–171, 1992.

[9] A. H. De Ruiter, “Adaptive spacecraft attitude control with actuator
saturation,” AIAA Journal of Guidance, Control and Dynamic, vol. 33,
no. 5, pp. 1692–1696, 2010.

[10] Y. Su and C. Zheng, “Globally asymptotic stabilization of spacecraft
with simple saturated proportional-derivative control,” Journal of Guid-
ance, Control, and Dynamics, vol. 34, no. 6, pp. 1932–1936, 2011.

[11] Z. Lin, Low gain feedback. Springer, 1999.
[12] W. Luo, B. Zhou, and G.-R. Duan, “Global stabilization of the linearized

three-axis axisymmetric spacecraft attitude control system by bounded
linear feedback,” Aerospace Sci. and Tech., vol. 78, pp. 33–42, 2018.

[13] L. Zaccarian and A. R. Teel, Modern anti-windup synthesis: control
augmentation for actuator saturation. Princeton University Press, 2011.

[14] S. Tarbouriech, G. Garcia, J. M. Gomes da Silva Jr., and I. Queinnec,
Stability and Stabilization of Linear Systems with Saturating Actuators.
Springer, 2011.

[15] S. Galeani, S. Tarbouriech, M. C. Turner, and L. Zaccarian, “A tutorial
on modern anti-windup design,” Eur J Control, vol. 15, no. 3-4, pp.
418–440, 2009.

[16] G. Herrmann, P. P. Menon, M. C. Turner, D. G. Bates, and I. Postleth-
waite, “Anti-windup synthesis for nonlinear dynamic inversion control
schemes,” Int J Robust Nonlin, vol. 20, no. 13, pp. 1465–1482, 2010.
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