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Abstract— Efficiently computing the optimal control pol-
icy concerning a complicated future with stochastic distur-
bance has always been a challenge. The predicted stochastic
future disturbance can be represented by a scenario tree,
but solving the optimal control problem with a scenario
tree is usually computationally demanding. In this paper,
we propose a data-based clustering approximation method
for the scenario tree representation. Differently from
the popular Markov chain approximation, the proposed
method can retain information from previous steps while
keeping the state space size small. Then the predictive
optimal control problem can be approximately solved with
reduced computational load using dynamic programming.
The proposed method is evaluated in numerical examples
and compared with the method which considers the dis-
turbance as a non-stationary Markov chain. The results
show that the proposed method can achieve better control
performance than the Markov chain method.

I. INTRODUCTION

Optimal control has been applied in many control
applications for systems with uncertain disturbance. The
disturbance considered in this paper can be generalized
to any variables in the system dynamics equations which
appear in the form of disturbance. The actual physical
meanings of these variables may be noise, external
input, or environmental signals. For example, the driver’s
power demand may be considered as generalized dis-
turbance to the vehicle, and the ambient temperature
may also be considered as generalized disturbance to
the building heating, ventilation, and air conditioning
systems. Some disturbance may have high impacts on
the optimal control cost, and the optimal control policies
may depend on the characteristics of the disturbance [1].

In real-time optimal control problems, future distur-
bance information may be critical to the control policy.
Therefore in many applications, the disturbance is pre-
dicted and utilized to generate the control inputs. Usually
the disturbance is considered as a random variable,
and the future disturbance is considered as a stochastic
process. There are a few ways to integrate the predicted
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stochastic disturbance information with the optimal con-
trol. A common practice is to consider the disturbance as
a Markov chain [2] [3] [4] [5]. This representation can
capture the first-order characteristics of the disturbance,
but it is not capable of extracting long-term information
on a larger time scale. Another way is to build a
dynamic model for the stochastic system whose output
is the disturbance. Then additional states describing the
dynamics for disturbance are added to the existing model
of the system for optimal control calculation. A disad-
vantage of this state augmentation method is the high
computation if the disturbance is generated by a high-
dimensional complex system. Scenario trees can also be
used to describe the predicted disturbance information
[6] [7] [8]. A tree structure is used to represent all
the possible disturbance sequences in the future. The
optimal control with a disturbance scenario tree can be
computed using dynamic programming, which will be
shown in this paper.

In general, to solve optimal control problems, methods
like nonlinear programming [9], quadratic programming
[10], and dynamic programming [11] [12] can be used.
When the future disturbance is described as a scenario
tree, dynamic programming is usually the only practical
method to compute the global optimal policy. However,
dynamic programming suffers from the curse of dimen-
sionality, which means it can only be used to solve
problems with a relatively small state space size. For
the optimal control problem with a disturbance scenario
tree, the state space size will grow exponential as the size
of the tree grows. Therefore computing the predictive
optimal control policy for a complicated scenario tree
is very difficult. Approximate dynamic programming
can be applied to find a sub-optimal solution in many
optimal control problems [13]. However a good approx-
imated method for dynamic programming with scenario
trees is not yet available.

In this work, we aim at finding the approximate global
optimal control policy given a scenario tree of predicted
future disturbance. We propose a novel clustering-based
approximation of the scenario tree and design optimal
predictive policies based on this approximation. Differ-
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ently from the first-order Markov chain approximation,
the scenario tree approximation can use information
from the starting step to the current step. With the tree
approximation, we can find the global optimal policy
via dynamic programming with reduced computational
load. Our work can also be embedded in the receding
horizon framework to solve the optimal control problem
in one step of model predictive control.

The rest of this paper is organized as follows. The
problem formulation is given in Section II. The exact
scenario tree solution and a clustering-based approxima-
tion solution are proposed in Section III and Section IV,
respectively. Section IV provides numerical examples.
We conclude the paper in Section VI.

II. PROBLEM FORMULATION

A. Predictive Optimal Control with Disturbance

Consider the discrete-time dynamic system

xk+1 = fk(xk, uk, wk), (1)

where the system state xk ∈ X ⊆ Rn, the control input
uk ∈ U(xk) ⊆ Rm, the generalized disturbance wk ∈
Rq , and finite discrete time step k ∈ K = {0, 1, ..., N −
1}. The initial condition x0 is known.

The system has a running cost function

lk = gk(xk, uk, wk) (2)

and a terminal cost function

lN = gN (xN ), (3)

where lk ∈ R and lN ∈ R. The total cost is the sum of
the running cost at each step and the terminal cost,

l =

N−1∑
k=0

lk + lN . (4)

The goal is to find control policies πk which minimize
the total cost l. The control policies need to be causal,
which means that they can only use current and past
information. It is assumed that the values of xk and wk

are known at step k, then

uk = πk(x0, ..., xk, w0, ..., wk). (5)

If w0, ..., wN−1 are known at step 0 (future values
of the disturbance are known), this optimal control
problem can be easily solved via dynamic programming.
In most applications, knowing the future values of the
disturbance is not possible. Many predictive control
applications use predicted nominal values of the future
disturbance ŵ0, ..., ŵN−1 to solve the optimal control
problem. With the predicted nominal disturbance, the

nominal optimal policy can be obtained using dynamic
programming backward induction,

Jk(x) = min
u∈U(x)

{gk(x, u, ŵk) + Jk+1[fk(x, u, ŵk)]},
(6)

uk(x) = argmin
u∈U(x)

{gk(x, u, ŵk) + Jk+1[fk(x, u, ŵk)]}.

(7)

B. Disturbance Sequences

In many cases, the generalized disturbance may be
considered as the output of a very complicated stochastic
system. For example, the driver’s power demand is a
reaction to the changing road profiles, traffic conditions,
traffic lights, and pedestrians. In these cases, it is desired
to develop a causal optimal controller with respect to not
just the nominal disturbance, but all possible disturbance
scenarios in the future. In other words, we want to make
a prediction that includes all possible future scenarios
with their probabilities, and find the optimal control with
respect to this stochastic future.

We define a disturbance sequence as w =
[w0, ..., wN−1] ∈ W , where W is the set of all possible
disturbance sequences. We use w(k) to denote the k-
th element of this disturbance sequence, that is, wk.
For each possible disturbance sequence wi , its a priori
probability is p(wi). It is assumed that all possible
disturbance sequences W and the probabilities p(wi) of
each wi ⊆ W are predicted at step 0. At a future step k,
no additional information about w and the probabilities
of w is provided except the value of wk. We use Wa to
denote the set containing all disturbance sequences with
non-zero probabilities at step 0.

III. OPTIMAL CONTROL WITH SCENARIO TREES

A. Scenario Trees

We can use a tree structure to represent all disturbance
sequences in the set Wa. Suppose at step k, the distur-
bance sub-sequence that has been observed from step 0
to k is [w0, w1, ..., wk]. The information from this sub-
sequence can be interpreted as that the full disturbance
sequence w must satisfy w(0) = w0, ..., w(k) = wk.
If we define a set function I(·) on disturbance sub-
sequences

Ik([w0, ..., wk])

={w ∈ Wa|w(0) = w0, ...,w(k) = wk}.
(8)

then given disturbance observation [w0, w1, ..., wk], we
can define a set Nk as Nk = Ik([w0, ..., wk]) to
represent the information we have learned from the dis-
turbance history. We call Ik([w0, ..., wk]) the admissible
disturbance sequence set at step k.



At every step k, based on the observation of the
current and historical values of w, we can determine
Nk. It is not difficult to see that Nk satisfies

Wa ⊇ N0 ⊇ N1 ⊇ ... ⊇ NN−1 = {w}, (9)

where w is the full disturbance sequence observed at
step N − 1.

The stochastic dynamic evolution of the disturbance
sequence set N from step 0 to N − 1 can be obtained
when an initial value of N is given. Before step 0, the
only information about future disturbance is that w ∈
Wa, which means is Wa is the initial condition for N .
Due to the property shown in (9), it is intuitive to use a
tree structure to represent these dynamics. This can be
called a scenario tree.

Fig. 1. A scenario tree example: (a) 7 disturbance sequences; (b) the
scenario tree representation of the 7 disturbance sequences.

Fig. 1 provides an example of a scenario tree. There
are 2, 4, and 7 possible w values at step 0, 1, and
2, respectively, and there are 7 possible disturbance
sequences. In Fig. 1 (b), each node of the tree is
essentially a set of disturbance sequences N i

k ⊆ Wa.
The root node, which is the initial set Wa, contains all
7 sequences. N 1

0 contains the 3 dash-line sequences and
N 2

0 contains the 4 solid-line sequences. At step 1, the
four colored nodesN i

1 contain the disturbance sequences
of the corresponding color. At step k, the node Nk can
be considered as a measured state of the system, as
w0, ..., wk are known at step k. The arrows in Fig. 1
(b) can be considered as the possible state transitions of
the tree node N .

Define p(Nk) as the probability of the node Nk,
which is the sum of the probabilities of all disturbance
sequences in this set,

p(Nk) =

i∑
wi∈Nk

p(wi). (10)

A node Nk may have multiple branches leading to
multiple child nodes at step k + 1. The conditional
probability of the node Nk moving to its child node

Nk+1 can be obtained using the probabilities of the
disturbance sequences in these two node sets,

P [Nk+1 = Ik+1(w0, ..., wk, wk+1)|Nk = Ik(w0, ..., wk)]

= p(Ik+1(w0, ..., wk, wk+1))/p(Ik(w0, ..., wk))
(11)

In an exact scenario tree, Nk has stochastic dynamics in
the form of a Markov chain as follows,

P (N j
k+1|N

i
k) =

{
p(N j

k+1)/p(N i
k), if N j

k+1 ⊆ N i
k,

0, otherwise.
(12)

B. Integration in Optimal Control

Considering the system dynamics,

xk+1 = fN ,k(xk, uk,Nk) = fk[xk, uk, wk(Nk)], (13)

where wk(Nk) = w(k), ∀w ∈ Nk. As w0, ..., wk is
known, Nk can be viewed as a measured state of the
system. The feedback control policies πk will be,

uk = πk(x0, ..., xk, w0, ..., wk) = πk(xk,Nk). (14)

Using the pair (x,N ) as the new state, the predictive
optimal control policy π∗ can be obtained via dynamic
programming backward induction.

One disadvantage of this scenario tree method is the
exponential growing computational consumption with
the number of steps and branches of the tree. In practice,
it is common that a large number of possible future
disturbance sequences are predicted, that is, |Wa| can
be indeed very large. To reduce the optimal policy
computation load for a large number of disturbance
sequences, we propose an approximation method for the
scenario tree in the next section.

IV. OPTIMAL CONTROL WITH SCENARIO TREE
APPROXIMATION

A. Scenario Tree Approximation

In this section, we propose a clustering-based approx-
imation method for the scenario tree. Instead of deter-
mining the tree node Nk using Ik([w(0), ...,w(k)]),
a different way to map a disturbance sub-sequence
[w0, w1, ..., wk] to a node is used.

At each step k, a clustering function Ck is used
to cluster disturbance sequences w with similar sub-
sequences [w(0), ...,w(k)]. Clustering means classify-
ing samples in the data set to a smaller number of
clusters following specific rules that measure the sim-
ilarity. Given any disturbance sub-sequence [w0, ..., wk],
Ck maps this sequence to an integer class number i,
i ∈ 1, 2, ..., nk , where nk is the total number of clusters
at step k.



Then in the scenario tree approximation, elements in
one node is defined by the following set,

Ak(i) = {w ∈ Wa|Ck([w(0), ...,w(k)]) = i}. (15)

All disturbance sequences in N i
k = Ak(i) have their

sub-sequences before step k belonging to a same cluster
under Ck.

Fig. 2. A clustering-based scenario tree approximation example: (a) 7
disturbance sequences; (b) the 3-cluster approximation of the scenario
tree at step 2

An example that illustrates the clustering of the sce-
nario tree is shown in Fig. 2. We assume nk = 3, that is,
we want to use no more than 3 clusters at each step to
approximate the tree structure. The clustering at step 0 is
the same as the exact scenario tree, as the exact tree has
only 2 nodes at step 0. At step 1, a clustering based on
[w(0),w(1)] is performed, which generates 3 clusters:
N 1

1 , N 2
1 , and N 3

1 . After the clustering, the property in
(9) no longer holds. Therefore N is no longer in a tree
structure as one child node Nk+1 may have multiple
parent nodes Nk. However, Nk is still a measured state
and its stochastic state transition is an approximation of
the exact scenario tree.

In the scenario tree approximation, Nk has the
stochastic dynamics as follows,

P (N j
k+1|N

i
k) = p(N j

k+1 ∩N
i
k)/p(N i

k) (16)

The clustering-based approximation cuts down the
number of states that representing disturbance from
the number of all possible sub-sequences [w0, ..., wk]
to a preset number nk. This significantly reduces the
state space size for backward induction in dynamic
programming. As the number of clusters nk increases,
the approximation becomes closer to the exact scenario
tree. If the total sub-sequences number is large, we can
even further reduce the computational load by random
sampling in Ak(i) to approximate the expected cost and
transition probabilities for Ak(i).

B. A Two-Level Control Architecture

One problem after the clustering approximation is
that, w(k) may take different values in the same Nk.

This means that at step k the selection of a common
control input uk that works for all w ∈ Nk may
be limited. In an extreme case, such a common uk
may not exist. We design an extra mapping layer to
guarantee that the control policy can offer admissible
control input to the system. An admissible control input
uk should guarantee that xk+1 ∈ X , where xk+1 =
fk(xk, uk, wk). Instead of finding a feedback control
policy uk = πk(xk,Nk), we find a higher-level control

vk = πk(xk,Nk), (17)

and determine the lower-level control by

uk = Gu(xk, vk, wk) = argmin
admissible uk

(||vk − uk||). (18)

Essentially the feedback control policy becomes uk =
Gu[xk, πk(xk,Nk), wk] = π′k(xk,Nk, wk). Because
Gu(·) only depends on the values of xk, vk, wk, we can
define the mapping Gu(·) before the design of optimal
control, and consider it as part of the stochastic system
dynamics.

C. Integration in Optimal Control

In the cluster approximation, given Nk, w(Nk) =
w(k), w ∈ Nk is a random variable. Therefore the
system dynamics equation

fN ,k(xk, uk,Nk) =fk[xk, uk, wk(Nk)]

=fk[xk, Gu(xk, vk, wk), wk(Nk)]

=fcluster,k(xk, vk,Nk)
(19)

is a stochastic function whose output xk+1 is a random
variable. The probability of xk+1 and Nk+1 can be
determined if xk, Nk and vk is given. The process of
backward induction is similar to the exact scenario tree
case, where the pair (x,N ) is considered as the state of
a stochastic system.

V. NUMERICAL EXAMPLES AND RESULTS

In this section, we use two numerical examples to
show the performance of the exact tree scenario and
clustering-based approximation of the scenario tree.

We consider the system,

xk+1 = 0.9xk + uk − wk, (20)

where x, u and w are scalars. The system has a quadratic
running cost

gk(xk, uk, wk) = u2k, (21)

and a terminal cost

gN (xN ) = (−2− xN )2. (22)



The initial condition is x0 = 1.8, and N = 10. The
constraints are x ∈ [−2, 2] and u ∈ [0, 1.6] In dynamic
programming, x and u are quantized with an interval
of 0.02. Without loss of generality, we assume that
every disturbance sequence in the predicted disturbance
sequence set Wa has equal probabilities.

A. A Simple Scenario Tree

A simple Wa with 4 disturbance sequences as shown
in Fig. 3 is considered. All sequences converge to a
single point at step 4 and 5. We use this example to
show why in some cases a scenario tree representation
may be more appropriate than a non-stationary Markov
chain representation. The transition probability matrix
Tk of this non-stationary Markov chain at step k can be
defined as

Tk(i, j) = P [wk+1 = wj
k+1|wk = wi

k], (23)

for every possible wi
k and wj

k+1. Tk is computed using
the disturbance sequence data for k = 0, 1, ..., N − 1.

Fig. 3. A simple disturbance scenario of 4 sequences. The 4
disturbance sequences are defined as s1, s2, s3, and s4.

We use dynamic programming to compute two poli-
cies with two methods: (1) using the exact scenario tree
to represent the future disturbance sequences and (2)
using the non-stationary Markov chain to represent the
future disturbance sequences.

The average cost for four disturbance sequences under
the two methods is shown in Table I. In this simple
tree structure, the limitation of the Markov chain can be
seen. The performance of the optimal predictive control
with the scenario tree representation is better than that
using the Markov chain. This is due to the fact that the
scenario tree keeps the multi-step long-term information
of the disturbance sequences, while the Markov chain
representation loses this information and only considers
transitions between two steps.

B. A Complex Scenario Tree with Approximation

In this example, we use a more complex scenario tree
to demonstrate the performance of the clustering-based
tree approximation method. 1447 disturbance sequences
are generated as shown in Fig. 4.

TABLE I
AVERAGE COST RESULTS OF THE 4 DISTURBANCE SEQUENCES

Method Average cost Computation time

Exact Scenario Tree 0.3180 5.52s
Non-Stationary Markov Chain 0.3429 18.29s

Fig. 4. A complex disturbance scenario of 1447 sequences.

We use dynamic programming to compute two poli-
cies with three methods: (1) using the exact scenario tree
representation, (2) using the clustering-based scenario
tree approximation representation, where nk = 10 (10
clusters for each step), and (3) using the non-stationary
Markov chain to represent the future disturbance se-
quences. In this example, we use the k-means clustering
[14] as the function Ck to cluster the disturbance sub-
sequences. For k-means, we wish to choose nk centers
C of the data to minimize the potential function,

φ =
∑
w∈W

min
c∈C
||w − c||2, (24)

The clustering result examples at step 6 and 9 are shown
in Fig. 5. In the non-stationary Markov chain method,
to keep the size of the state space the same as the
clustering-based method, we quantize the disturbance to
a 10-value grid and obtain a time-dependent transition
matrix using (23).

TABLE II
AVERAGE COST RESULTS OF THE 1447 DISTURBANCE SEQUENCES

Method Average cost Computation time

Exact Scenario Tree 0.4407 487.90s
Clustering-Based Approximation 0.4432 32.52s

Non-Stationary Markov Chain 0.4992 17.67s

The average cost for all 1447 disturbance sequences
is shown in Table II and the state trajectories are shown
in Fig. 6. For the computation time, all results are
from codes written in MATLAB and run on a Mac
laptop with Intel Core i7-9750H. To optimize computing
efficiency for the clustering-based method, we build a
static table that maps the discretized xk, uk, wk values
to corresponding xk+1 and lk. It takes 6.3s to build



Fig. 5. Clustering results for disturbance sequences at (a) step 6, and
(b) step 9.

the static map (included in the 32.52s computation
time). The map can be reused for updating policies
from different clustering approximation results unless
the system dynamics or the cost function changes. The
clustering-based method performs much better than the
non-stationary Markov chain method and ensures a simi-
lar performance as the exact scenario tree method. How-
ever, the clustering approximation method significantly
reduces computation time from the exact tree method.
The clustering-based method captures more disturbance
sequence features from previous steps while the Markov
chain loses this information.

Fig. 6. State trajectories for (a) the clustering-based scenario
tree approximation method and (b) the non-stationary Markov chain
method of the 1447 disturbance sequences. Each colored trajectory is
corresponding to a disturbance sequence in one cluster of step 9.

VI. CONCLUSIONS

In this paper, a predictive optimal control method with
a clustering-based scenario tree approximation of dis-
turbance sequences is proposed. The method is demon-
strated in numerical examples, where the proposed
method performs better than the traditional method
which considers the disturbance as a Markov chain.
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