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Abstract— Demand for fast and inexpensive parcel deliveries
in urban environments has risen considerably in recent years.
A framework is envisioned to enforce efficient last-mile delivery
in urban environments by leveraging a network of ride-
sharing vehicles, where Unmanned Aerial Systems (UASs) drop
packages on said vehicles, which then cover the majority of the
distance before final aerial delivery. This approach presents
many engineering challenges, including the safe rendezvous
of both agents: the UAS and the human-operated ground
vehicle. This paper introduces a framework to minimize the
risk of failure while allowing for the controlled agent’s optimal
usage. We discuss the downfalls of traditional approaches
and formulate a fast, compact planner to drive a UAS to a
passive ground vehicle with inexact behavior. To account for
uncertainty, we learn driver behavior while leveraging historical
data, and a Model Predictive Controller minimizes a risk-
enabled cost function. The resulting algorithm is shown to be
fast and implementable in real-time in qualitative scenarios.

I. INTRODUCTION

Modern shipping solutions can accumulate more than half
of the total shipping cost on the transportation portion be-
tween the final distribution center and the customer [1]. This
is known as the last-mile problem. Our proposed framework
consists of using the existing large networks of ride-sharing
services (Uber, Lyft) to cover most of the distance from the
final distribution center to the customer. This process uses
knowledge of these vehicles’ destination to plan deliveries,
where a UAS carries the parcel from the distribution center
and places it on a moving vehicle, or picks up a package
from a moving vehicle and delivers it to a final location. An
example scenario is illustrated in Fig. 1. The critical concern
is the driver behavior. An erratic driver adds an undesirable
risk to the two stages of the mission: (1) landing safely on
the moving vehicle to drop the parcel and (2) flying back to
the distribution center. Environmental factors such as wind,
package mass, sloshing of package contents, battery age, and
others contribute to these safety concerns. However, because
of the long planning horizons associated with these missions,
the primary source of risk and uncertainty arises from the
inexact driver behavior, where a driver might be slower,
faster, or erratic.
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Fig. 1: Air-ground rendezvous procedure. Left: the UAS needs
to meet an uncontrollable ground vehicle with uncertain trajectory.
Right: UASs intercept the vehicle at various points to complete the
delivery. In this example an Amazon package is carried by a ride-
sharing vehicle departing from Chicago Midway Airport bound to
Downtown Chiacgo.

Model Predictive Control (MPC) is a popular method
for solving local Optimal Control Problems (OCP) in real-
time [2], where the OCP is solved at each control loop
step. Although versatile, traditional MPC is not equipped
to deal with large uncertainties over long planning horizons
due to exponentially increasing uncertainty propagation in
the planning stage. To address these issues two common
solutions are (a) stochastic MPC (SMPC) [3], [4] and (b)
Robust MPC [5], [6], [7], [8]. Stochastic MPC is often
referred to as risk-neutral, as it aims to solely minimize
expectations, while Robust MPC accounts for worst case
scenarios. In some cases, an absolute approach is desirable,
but often the problem requires a trade-off between high
risk and robustness, as not to diverge too far away from
optimality. In most cases, optimizing over risk measures
turns the OCP intractable for real-time implementation due to
the added complexity [9]. We solve this issue by formulating
the mission so that we only need to check the risk measure
constraint once.

We focus on the high-level problem of trajectory planning
of a UAV to reach a neighborhood of the ground vehicle
and flying to the desired landing location, where we as-
sume that successful take-off, rendezvous, and landing are
always achievable by a local, low-level controller. We address
tractability by formulating the problem with a concise risk
measure directly related to mission success checked only
once during the mission. Additionally, the mission is con-
densed into critical waypoints, which fully define the deci-
sion process and allow the heuristic layer to be designed with
understandable parameters and crisp logic. Risk assessment
is performed by applying Bayesian regression to vehicle
behavior metrics, which provides computationally efficient
equations and expressions to the MPC.
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A. Related work

Several papers have considered risk measures in planning
and handling uncertainties in an MPC framework, as sum-
marized in [10], [2], and shown in [11], [12], [13], [14], [8].
In [11], the authors study uncertainty propagation to ensure
chance constraints on a race car; results show that the algo-
rithm can learn uncertainty in the dynamics, associate risk to
the unknown dynamics, and plan so that the trajectories are
safe. The algorithm is efficient, but the prediction horizon
is relatively short, and some approximation of the dynamics
was necessary for real-time performance. In [12], the au-
thors provide stability proofs for a linear MPC controller,
which minimizes time-consistent risk metrics in a convex
optimization form. These papers focus on operating in a
constrained environment or under controlled assumptions to
provide uniform guarantees. Our work’s key difference is that
in this paper we relinquish online risk constraint satisfaction
to external heuristics, widening the solver’s capabilities and
flexibility at the cost of a more conservative solution. Apart
from fundamental results in this field, such as [15], modern
developments in [16] show that the increased computational
capacity is enabling risk-minimization to be executed in real-
time for a variety of systems. In [16], the authors provide a
synthesis methodology for risk-averse MPC controllers for
constrained nonlinear Markovian switching systems.

Few papers have been published concerning highly
stochastic rendezvous problems. Most notably, in [17] the
authors compute optimal trajectories in refueling missions,
but in their work most of the uncertainty is environmental
and local, whereas we consider epistemic and large-scale
uncertainties. Additionally, because of the large-scale, we
focus efforts on efficiency and scalability instead of the
accuracy of dynamic and disturbance models. Risk min-
imization in optimal control has been studied in several
papers [11], [12], [15], [16], [18]. Minimizing risk in optimal
control is traditionally intractable [11], [12] for real-time
implementation, a capability which the proposed method is
designed to have.

B. Statement of contributions

We present a hybrid algorithmic MPC framework to solve
the running rendezvous problem in real-time under large
uncertainties. We aim to condense a large-scale optimization
problem into a few critical variables that minimize total time
and energy consumption under the non-negligible probability
of mission failure, which is handled by a robust and fast
heuristic layer.

Structurally, a Bayesian learning component approximates
driver behavior while enabling risk bounds to be efficiently
computable. Parameterization of the path and velocities al-
lows the data-driven Bayesian learner to remain fast, which,
coupled with the MPC controller’s low dimensionality, is
shown to run in real-time even under highly nonlinear
constraints. No approximation is made in the OCP itself;
the solution is locally near-optimal up to the learned model
quality.

We show that our method is flexible and robust, where
a considerable portion of the computational complexity can
be executed apriori. We provide a scenario that illustrates
the advantage of this approach, showing both successful and
unsuccessful outcomes.

The rest of this paper is structured as follows: in Section
II, we introduce and define the problem in algorithmic
format. In Section III, we present the two main components
of this approach: the model learning and risk estimator,
and the optimization problem statement. In section IV, we
demonstrate two example scenarios showing the decision
making aspect of the algorithm. Finally, in Section V, we
provide concluding remarks and discuss the shortfalls of this
approach and future directions to address them, respectively.

II. PROBLEM FORMULATION

We begin by defining the notion of persistent safety.
Definition 1 (Persistent Safety): Let xk+1 = f(xk, uk) be

a system with state vector x ∈ Rn and control vector u ∈
Rm. A safety set Sk ⊂ (X,U) is a set, in which all states and
inputs are considered safe by some measure ρ(x) : Rn → R
at step k. We define a planning algorithm as persistently safe,
if Sk = {xk ∈ X, uk ∈ U : f(xk, uk) ∈ Sk+1} exists for
all k for a set of admissible states X and control inputs U .

The goal is to compute a persistently safe trajectory
(sequence of states x and inputs u) as defined in Definition
1 that satisfies a rendezvous condition. This is achieved by
postponing a decision between aborting or continuing the
mission for as long as possible. The additional time afforded
by postponing this decision is used to improve uncertainty
prediction and, consequently, reducing the risk of running
out of battery or fuel.

For this problem, a parameterized path p(θ), p : R+ →
R2, θ ∈ R+, and historical velocity data along the path θ̇h(t),
θ̇h : R+ → R obtained from the traffic data are provided
apriori. A stream of noisy position θd(t), θd : R+ → R+,
and velocity θ̇d(t) measurements from a driver moving along
the path are obtained in real-time via on-board sensors. We
wish to find a rendezvous point θd(tR) that brings both
vehicles together at a rendezvous time tR ∈ R+. Due
to sensor noise and uncertain driver behavior, we aim to
estimate the distribution of θd(tR) and plan on it. Along
with the rendezvous point, we also determine a Point-of-No-
Return (PNR) between the UAS and θd(tR), from which a
separate path navigates the UAS to a safe landing location
in case the risk of rendezvous failure ρ(θd(tR)) that maps
the distribution of θd(tR) to R+ [14] is too great. We model
the UAS with single integrator dynamics in this context. We
define safety (and, thus, its associated risks) as a function of
the probability of running out of remaining battery or fuel
Er. Figure 2 illustrates the setup.

Algorithmically, we maximize the amount of data gathered
before the PNR is reached and check if that is sufficient to
guarantee a low-risk rendezvous. The OCP constraints ensure
that the decision time will tend to zero as ρ increases, and
time progresses. When this occurs, the heuristics evaluate
a risk measure and commit to a route via predetermined
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Fig. 2: Overview of the problem setup at time instance t0.
Two separate paths are computed in parallel; one to ren-
dezvous and with the ground vehicle and return, and another
to abort. E[θd(tR)] and Var[θd(tR)] indicate the randomness
associated with θd(tR); uncertainty in driver behavior and
inclusion of sensor noise imply that this prediction is a
random variable.

thresholds. With this structure, the MPC is agnostic to the
risk measure.

The MPC minimizes the risk associated with the ren-
dezvous location itself (ρR), as well as the rendezvous time
tr. As the process is initiated, the lack of data will lead to
excessively large risks; thus, it is beneficial to prolong the
mission and maximize data gathering via a decision time t1
between the UAS and the PNR. The stop condition is t1 ≤ ε.
This condition indicates the moment where the decision time
is at its allowable minimum, which eventually occurs given
the problem’s spatial constraints. Once this threshold is met,
we check ρ ≤ Emax

risk , where Emax
risk is defined as the maximum

energy needed to complete the rendezvous trajectory inside
the confidence bound γmax of θd(tr).

As the ground vehicle travels along p(θ), we collect data
and append it to a dataset D containing the driver’s velocity
θ̇d and expected velocity θ̇h. This dataset is then used to
produce mean µw and variance Σw functions of the driver’s
position in the future, a process described in Section III-A.
The mission algorithm does this process iteratively, sampling
new data to improve the driver model and at the same time
running an MPC loop to plan the routes (v,x, t), defined in
Section III-B. If either ρA grows above a threshold γA or the
decision time t1 falls to ε, the risk measures are evaluated
and a commitment is made. This process is described in
Algorithm 1. Notice that traditional MPC approaches involve
a moving finite time horizon, which is updated at every time
step. Here the time horizon is fixed, but we update how that
time is divided at each time step. Because the mission is
re-planned the same way, we classify this controller as an
MPC-type controller.

A. Problem Novelty

The problem of performing a rendezvous with (or inter-
cepting) a moving target is not new. However, these problems
fall into two distinct categories: interception of a target on
a known path or interception of a target with an unknown
trajectory [19]. The interception of a target following a

Algorithm 1: Mission Algorithm
D ← Initial Data
while t1 > ε do

µw, Σw ← Regress(D)
v,x, t← MPC(µw,Σw,x)
Send Control Input v to UAS
D ← Append(New Data,D)

end
if ρ(µw,Σw,x) ≤ Emax

risk then
Proceed with rendezvous

else
Abort and return

end

known path is seen as trivial. With full knowledge of the
target behavior, infinitely many trajectories will intercept the
target at a chosen time [20]. In these scenarios, the goal
is to find the optimal trajectory for the interception. Added
uncertainties such as model discrepancies and environmental
disturbances are often included, but do not change the
architecture.

The opposite problem is the one that intercepts a target
following an unknown path. Depending on the objective and
constraints, this scenario is significantly more challenging.
Robust solutions such as constant line-of-sight angle laws
[21], [22] can guarantee interception at some point in time,
but do not satisfy optimality. Modern solutions such as
trajectory prediction schemes [20] aim to predict the target
trajectory to then plan an intercept course.

In this paper, we argue that the problem depicted in
Figure 2 does not fall in either category, thus requiring a
custom solution. Although we know that the target’s spatial
constraints (ground vehicle) are determined by the road it is
traveling on, we do not know its temporal trajectory. This,
combined with the large scale of the problem and its risk
constraints, makes the available tools unsuitable. Feedback
control laws cannot account for these same constraints, and,
at this scale, for this application, spatial trajectory prediction
is computationally hard to execute and unnecessary given
our geometric knowledge.

III. METHODS

In this section we discuss the components of Algorithm 1.
First, we define the learning component based on Bayesian
linear regression. This regression approximates driver be-
havior and provides mean and variance functions for the
vehicle’s future location. Next, we outline the solver layer in
the form of an MPC controller, which plans a rendezvous lo-
cation given the driver behavior estimate. Finally, we briefly
discuss risk measures and dangers when implementing them
in the proposed framework.

A. Bayesian Linear Regression and Risk Assessment

In this section we discuss the Bayesian learning compo-
nent introduced in Section II and represented in Algorithm 1
as the regression function. One of the major challenges for
the proposed problem is that each driver behaves differently.
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Fig. 3: Example regression: a nonlinear curve we wish to
learn (dashed) maps historical data to driver velocities, by
regressing on the measurements we get: mean (gray line)
and variance functions (grey shaded area).

While one driver may drive at a conservative speed limit,
another might drive relatively faster. Therefore, learning
a driver’s ‘behavior’ will be beneficial to the rendezvous
problem. We now set up this learning problem. Consider
the parameterized path p(θ), θ ∈ R+. We assume that we
have access to the driver’s position θd,i = θ(ti), where ti
is the time instance, at which the measurement is obtained.
Furthermore, we have measurements of the driver’s velocity
denoted by θ̇d,i = θ̇d(ti). All measurements are considered
to have additive noise. We also assume that we have access
to historical velocity profile given by θ̇h,i = θ̇h(ti). Such
a historical velocity profile can be generated by collecting
measurements of vehicles traversing the path p(θ) and fitting
a distribution over it using methods similar to those in
[23], [24]. In our case, we assume the historical velocity
profiles are in the form of a Gaussian distribution (explained
later). To summarize, given the driver’s position θi, we
have access to a measurement of the driver’s velocity θ̇d,i
and the corresponding probabilistic historical velocity θ̇h,i.
A comparison of θ̇d,i and θ̇h,i thus represents a measure
of the driver’s behavior. In particular, we wish to learn
θ̇d(θ̇h) : R→ R.

The traditional approach would be to directly learn the
vehicle’s position function θd(t); however, this would cause
the uncertainty propagation to expand too quickly and force
an abort decision too often [11]. Instead, we explore both
the fact that the vehicle is constrained to a known path
and that the velocity along the path has a strong prior (the
historical velocity θ̇h(·)). A disadvantage of this approach is
that an integration procedure must be carried out to estimate
θd(t). In a regular OCP formulation, this function would
be forward-Euler integrated inside the solver in the form of
dynamic model constraints [25]. However, due to the coarse
discretization considered in this paper, such implementation
would not be feasible. Instead, we use a finite basis model
that enables analytical integration to be performed offline.

We assume that the mapping θ̇d(θ̇h) admits a linear
model with a finite number of basis functions as θ̇d(θ̇h) =
w>φ(θ̇h), w ∈ Rm, where φ : R → Rm is the vector of
known basis functions and w ∈ Rm are the weights to be
learned. We place the following prior on the weight vector

w as
w ∼ N (0m,Σm), (1)

where Σm ∈ Sm is the covariance obtained using historical
data. Note that we assume a zero prior mean without loss
of generality. As we will see, since we consider noisy
measurements corrupted by zero-mean Gaussian noise, non-
zero prior mean can be easily incorporated [26, Sec. 2.7].
We assume a noisy data stream of the form

yi = θ̇d(θ̇h,i) + ζ, ζ ∼ N (0, σ2), i ∈ {1, . . . , N}. (2)

Considering the fact that by construction we have a finite-
basis linear model and Gaussian measurements, we can
construct the posterior distribution by conditioning the prior
in (1) on the measurements in (2). This is known as Bayesian
Linear Regression [26, Sec. 2.1] [27, Sec. 3.3]. For the
case of a linear model with finite-number of basis functions,
Bayesian Linear Regression (BLR) is equivalent to Gaussian
Process Regression (GPR) with the kernel function induced
by the basis functions φ(·) [26, Sec. 2.1]. Then the natural
question arises regarding the use of BLR and not GPR to
accomplish the desired goals since the apriori choice of a fi-
nite number of basis limits the models’ expressive flexibility.
A straightforward argument is that BLR is computationally
cheap compared to GPR, especially as a function of available
data. This is crucial considering the online nature of the pro-
posed method. Furthermore, one can always approximate the
well-known stationary kernels like the Squared-Exponential
(SE) or Matérn kernels using a finite number of random
Fourier features [28]. Finally, we would like to highlight the
fact that any estimation method which provides a notion of
uncertainty can be used since the algorithm is agnostic to the
risk estimation layer as it will be shown in subsection III-B.

At any given time, the algorithm can sample a position θd
and velocity θ̇d of the vehicle. Then using the prototypical
velocity profile θ̇h, we can generate the data in D. We write
the data in compact form as D = {D,H}, where D, H ∈
RN are defined as

D =
[
θ̇d,1 · · · θ̇d,N

]>
, H =

[
θ̇h,1 · · · θ̇h,N

]>
.

Given the measurements (2) and the prior (1), we obtain
the posterior distribution of the parameter vector w as

w ∈ N (µw,Σw), (3)

where µw = 1
σ2A

−1Φ(H)D, Σw = A−1, and A =
σ−2Φ(H)Φ(H)> + Σ−1m .

With the mean and variance functions fitted, the next
necessary step is to forward propagate these functions with
respect to the historical data. The challenge is that the model
represents a mapping between velocities, with no spatial
information otherwise. Because we used parameterized ve-
locities instead of the Euclidean representation, it is possible
to integrate along the path using the known velocity profile
from historic data and the path information itself. Suppose
that at some time instance t0 the rendezvous vehicle is at
θd,0 = θd(t0), and we wish to estimate the vehicle’s position
at some instant tf > t0. Given the integrable temporal



prototypical velocity profile θ̇h(t), the predictive distribution
of θd(tf ) can be computed via

θd(tf ) = θd,0 +

∫ tf

t0

(θ̇d(θ̇h(τ)) dτ = θd,0 + w>ψ(tf ), (4)

where ψ(tf ) =
∫ tf
t0
φ(θ̇h(τ)) dτ . This integral can be com-

puted, as a function of tf , apriori. For example, for polyno-
mial kernels or the random Fourier feature approximation of
SE or Matern kernels, using the posterior distribution of w
in (3), and the fact that θd(tf ) is a linear transformation of
the random variable w ∈ Rm, we get the following posterior
distribution

E[θd(tf )] =θd,0 + µ>wψ(tf ), (5)

Var[θd(tf )] =ψ(tf )>A−1ψ(tf ). (6)

As the order of the basis increases, and depending on the
structure of the historical velocity profile, the explicit form
can become cumbersome. However, it is all done apriori and
automated, and because the range of velocities we expect to
encounter is small, we generally do not need a large number
of basis.

B. MPC formulation

In this section we discuss the structure and particulars of
the MPC component introduced in Algorithm 1. A primary
challenge of the rendezvous problem is presented by the
trajectories under strict and numerous constraints, of which
many are non-convex. By exploring two special features
of the problem formulation we reduce dimensionality and
attain tractability. We now outline the Optimal Control
Problem (OCP) associated with the rendezvous problem. As
mentioned previously in Sec. II, the solver is tasked with
finding two critical points: (Point-of-No-Return) PNR and
the rendezvous location p(θd(TR)). To fully define the prob-
lem and gain temporal constraint management we expand the
control from velocities to also include a time “input”. The
nature of this problem requires the UAS to coincide with
the vehicle both in space and time. By introducing time as a
manipulated variable in the OCP, we allow for the solver
to directly decide on the optimal time and place for the
rendezvous maneuver to occur. This time input works by
assuming a piece-wise constant control law along each of
the four segments (PNR, rendezvous, landing location, and
abort location), which is possible due to our assumption on
the UAS integrator dynamics described below:

xk = xk−1 + vkTs (7)

Er,k = Er,k−1 −
(
mv2

2
+ αm

)
Ts, (8)

where Ts is the sampling time, m the scalar vehicle mass,
and α the scalar hovering energy consumption constant.
We represent each of the segments using the state vector
(x,v, t) ≡ (xi, vi, ti), i ∈ {1, . . . , 4}. Here, ti represents
the time to be spent at a constant velocity vi to reach one
waypoint from another. Furthermore, xi ∈ R2 represents

each of the defined physical waypoints in Euclidean coor-
dinates and vi ∈ R2 represents velocity inputs in Euclidean
coordinates. The waypoints are, in this order, the Point-of-no-
Return (PNR), the rendezvous location (RDV), the landing
location, and the abort location, as shown in Figure 2. The
designed Optimal Control Problem (OCP) is given by:

min
U,TR

ρR(TR,Σ,x) +

(
3∑
i=2

ti − t1

)
(9a)

s.t. xi = xi−1 + viti, x4 = x1 + v4t4, (9b)
|vi| ≤ vmax, (9c)
x3 = E[θd(TR)], x4 = SL, x5 = SA, (9d)
3∑
i=1

ti ≤ tmax, t1 + t4 ≤ tmax, tc ≤ ti (9e)

E1 + E2 + E3 ≤ Er, E1 + E4 ≤ Er, (9f)

where TR ≡ t1 + t2, SL and SA are the landing and abort
destinations, Er the remaining energy Ei, tc a dwell time for
the low level controller to switch tracked segments, Σ is a
variance function associated with the mission state given by
(3), and ρR any risk measure we wish to minimize. The dwell
time is necessary to stop the solver from placing waypoints
arbitrarily close to each other and creating undesirable sharp
turns, which are problematic for our single integrator dy-
namics assumption. Moreover, U ≡ {ti, vi}, i ∈ (1, ..., 4).
Formulating this problem with risk constraints instead of cost
would cause the solver to potentially deny dangerous solu-
tions instead of postponing a decision and waiting for new
data that can eventually yield a feasible solution. Since risk
constraints still need to exist, their satisfaction is relegated
to the heuristics discussed in Algorithm 1.

All of these constraints are natural because every single
one is predetermined at the design stage. For example,
constraint (9f) is directly produced from the battery used in
the UAS, and constraint (9d) is given from the map where the
mission takes place. The only task left for the designer is to
choose the risk measures. Fortunately, because the proposed
method is agnostic to risk measures, the designer can choose
with no concern over tractability or internal conflicts in the
solver.

Quantifying risk is the effort of determining a measure
ρ that maps a set of random variables to a real number
[14], [13]. With this definition, the random variables are the
states of the UAS (due to process and measurement noises)
and, more importantly, the position of the ground vehicle
due to the driver’s uncertain behavior. It is crucial to choose
measures that reflect meaningful quantities in the problem
formulation. In this framework, the risk is directly related to
the uncertainty regarding the vehicle’s location in the future
and the limitations that the path imposes on planning. If the
driver is erratic, or the path only allows the rendezvous to
happen in unfavorable locations, we consider that the mission
has elevated risk. Several risk measures are popular; some
examples are Expectation-Variance [15], (Conditional, Tail)
Value-at-Risk [13, Sec. 3.3], and Downside Variance [13,
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Sec. 3.2.7]. These measures can introduce nonlinearity and
preclude gradient information, endangering tractability. A
popular approach uses gradient-free methods, which sample
these measures and choose inputs corresponding to minimum
risk [29]. In this paper, we tackle tractability by exploring
the problem geometry to its fullest and reducing the number
of variables to an absolute minimum, as shown above, and in
Section III-A. In this paper, we consider two risk measures.
Measure ρ is the Downside Potential [13] of energy expen-
diture. It computes the worst outcome energy-wise as the
maximum energy necessary to complete the mission within
the driver position confidence bounds. Furthermore, ρR is
defined as the variance of driver position at time tR. These
measures provide guarantees that the UAS will return and
favor locations on the road where uncertainty is minimal,
respectively. Figure 4 depicts this setup, where one tail of
the distribution is a downside tail, and the other an upside
tail.

IV. RESULTS

This section presents two scenarios with distinct outcomes.
In the first scenario, the mission is successful, since when
the decision time t1 reaches ε = 5 seconds, the Downside
Energy Potential ρ is below its threshold of 200J. In the sec-
ond scenario, we increase noise and make the driver erratic,
which increases uncertainty makes the UAS abort a risky ren-
dezvous in favor of returning home. To simulate the dynam-
ics, we use an Euler integration scheme with a discretization
step of one second. The OCP solver reaches a solution in a
median time of 75.604ms on a 2012 3.4 GHz Quad-Core In-
tel Core i7 implemented in Julia with the Ipopt solver. At this
rate, the algorithm runs faster than the discretization time.
The source code can be found at https://github.com/
gbarsih/Safe-Optimal-Rendezvous. The mission
takes place on a 1km2 area, with a stretch of road going
from (0,0)m to (1000,1000)m, as shown in Figure 2. We
set the abort, landing, and take-off locations (SA, SL, and
x0, respectively) to the same position at (500, 0)m, the
path to p(θ) = (θ, θ)m, and driver behavior functions to

Fig. 5: Bayesian fit performance at two points in time: more
data completes the driver’s behavior profile. Waiting for more
data means noise is averaged, and we explore more speeds.

Fig. 6: Outcome of a low-risk decision: in 20 seconds
available to make a decision, enough data is collected to
assert high confidence of success.

θ̇d(θ̇h) = aθ̇h(t), so that a > 1 makes a driver proportionally
faster than the average driver. On that same path we set
θ̇h(t) = 10(1− t/200) and ρR(θd) = Var[θd(tR)].

A. Maximizing Decision Time

One of the algorithm’s core functionalities relies on post-
poning a decision by maximizing t1 to gather more data
and attempt to find a safe trajectory. This maximization
goes against the mission objective of minimizing time but is
necessary to guarantee safety and feasibility. Figure 5 shows
exactly that, for a = 1.1, where more data at 50 seconds
reduces uncertainty in unknown speeds.

B. Low-Risk Mission

In this example, we set σ = 3 and a = 1.1. In 20 seconds,
the algorithm terminates and is forced to make a decision. We
notice that the abort energy is always maximized up to the
available energy and that the downside potential falls below
the threshold despite being prohibitively high in the early
stages. Figure 6 shows the energy profile of each trajectory
segment, available energy, and downside potential energy, as
well as the distance between the car and the UAS for the
low-risk scenario.

https://github.com/gbarsih/Safe-Optimal-Rendezvous
https://github.com/gbarsih/Safe-Optimal-Rendezvous


Fig. 7: Outcome of a high-risk decision: in 18 seconds, not
enough data was collected, or it was, and risk is too high. At
decision time, the downside potential is above the threshold,
and a decision is made to abort the mission.

C. High-Risk Mission

In this example, we set σ = 6 and a = 1.3, meaning that
the sensor has more noise and the driver is more erratic. In
18 seconds, the algorithm terminates and is forced to make
a decision. Because of the heightened uncertainty, the down-
side potential is high, and the UAS has a high probability of
running out of battery. In this case, the algorithm will trigger
the abort decision, which is feasible because that path was
planned. Figure 7 shows the energy profile of each trajectory
segment, available energy, and downside potential energy, as
well as the distance between the car and the UAS for the
high-risk scenario.

V. CONCLUSIONS

We presented an algorithm capable of planning a long-
distance rendezvous between an autonomous aerial vehicle
and a ground vehicle traversing a path. The large uncer-
tainties associated with driver behavior combined with finite
energy to complete the mission require risk management,
a learning component, and an MPC-like controller to work
in unison and guarantee safety at all times, even if safety
translates to aborting the mission. The algorithm is shown
to be persistently safe due to the continuous planning of
an abort path at all times. For future work, we intend to
expand this work in two ways. First, a modification of
this algorithm to accomodate pruing paths. Second, a parcel
delivery framework like the one described here will have
multiple vehicles in the logistic matrix. A third decision
path can be added by leveraging this, which waits for a new
ground vehicle to enter the matrix and then deliver to that
vehicle.
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