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Approximate Stochastic Reachability for High Dimensional Systems

Adam J. Thorpe, Vignesh Sivaramakrishnan, Meeko M. K. Oishi

Abstract— We present a method to compute the stochastic
reachability safety probabilities for high-dimensional stochastic
dynamical systems. Our approach takes advantage of a non-
parametric learning technique known as conditional distribu-
tion embeddings to model the stochastic kernel using a data-
driven approach. By embedding the dynamics and uncertainty
within a reproducing kernel Hilbert space, it becomes possible
to compute the safety probabilities for stochastic reachability
problems as simple matrix operations and inner products. We
employ a convergent approximation technique, random Fourier
features, in order to alleviate the increased computational
requirements for high-dimensional systems. This technique
avoids the curse of dimensionality, and enables the computation
of safety probabilities for high-dimensional systems without
prior knowledge of the structure of the dynamics or uncertainty.
We validate this approach on a double integrator system, and
demonstrate its capabilities on a million-dimensional, nonlinear,
non-Gaussian, repeated planar quadrotor system.

I. INTRODUCTION

Stochastic reachability is an established verification tech-

nique which is used to compute the likelihood that a system

will reach a desired state without violating a predefined set

of safety constraints. The solutions to stochastic reachabil-

ity problems are broadly framed in terms of a dynamic

program [1], which scales poorly with the system dimen-

sionality. Methods using approximate dynamic programming

[2], particle filtering [3, 4], and abstractions [5] have been

posed, but are limited to systems of moderate dimensionality.

Optimization-based solutions have garnered modest compu-

tational tractability via chance constraints [4, 6], sampling

methods [7]–[9], and convex optimization with Fourier trans-

forms [10, 11], but are limited to linear dynamical systems

and Gaussian or log-concave disturbances.

Recent work in reachability for non-stochastic, linear

dynamical systems has accommodated systems with up to a

billion dimensions [12]–[14], an unprecendented size. How-

ever, comparably scalable solutions for stochastic systems,

even with considerable structure in the dynamics and in the

uncertainty, remain elusive.

We propose a model-free method for stochastic reacha-

bility analysis of high-dimensional systems using a class

of machine learning techniques known as kernel methods.
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We take advantage of kernel distribution embeddings [15], a

nonparametric learning technique that captures the features

of arbitrary statistical distributions in a data-driven fashion.

Distribution embeddings are amenable to generic Markov

control processes, and enable efficient computation of ex-

pectations by approximating integrals via inner products.

These techniques scale exponentially with the number of

samples, meaning that they can suffer from computational

complexity and memory storage requirements. This can be

prohibitive for high-dimensional systems, which may require

a large number of samples in order to effectively capture the

system dynamics. The utility of distribution embeddings for

the terminal-hitting time problem has been demonstrated for

systems of up to 10,000 dimensions [16], but the jump to

a million presents significant computational challenges. To

facilitate stocahstic reachability calculations for extremely

high-dimensional systems, we couple distribution embed-

dings with a technique known as random Fourier features

(RFF) [17, 18], that uses an empirical Fourier approximation

to deal with high-dimensional systems. The main contri-

bution of this paper is an application of random Fourier

features to compute an efficient model-free approximation of

the safety probabilities for high-dimensional systems.

The paper is outlined as follows. Section II formulates

the problem. Section III outlines the theory of conditional

distribution embeddings. Section IV applies random Fourier

features to the computation of safety probabilities. In sec-

tion V, we demonstrate our approach on two examples: a

stochastic chain of integrators for validation, and a million-

dimensional, non-Gaussian, repeated planar quadrotor.

II. PROBLEM FORMULATION

The following notation is used throughout the paper. For

any nonempty space Ω, the indicator 1A : Ω → {0, 1}
of A ⊆ Ω is a function defined such that 1A(ω) = 1 if

ω ∈ A, and 1A(ω) = 0 if ω /∈ A. Let (Ω,F(Ω),Pr) define a

probability space, where F(Ω) denotes the σ-algebra relative

to Ω, and Pr is the assigned probability measure. When

Ω ≡ ℜ, let B(Ω) denote the Borel σ-algebra associated with

Ω. Given i ∈ N random variables xi, which are measurable

functions on (Ω,F(Ω),Pr), let x = [x1, . . . ,xn]
⊤ be a

random vector defined on the induced probability space

(Ωn,F(Ωn),Prx), where Prx is the induced probability

measure. A stochastic process is defined as a sequence of

random vectors {xk}Nk=0, N ∈ N. For a real, measurable

function x on (Ω,F(Ω),Pr), the Lebesgue integral
∫

Ω
xPr

is denoted by the expectation operator Ex∼Pr[x].
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A. System Model

We consider a Markov control process H [1], which is

defined as a 3-tuple: H = (X ,U , Q), where X ⊆ ℜn and

U ⊆ ℜm are Borel spaces representing the state and control

spaces, and Q : B(X ) × X × U → [0, 1] is a stochastic

kernel, which is a Borel-measurable function that maps a

probability measure Q( · |x, u) to each x ∈ X and u ∈ U in

(X ,B(X )). The system evolves over a finite time horizon

k ∈ [0, N ], where the inputs are chosen from a Markov

control policy π = {π0, π1, . . .} [19], which is a sequence

of universally-measurable maps πk : X → U .

We consider the case where the stochastic kernel is un-

known, but observations of the system are available. Consider

a sample S = {(x̄i, ūi, ȳi)}Mi=1 of size M drawn i.i.d. from

Q, such that ȳi ∼ Q(· | x̄i, ūi) and ūi = π(x̄i), where π is a

fixed Markov control policy. We denote sample vectors with

a bar to differentiate them from time-indexed vectors.

B. First-Hitting Time Problem

Let K, T ∈ B(X ), T ⊆ K, denote the safe set and

target set, respectively. We define the first-hitting time safety

probability [1] as the probability that a system H following

a control policy π and starting at the initial condition x0 will

reach a target set T at some time j ∈ [0, N ] while remaining

within the safe set K for all time i ∈ [0, j − 1].

rπx0
(K, T ) := Eπ

x0

[

N
∑

j=0

(

j−1
∏

i=0

1K\T (xi)

)

1T (xj)

]

(1)

For a fixed Markov policy π, we define the value functions

V π
k : X → [0, 1], k ∈ [0, N ], via the backward recursion:

V π
N (x) = 1T (x) (2a)

V π
k (x) = 1T (x) + 1K\T (x)Ey∼Q[V

π
k+1(y)] (2b)

Then, V π
0 (x) = rπx0

(K, T ) for every x0 ∈ X . In general,

computing rπx0
(K, T ) is difficult due to the expectation in

(2b). We seek a representation of the stochastic kernel which

enables an efficient computation of this expectation.

C. Problem Statement

We consider the following problems:

Problem 1. Without direct knowledge of Q, use a sample

S of observations taken from Q to compute a kernel-based

approximation of (2b) that converges in probability.

Problem 2. Use RFF to compute an approximation of the

kernel that enables efficient computation of (2b) for high-

dimensional systems.

The computational efficiencies afforded by RFF transform

(2b) and thus (1) into simple matrix operations and inner

products, enabling us to handle high-dimensional systems.

III. RKHS EMBEDDINGS OF DISTRIBUTIONS

For any set X , let HX denote a Hilbert space of real-

valued functions f : X → ℜ, with the inner product 〈·, ·〉HX
.

A Hilbert space HX is a reproducing kernel Hilbert space

(RKHS) if there exists a positive definite [20] kernel function

kX : X ×X → ℜ that satisfies the following properties [21]:

1) For any x, x′ ∈ X , kX (x, · ) : x′ → kX (x, x′) is an

element of HX . 2) An element kX (x, x′) of HX satisfies

the reproducing property such that ∀f ∈HX and x ∈ X ,

f(x) = 〈kX (x, ·), f〉HX
(3a)

kX (x, x′) = 〈kX (x, ·), kX (x′, ·)〉HX
(3b)

We define the positive definite kernels kX : X × X → ℜ
and kU : U × U → ℜ, and let HX and HU denote

the RKHS induced by kX and kU , respectively. Further,

we define kX×U : (X × U) × (X × U) → ℜ, via the

tensor product kX×U((x, u), (x
′, u′)) = kX (x, x′)kU (u, u

′).
Let HX×U be the associated RKHS. We can also view an

element kX (x, ·) ∈ HX as a feature map φ : X → HX ,

such that kX (x, x′) = 〈φ(x), φ(x′)〉HX
. Intuitively, the

feature map can be viewed as a basis function, such that a

function f ∈ HX can be represented as a weighted sum

f(x) = 〈w, φ(x)〉 for some possibly infinite-dimensional

weight vector w. However, constructing φ and computing the

inner product explicitly can be computationally expensive or

even impossible, depending on the choice of kernel. Instead,

the inner product can be computed using kX (x, x′) directly.

This is known as the kernel trick [20].

A. Conditional Distribution Embeddings

For any measurable space X , let P denote the set of

probability distributions on X . For any distribution P ∈P ,

if the sufficient condition Ex∼P[kX (x,x)] < ∞ is satisfied

[15], there exists an element mP in the RKHS HX called

the kernel distribution embedding,

m : P →HX

P 7→ mP :=

∫

X

kX (y, ·)P(y)dy (4)

This representation has several advantages. First, if the

kernel function is universal [15], the mapping is injective,

meaning there is a unique element in the RKHS HX for

any P,Q ∈ P , such that ‖mP −mQ‖HX
= 0 if and only

if P = Q. A popular kernel which satisfies these properties

is the Gaussian kernel, kX (x, x′) = exp(−‖x − x′‖22/2σ2),
σ > 0. Second, using the reproducing property (3a), we can

compute the expectation of a function with respect to the

distribution P as an inner product with the embedding.

〈mP, f〉HX
=

∫

X

f(y)P(y)dy (5)

Lastly, because P is typically unknown, we can compute

an efficient estimate of mP. As shown in [22], the estimate

for a conditional distribution embedding is the closed-form

solution of a regularized least-squares problem.

We consider mapping the stochastic kernel Q into the

RKHS HX (4) [23]. Its representation in HX is given by

my|x,u :=

∫

X

kX (y, ·)Q(y |x, u)dy (6)

Because Q is unknown, we do not have access to my|x,u



directly. Instead, we use a sample S drawn i.i.d. from Q to

compute an estimate m̂y|x,u ∈ HX which can be found by

minimizing the following optimization problem:

M
∑

i=1

‖kX (ȳi, ·)− m̂y|x̄i,ūi
‖2HX

+ λ‖m̂y|x,u‖2Γ (7)

where Γ is a vector-valued RKHS [24] and λ > 0 is the

regularization parameter. According to [22], the solution to

(7) is unique and has the following form:

m̂y|x,u = Φ(ΨΨ⊤ + λMI)−1ΨkX×U((x, u), ·) (8)

The vectors Φ and Ψ are known as feature vectors, given by

Φ = [kX (ȳ1, ·), . . . , kX (ȳM , ·)]⊤ (9)

Ψ = [kX×U((x̄1, ū1), ·), . . . , kX×U((x̄M , ūM ), ·)]⊤ (10)

Using the estimate m̂y|x,u, we can approximate the expec-

tation Ey∼Q[f(y)] for any f ∈HX as an inner product.

〈m̂y|x,u, f〉HX
≈ Ey∼Q[f(y)] (11)

For simplicity, we can write this as

〈m̂y|x,u, f〉HX
= f⊤β(x, u) (12)

where f = [f(ȳ1), . . . , f(ȳM )]⊤ and β(x, u) ∈ ℜM is

a vector of coefficients that depends on the value of the

conditioning variables (x, u) ∈ X × U .

β(x, u) = (ΨΨ⊤ + λMI)−1ΨkX×U((x, u), ·) (13)

This means we can approximate the expectation of the value

functions Ey∼Q[V
π
k+1(y)] in (2b) as an inner product with

the conditional distribution embedding estimate.

Computing the estimate typically requires us to compute

and store a matrix G = ΨΨ⊤ ∈ ℜM×M , which is at least

O(M2). For large sample sizes, the storage and computation

of G may be prohibitive. In order to overcome this computa-

tional challenge, we compute an approximation of the kernel

itself and thus obtain a low-dimensional approximation of G
using a technique known as random Fourier features [17].

B. Random Fourier Features

As shown in [17], we can reduce the computational com-

plexity of computing (12) by exploiting Bochner’s theorem

[25]. This allows us to approximate the inner product in (12)

by approximating the Fourier transform of the kernel.

Bochner’s Theorem. [25] A translation-invariant kernel

kX (x, x′) = ϕ(x − x′) on X is positive definite if and only

if ϕ(x−x′) is the Fourier transform of a non-negative Borel

measure Λ.

ϕ(x− x′) =

∫

X

exp(jω⊤(x− x′))Λ(ω)dω (14)

=

∫

X

cos(ω⊤(x − x′))Λ(ω)dω (15)

where (15) follows from the real-valued property of ϕ.

Following [17], we construct an estimate of (15) using a

sample Ω = {ω̄i}Di=1 of size D, such that ω̄i is drawn i.i.d.

from the Borel measure Λ according to ω̄i ∼ Λ(·).

kX (x, x′) ≈ 1

D

D
∑

i=1

cos(ω̄⊤
i (x− x′)) (16)

We define a random feature map z : X → ℜD such that

kX (x, x′) ≈ 1

D

D
∑

i=1

zω̄i
(x)zω̄i

(x′) =: 〈z(x), z(x′)〉 (17)

zω(x) =
√
2 cos(ω⊤x+ b) (18)

where b is drawn uniformly from [0, 2π]. Let k̂X ≈ kX
denote the kernel approximation. Using random feature maps

to approximate kX and kU , we define the feature vector Z ,

Z = [z(x̄1)⊗ z(ū1), . . . , z(x̄M )⊗ z(ūM)]⊤ (19)

where ⊗ denotes the algebraic tensor product. Using (19),

we can approximate (12) as

〈m̂y|x,u, f〉HX
≈ f

⊤γ(x, u) (20)

where γ(x, u) ∈ ℜM is a vector of coefficients computed

using the random feature vector Z in (19) (cf. [26]).

γ(x, u) = (ZZ⊤ + λMI)−1Z(z(x)⊗ z(u)) (21)

This means we can approximate the expectation of the

value function Ey∼Q[V
π
k+1(y)] in (2b) as an inner product

of random feature maps. Note that the matrix H = ZZ⊤ ∈
ℜD×D has lower dimensionality than G if D < M , making

it more computationally efficient to compute and store. As

remarked in [17], evaluating a function using the kernel trick

requires O(Md) operations, where d is the dimensionality

of the data, whereas RFF only requires O(D+d) operations.

IV. APPROXIMATE STOCHASTIC REACHABILITY

With the conditional distribution embedding my|x,u, the

value function in (2b) can be written as

V π
k (x) = 1T (x) + 1K\T (x)〈my|x,u, V

π
k+1〉HX

(22)

With the estimate m̂y|x,u and using the RFF approximation

in (20), we obtain the approximation

V π
k (x) ≈ 1T (x) + 1K\T (x)〈m̂y|x,u, V

π
k+1〉HX

(23)

We define the approximate value functions V π
k : X → [0, 1],

k ∈ [0, N − 1] via the backward recursion

V π
k := 1T (x) + 1K\T (x)〈m̂y|x,u, V

π
k+1〉HX

(24)

where V π
k (x) ≈ V π

k . Let V π
N = V π

N . Following [16], we can

approximate the safety probability in (1) by approximating

V π
k+1 and recursively substituting it into (24). This proce-

dure is outlined in Algorithm 1. Using this, we obtain the

approximation rπx0
(K, T ) ≈ V π

0 (x).

A. Convergence

We now seek to characterize the quality of the approxima-

tion and analyze the conditions for its convergence. First, we

analyze the convergence of the estimate m̂y|x,u. As shown in

[27], the estimate m̂y|x,u converges in probability to my|x,u



at a rate of Op(M
−1/4) if the regularization parameter λ is

decreased at a rate of O(M−1/2) (cf. [22]).

Theorem 1. [27, Theorem 6] Assume kX is in the range of

Ex[kX (x, ·)⊗kX (x, ·)], then m̂y|x,u converges to my|x,u in

the RKHS norm at a rate of Op((Mλ)−1/2 + λ1/2).

This means we have theoretical guarantees of convergence

of the embedding ‖my|x,u − m̂y|x,u‖HX
→ 0 as M → ∞.

Thus, for any function f ∈HX , using Cauchy-Schwarz,

|〈my|x,u, f〉HX
− 〈m̂y|x,u, f〉HX

|
≤ ‖f‖HX

‖my|x,u − m̂y|x,u‖HX
(25)

Since ‖my|x,u−m̂y|x,u‖HX
converges in probability accord-

ing to Theorem 1, the approximation of f computed using

the estimate m̂y|x,u also converges in probability.

Next, we consider the convergence of the RFF approxi-

mation in (20). Convergence rates and finite-sample bounds

for RFF in a generalized setting have been explored in

[18, 26, 28]. We utilize the results in [28], which presents

bounds for RFF in the context of least-squares problems with

Tikhonov regularization. According to [28, Theorem 1], the

approximation computed via RFF in (20) has an error of

Op(M
−1/2) if we choose D according to O(M1/2 logM)

and decrease λ at a rate of O(M−1/2).
We can use this result to show that by properly choosing

D, the approximate value functions converge in probability

at the rate in Theorem 1. Following [28] and under the as-

sumptions of Theorem 1, we present the following theorem.

Theorem 2. The approximate value functions V π
k (x) con-

verge in probability to V π
k (x) at a rate of Op(M

−1/4) if D
is chosen according to O(M1/2 logM) and λ is decreased

at a rate of O(M−1/2).

The proof follows by combining the convergence rates from

[28, Theorem 1] and Theorem 1 to obtain the result. Thus, if

|V π
k (x)−V π

k (x)| has a probabilistic error bound of ε > 0 at

every time k < N , the approximation rπx0
(K, T ) ≈ V π

0 (x)
computed using Algorithm 1 converges in probability with

an error of Nε [16].

V. NUMERICAL RESULTS

We implemented Algorithm 1 on a stochastic chain of

integrators for the purposes of validation, and on a million-

Algorithm 1 Backward Recursion via RFF

Input: sample S, evaluation point x, policy π, horizon N ,

sample Ω = {ω̄i}Di=1 such that ω̄i ∼ Λ(·)
Output: value function estimate V π

0 (x) ≈ rπx0
(K, T )

1: V π
N (x)← 1T (x)

2: for k ← N − 1 to 0 do

3: Compute γ(x, πk(x)) from (21) using S and Ω
4: Y ← [V π

k+1(ȳ1), . . . , V
π
k+1(ȳM )]⊤

5: V π
k (x)← 1T (x) + 1K\T (x)Y⊤γ(x, πk(x))

6: end for

7: Return V π
0 (x)

dimensional repeated planar quadrotor example in order to

demonstrate the method for high-dimensional systems. We

generate observations via simulation, and then presume no

knowledge of the dynamics or the structure of the uncer-

tainty for the purposes of computing the safety probability

rπx0
(K, T ) in (1) using Algorithm 1. For all problems, we

used a Gaussian kernel exp(−‖x−x′‖22/2σ2) with σ = 0.1,

and chose λ = 1 as the default regularization parameter. The

Borel measure Λ that corresponds to the Fourier transform

of the Gaussian kernel is a Gaussian distribution of the form

Λ(ω) = σ−1 exp(−σ2‖ω‖22/2).
All computations were done in Matlab on a 3.8GHz Intel

Xeon CPU with 32 GB RAM. Computation times were ob-

tained using Matlab’s Performance Testing Framework. Code

to generate all figures is available at https://github.com/unm-

hscl/ajthor-CDC2020.

A. Stochastic Chain of Integrators

We consider a 2-D stochastic chain of integrators [11],

in which the input appears at the 2nd derivative and each

element of the state vector is the discretized integral of the

element that follows it. The dynamics with sampling time T
are given by:

xk+1 =

[

1 T
0 1

]

xk +

[

T 2

2!
T

]

uk +wk (26)

where wk is an i.i.d. disturbance defined on the probability

space (W ,B(W),Prw). We consider three distributions

for the disturbance: 1) A Gaussian distribution wk ∼
N (0,Σ), where Σ = 0.01I; 2) A beta distribution wk ∼
0.1Beta(α, β), with PDF f(x |α, β) = Γ(α+β)

Γ(α)Γ(β)x
α−1(1 −

x)β−1 where Γ is the Gamma function and shape parameters

α = 2, β = 0.5; and 3) An exponential distribution wk ∼
0.01Exp(α), with α = 3 and PDF f(x |α) = α exp(−αx).
For the purpose of validation against a known model, the

control policy was chosen to be π(x) = 0 The target set and

safe set are defined as T = [−0.5, 0.5]2 and K = [−1, 1]2.

For the 2-D chain of integrators with a Gaussian distur-

bance, in order to compare against a known “truth” model,

we computed the safety probabilities using a dynamic pro-

gramming solution implemented in [29] with a time horizon

of N = 5 (Fig. 1(a)). Following [16], we then computed

the safety probabilities using β in (13) (without RFF) using

a sample S of size M = 2,500 (Fig. 1(b)) in order to

compare against the quality of the approximation obtained

using RFF. The absolute error between the approximation

and the dynamic programming solution is shown in Fig.

1(c), and the maximum absolute error was 0.0748. We then

generated D = 15,000 frequency samples from Λ(ω) and

computed the safety probabilities using γ in (21) (with RFF)

for the same sample S according to Algorithm 1 (Fig. 1(d)).

The absolute error between the approximation computed

using RFF and the dynamic programming solution is shown

in Fig. 1(e), and the maximum absolute error was 0.0907.

We then computed the safety probabilities for the same

system with a beta distribution disturbance and an exponen-

tial distribution disturbance for a time horizon of N = 50.



Fig. 1. (a) Dynamic-programming-based solution for a double integrator system with a Gaussian disturbance over the horizon N = 5. (b) First-hitting time
safety probabilities for a double integrator system computed wihtout RFF (c) Absolute error between (a) and (b). (d) First-hitting time safety probabilities
for a double integrator using Algorithm 1, where D = 15,000. (e) Absolute error between (a) and (d).

The results are shown in Fig. 2. Because Algorithm 1 is

agnostic to the complexities of the disturbance, handling

arbitrary disturbances is straightforward.

As expected, Algorithm 1 produced a higher error estimate

of the safety probabilities due to the kernel approximation.

The quality of the approximation is dependent on M and

D, and in some cases, the number of frequency samples D
required to approximate the kernel can mean Algorithm 1

does not provide better computational efficiency. However,

when D ≪ M , or when the system is high-dimensional,

RFF can significantly reduce the computational burden.

By choosing a lower value of D, we exchange numerical

accuracy for lower computation times of the algorithm.

B. Planar Quadrotor

We implemented Algorithm 1 on a planar quadrotor

system, as well as a million-dimensional repeated planar

quadrotor system, comprised of 170,000 dynamically de-

coupled six-dimensional planar quadrotors. This problem

can be interpreted as a simplification of formation control

for a large swarm of quadrotors, where we compute the

safety probabilities for the entire swarm as the quadrotors are

controlled to reach a particular configuration. The nonlinear

dynamics of a single quadrotor are given by

mẍ = −(u1 + u2) sin(θ)

mÿ = (u1 + u2) cos(θ) −mg

Iθ̈ = r(u1 − u2)

(27)

where x is the lateral position, y is the vertical position, θ is

the pitch, and we have the constants intertia I = 2, length

r = 2, mass m = 5, and g = 9.8 is the gravitational constant.

For a single quadrotor, the state space is X ⊂ ℜ6, with

state vector given by z = [x, ẋ, y, ẏ, θ, θ̇]⊤, and the input

space is U ⊂ ℜ2, with input vector u = [u1, u2]
⊤. The input

is chosen to be a reference tracking controller, computed

using a linearization of the system dynamics about a hover

point. We discretize the nonlinear dynamics in time using

an Euler approximation with sampling time T = 0.25, and

add an affine disturbance w. The disturbance is a Markov

process with elements wk defined on the probability space

(W ,B(W),Prw). We consider two distributions for the

disturbance: 1) A Gaussian distribution wk ∼ N (0,Σ), with

variance Σ = diag(1×10−3, 1×10−5, 1×10−3, 1×10−5, 1×

Fig. 2. First-hitting time safety probabilities for a double integrator system
with a beta distribution disturbance (left) and an exponential distribution
disturbance (right) over the horizon N = 50.

10−3, 1×10−5); and 2) A beta distribution wk ∼ Beta(α, β)
with shape parameters α = 2, β = 0.5. The beta disturbance

has a non-zero mean, and can be interpreted as wind, such

that the dynamics are biased in a particular direction. For

a single planar quadrotor, the safe set and target set are

defined as K = {z ∈ ℜ6 : |z1| < 1, 0 ≤ z3 < 0.8}, and

T = {z ∈ ℜ6 : |z1| < 1, z3 ≥ 0.8}. For the repeated

quadrotor system, we define the safe sets and target sets as

a series of parallel tubes, such that no quadrotor may enter

into the safe set of an adjacent quadrotor. This means the

quadrotors must all reach an altitude of 0.8 while remaining

within their respective tube.

We first computed the safety probabilities for a single

quadrotor in order to demonstrate the capabilities of Al-

gorithm 1 to handle nonlinear dynamics. We generated a

sample S consisting of M = 1,000 observations of the

single quadrotor system with a Gaussian disturbance and

took D = 15,000 frequency samples from Λ(ω). We then

computed the safety probabilities using Algorithm 1 over

a time horizon of N = 5 and then repeated this procedure

using the beta distribution disturbance. The results are shown

in Fig. 3. As expected, the algorithm was able to compute

the safety probabilities due to the fact that Algorithm 1 does

not exploit any knowledge of the underlying dynamics.

For the repeated quadrotor system, we first computed the

safety probabilities without RFF in order to demonstrate the

reduced computational complexity of Algorithm 1 for high-

dimensional systems. We generated a sample S of M =
1,000 observations drawn i.i.d. from the stochastic kernel

of the repeated quadrotor system with a beta distribution



Fig. 3. First-hitting time safety probabilities for a planar quadrotor system
with a Gaussian disturbance (left) and with a beta distribution disturbance
(right) over the horizon N = 5.

TABLE I

COMPUTATION TIME

System Dim. [n] Without RFF With RFF Dyn. Prog.

Integrator 2 2.30 s 22.94 s 65.78 s

Quadrotor 6 0.62 s 15.24 s –

Quadrotor 1,020,000 1.23 h 44.59 s –

disturbance, and computed the safety probabilities (without

RFF) over a time horizon of N = 1 from a single initial

condition, to demonstrate feasibility of the approach. We

repeated this procedure 7 times and averaged the computa-

tion time over all trials to obtain an average computation

time of 1.23 hours. We then compared this performance

against Algorithm 1 (with RFF) using the same procedure.

We generated D = 15,000 frequency samples from Λ(ω) and

computed the safety probabilities using Algorithm 1 over the

same time horizon and the same initial condition. Using the

same averaging approach, we obtained an average computa-

tion time of 44.59 seconds. We obtained comparable results

for the Gaussian disturbance case. As shown in Table I,

computation time is reduced by two orders of magnitude

for the high-dimensional repeated quadrotor system.

VI. CONCLUSIONS & FUTURE WORK

We presented an algorithm based on random Fourier

features to compute the stochastic reachability first-hitting

time safety probabilities for high-dimensional Markov con-

trol processes. This approach is applicable to arbitrary

disturbances and is model-free, meaning it does not rely

upon a known stochastic kernel. We demonstrated it on a

million-dimensional system to showcase the efficiencies of

the computation. We plan to extend this to safe controller

synthesis using kernel distribution embeddings.
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