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Abstract— Feed-forward neural networks (FNNs) work as
standard building blocks in applying artificial intelligence (AI)
to the physical world. They allow learning the dynamics of
unknown physical systems (e.g., biological and chemical) to
predict their future behavior. However, they are likely to
violate the physical constraints of those systems without proper
treatment. This work focuses on imposing two important
physical constraints: monotonicity (i.e., a partial order of
system states is preserved over time) and stability (i.e., the
system states converge over time) when using FNNs to learn
physical dynamics. For monotonicity constraints, we propose
to use nonnegative neural networks and batch normalization.
For both monotonicity and stability constraints, we propose
to learn the system dynamics and corresponding Lyapunov
function simultaneously. As demonstrated by case studies, our
methods can preserve the stability and monotonicity of FNNs
and significantly reduce their prediction errors.

I. INTRODUCTION

Artificial intelligence (AI) is rapidly advancing in the cyber
world, especially in computer vision and natural language
processing [1]. Recently, there has been a growing interest
in building AI that can learn to interact with the physical
world [2]. To this end, feedforward neural networks (FNNs)
can serve as building blocks to learn unknown physical
system dynamics [3], [4], [5] to predict their future behavior.
Such systems usually obey physical constraints such as
monotonicity and stability [6].

Monotonicity and stability naturally arise from applications
in biology and chemistry. For instance, in an ecological
model, the population of several cooperative species can
be monotone. If a species’ population increases at some
time (e.g., by bringing in new ones from outside), then other
species’ populations will also be higher later, as illustrated in
Figure 1. Besides, monotone systems can also be stable, i.e.,
the populations converge to given values over time. Examples
include traffic networks [7], chemical reactions [8], and bio-
ecological models [9].

However, without proper treatments, monotonicity and
stability are likely to be violated by FNNs in learning, and
consequently, the learned dynamics will not correctly reflect
the dynamics of the real systems. In this work, we propose
a new method to impose monotonicity on FNNs in learning
without reducing their expressiveness by fusing nonnegative
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Fig. 1: Monotone system paths. If x′(t0) ≥ x(t0), then
x′(t) ≥ x(t) for all t ≥ t0.
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Fig. 2: Diagram of learning setup.

neural networks and batch normalization. In addition, for
monotone and stable systems, we propose another method
to impose both constraints by simultaneously learning the
system dynamics and the corresponding Lyapunov function,
as illustrated in Figure 2.

We implement our methods in a window-based fashion on
two case studies: the Lotka-Volterra model of two cooperative
species that can migrate between multiple patches and the
biochemical control circuit of the translation from DNA to
mRNA. The results show that our methods ensure the stability
and monotonicity of the learned FNNs at most test points.
In addition, by imposing the constraints and the window-
based implementation, the prediction errors of the FNN to
the system are significantly reduced, especially for long time
horizons.

Imposing monotonicity constraints in learning starts from
classification and regression of data whose labels increase
(or decrease) with the features (e.g., the dependence of
the value of a used car on its mileage). To handle such
data, monotonicity constraints were imposed for kernel
machines [10] and trees [11], [12]. Recently, monotonicity
were studied for learning probabilistic dynamical models [13],
[14], [15], [16]. Our work differs due to the use of the
window method and learning with both monotonicity and
stability constraints.

A common approach is to impose monotonicity as a penalty
to the training loss, computed for a set of samples [17] or
the average of some pre-defined distribution [18]. For this
approach, the derived NNs are only monotonic for that set of
samples or distribution, and require further certification for
global monotonicity [19]. Alternatively, we can indirectly
learn a monotone function from its derivative using an
NN that only provides nonnegative outputs [20]. However,
recovering the monotone function from the trained NN
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would require integration; thus, any learning errors would
accumulate over the integration/time, effectively resulting in
large approximation errors.

To avoid the above issues, we impose monotonicity through
the structure and weights of the NNs in a correct-by-
construction way. For example, it is proposed to set single
weights to be positive [21] or introduce constraints between
multiple weights [22], [12], [23]. Examples range from a
simple three-layer NN [24] to a more complex structure
combining linear calibrators and lattices [25]. Our work
proposes to use two-layer NNs with both min-ReLU and
max-ReLU activation functions with nonnegative weights
that can capture general nonlinear functions. To avoid sub-
optimal outcomes [26] caused by the hard constraints in
training, we propose to use batch normalization to “soften”
the constraints. The case studies show that our approach can
accurately approximate system dynamics without significantly
affecting monotonicity conditions.

Inspired by the idea of using piecewise linear dynamics to
approximate (known) nonlinear dynamics in non-learning
context [27], we consider a NN with ReLU activation
functions (instead of sigmoid). Similar to [24], [22], our
NN can be viewed as a piecewise linear approximation of
a nonlinear function, where the monotonicity is achieved
by enforcing positive weights. However, our ReLU NN is
more versatile and can have any number of layers, which
is needed for learning complex nonlinear dynamics beyond
classification and regression [28].

Our approach to ensuring stability is based on existing
work on learning for Lyapunov functions [3], [4]. Specifically,
we simultaneously learn the unknown dynamics and its
Lyapunov function. This is similar in spirit to the idea from [5].
However, our update rule for training is different, as the
method from [5] does not apply to window-based prediction.
Specifically, instead of projecting the dynamics against the
learned Lyapunov function [5] to keep them consistent
with the Lyapunov condition, we propose to penalize the
inconsistency between the learned dynamics and Lyapunov
function in training.

II. PRELIMINARIES

We consider an unknown discrete-time system

x(t+ 1) = f(x(t)), (1)

where t ∈ N is the time, x ∈ Rn is the system state, and
f(·) is a Lipschitz continuous nonlinear function. For a given
initial state, we refer to the corresponding solution x(t) of (1)
as a trajectory of the system. The system (1) is a monotone
system, if it preserves some partial order � on Rn. Here we
consider a common partial order [6] defined as

x � y ⇐⇒ xi ≤ yi for all i ∈ [n], (2)

where [n] = {1, . . . , n}, x, y ∈ Rn, and xi, yi ∈ R denote
their i-th entry.

The system (1) is monotone on domain D ⊆ Rn if for any
two trajectories x1(t), x2(t) ∈ D, it holds that

x1(0) � x2(0) =⇒ x1(t) � x2(t) for all t ∈ N. (3)

The system (1) is monotone if and only if the function f is
monotonically non-decreasing in the common sense – i.e., if
for any two inputs x1, x2 ∈ Rn, it holds that x1 � x2 =⇒
f(x1) � f(x2).

Example 1: A scalar linear system x(t + 1) = ax(t) is
monotone on the domain [0,+∞) for any a ≥ 0, since for
any two initial states x1(0) ≤ x2(0), the two corresponding
trajectories satisfy x1(t) = atx1(0) ≤ atx2(0) = x2(t).
Therefore, the ordering between the initial states is preserved
during the evolution of two trajectories for all times t ∈ N.

It is important to highlight that the monotonicity is defined
for the (initial) state not for the time, as illustrated in
Figure 1. By Example 1, when a ∈ (0, 1), the trajectory
x(t) = atx(0) decreases with the time t; yet, the system is
still monotone with respect to the initial state x(0). In addition,
the monotonicity of the system (1) can be equivalently
characterized by the gradient of function f(x), as captured
in the following lemma from.

Lemma 1: [6] The system (1) is monotone if and only
if ∂f

∂xi
≥ 0 for each entry xi, (i = 1, ..., n) of x ∈ Rn.

Specially, if the system (1) is linear – i.e., f(x) = Ax for
some A ∈ Rn×n, then it is monotone if and only if each
entry Aij , (i, j ∈ [n]) of the matrix A satisfies that Aij ≥ 0.

The system (1) is globally asymptotically stable (or stable
for short), if it has a (discrete-time) Lyapunov function
V (x) [29]. Suppose that x = 0 is the stable point of the
system (i.e., f(0) = 0) in general, a stable point x0 can be
moved to 0 by substituting x with x− x0 in the system (1).
Then V (x) should satisfy the Lyapunov condition that

V (0) = 0 and ∀x 6= 0, V (x) > 0 and V (f(x))−V (x) < 0.
(4)

The Lyapunov function can be viewed as a ‘potential’
with zero value at the stable point and positive values
elsewhere. For stable systems, since the discrete Lie derivative
V (f(x)) − V (x) is negative, the (positive) value of the
Lyapunov function should decrease along the system path
so that it finally converges to zero at the stable point. For
monotone stable systems, the Lyapunov function can always
be written as the maximum of scalar functions [6]. That is,
there exist scalar functions Vi : R→ R such that

V (x) = max
i∈[n]

Vi(xi), for [n] = {1, . . . , n}. (5)

This provides a foundation for our technique to efficiently
learn the Lyapunov function of f̂ by FNNs.

III. MONOTONE NEURAL NETWORK

We introduce a window-based method to utilize FNNs
to learn the dynamics of the system (1). We show that this
method can reduce the learning error in general (Section III-
A), as well as how to impose the monotonicity and stability
constraints (Sections III-B and III-C, respectively). The proofs
are available in Appendix of [30].

A. Window-Based Learning Method

Conventionally, to learn the dynamics f of the system (1),
an FNN f̂θ parametrized by weights θ is trained to predict



the next state x(t + 1) from the current state x(t) [3], [4],
[5], i.e.,

x̂(t+ 1) = f̂θ(x(t)) ≈ x(t+ 1) = f(x(t)).

To improve the prediction accuracy, we propose a window-
based method. Specifically, the FNN f̂θ uses a q-window of
past states to predict the next state, i.e.,

x̂(t+ 1) = f̂θ(x(t), x(t− 1), . . . , x(t− q + 1))

≈ x(t+ 1) = f(x(t)).

Accordingly, the training loss of f̂θ for f is given by

Ex(·)∼ρ[‖x(t+ 1)− f̂θ(x(t), x(t− 1), . . . , x(t− q + 1))‖2],
(6)

where ρ is the state visitation distribution from a random
initial state x(0). In practice, the expectation in loss (6) is
substituted by the empirical training loss for a batch of N
given sample paths of the time horizon H , i.e.,

J(f̂θ) =
1

N

N∑
i=1

1

H − q − 1

H−1∑
t=q−1

∥∥xi(t+ 1)−

f̂θ(xi(t), xi(t− 1), . . . , xi(t− q + 1))
∥∥2
, (7)

where N is the batch size and xi(·) represents the state
obtained from the ith sample path for all i ∈ {1, ..., N}.

Admittedly by the dynamics f , the next state x(t+1) only
depends on the current state x(t). However, using past states
can still help training. The past state x(t− i) is related to the
next state x(t + 1) by x(t + 1) = f (i+1)x(t − i). Suppose
we start from training f̂θ by only using the dependency of
x(t+ 1) on x(t). By adding x(t− 1) to training, the FNN
f̂θ not only needs to fit the dependency of x(t+ 1) on x(t)
but also x(t + 1) on x(t − 1). This generally reduces the
prediction error when f̂θ is not exactly equal to f . By using
the window method, we force the FNN f̂θ not only fit with
1-step dependencies of states by also multi-step dependencies,
and hence improves the utility of sample trajectories.

B. Imposing the Monotonicity Constraints

Our method forces the input-output relation of each neuron
to be monotone so that the overall FNN is monotone by setting
the weights in the FNN to be nonnegative. We achieve this
by resetting the negative weights to zero, or to relatively
small random numbers that are close to zero, after each
backpropagation operation, as in the Dropout [31] method
that prevents deep neural networks from overfitting. We refer
to such NNs as nonnegative NNs.

We use the following rectified linear unit (ReLU) activation
functions

ϕ(x1, . . . , xd) = max
{∑
i∈[d]

θixi + θ0, 0
}

or min
{∑
i∈[d]

θixi + θ0, 0
}
, θ1, . . . , θd ≥ 0, (8)

where x1, ..., xd ∈ R are the inputs to the neurons, θ0

is the bias, and θ1, . . . θd are the weights of the inputs.

This is inspired by the use, in non-learning context, of
piecewise linear dynamics to approximate known nonlinear
dynamics [27]. Specifically, as ϕ is a piecewise linear function,
the FNN f̂θ using such activation functions is also piecewise
linear. Thus, it can serve as a piecewise linear approximation,
if trained to approximate the dynamics (1). Finally, the min-
ReLU activations in (8) are needed to allow for capturing
general nonlinear dynamics due to the following claim.

Claim 1: If an FNN f̂θ only has the max-ReLU activations
from (8), then f̂θ is convex.

Since the activations from (8) are monotone, the following
holds.

Theorem 1: An FNN using the activations from (8) is
monotone.

We note that the inverse of Theorem 1 may not be
necessarily true; i.e., a monotone NN can have negative
weights. For example, consider an NN with two hidden
layers, each containing a single-neuron. The output of the
first hidden layer is y1 = max{x1, 1} given its input x1. The
ReLU activation in the second hidden layer with a negative
weight, computes z1 = max{−y1, 1} from the output of
the first neuron y1. Yet, the NN is still monotone as the
output is always 1. In addition, the dynamics represented
by a monotone NN may decrease over time. For example,
consider the single-neuron network that computes x1(t+1) =
max{0.5x1(t), 1} from the input x1(t). For an initial state
x1(0) = 10, the corresponding trajectory is decreasing with
time t ∈ N.

Batch Normalization.: Imposing hard constraints on the
weights can lead to undesirable sub-optimal results in training,
as observed in [26]. Hence, instead of straightly imposing the
positive weight constraint θ0, . . . , θd ≥ 0 for the activations
(8), we propose to use batch normalization (BN) [32] to soften
the constraints and ensure the representation power of f̂θ.
This is because the BN parameters are allowed to converge
to optima defined in a broader search space if necessary but
can be trained to satisfy the weight constraints as well if
it is optimal to do so, although this may lead to tolerable
(minor) violations of the hard constraints as we will show in
the applications in Section IV.

C. Imposing Stability Constraints

When the system (1) of interest is stable, we introduce
the following learning method based on an optimization
framework [33] that learns f̂θ and V̂ξ iteratively. Recall that
the system is stable if and only if it has a Lyapunov function
V (x) in the form of (5). Here, we train an FNN V̂ξ(x) of the
form (5) to represent V (x). For a given f̂θ, we train V̂ξ(x)
by imposing the Lyapunov condition (4) via the following
expected loss

min
ξ

Ex(·)∼ρ

(
V̂ξ(0)2 +

[
− V̂ξ

(
x(t)

)]+
+
[
V̂ξ
(
f̂θ
(
x(t : t− q + 1)

))
− V̂ξ

(
x(t)

)]+)
, (9)

where the expectation Ex(·)∼ρ follows from (6). In (9), the
first term penalizes the non-zero value of V̂ξ(0), the second
term penalizes the negative values of V̂ξ(x), and the third term



penalizes the positive values of the discrete Lie derivative of
V̂ξ for f̂θ, as discussed in Section II. Effectively, our approach
can be viewed as a discrete-time version of the training loss
for the Lyapunov function from [4].

In practice, the expected loss of (9) is approximated by
the average of N sample paths of length H � q – i.e., to
impose the Lyapunov condition, while training FNN V̂ξ, we
utilize the loss function

min
ξ

1

N

N∑
i=1

1

H − q − 1

H−1∑
t=q−1

(
V̂ξ(0)2 +

[
− V̂ξ

(
xi(t)

)]+
+
[
V̂ξ
(
f̂θ
(
xi(t : t− q + 1)

))
− V̂ξ

(
xi(t)

)]+)
. (10)

Similarly, for a given V̂ξ , we train f̂θ by incorporating the
Lyapunov condition (4) into the training loss of (6)

min
θ

Ex(·)∼ρ

(∥∥f(x(t))− f̂θ(x(t : t− q + 1))
∥∥2

+
[
V̂ξ
(
f̂θ
(
xi(t : t− q + 1)

))
− V̂ξ(x)

]+)
. (11)

Here, the first term penalizes the difference in predicting
the next state between f̂θ and f from (1); the second term
penalizes the positive values of the discrete Lie derivative of
V̂ξ for f̂θ, equivalent to the third term of (10). The first two
terms of (10) are not included, as they are independent of f̂θ.

As done for (10), in practice we approximate the expected
loss in (11) by using the sample average

min
θ

1

N

N∑
i=1

1

H − q − 1

H−1∑
t=q−1(∥∥f(xi(t))− f̂θ(xi(t : t− q + 1))

∥∥2

+
[
V̂ξ
(
f̂θ
(
xi(t : t− q + 1)

))
− V̂ξ

(
xi(t)

)]+)
.

(12)

To train f̂θ by (12), we also impose the monotonicity
constraints using the method from Sec. III-B.

IV. CASE STUDIES

To evaluate the effectiveness of our techniques, we consider
two high-dimensional complex nonlinear dynamical systems
that are monotone due to their physical properties.

A. Lotka-Volterra (LV) Model.
We start with the LV model that describes the interaction of

two cooperative groups (e.g., the males and the females of the
same specie) occupying an environment of n discrete patches.
For the group k ∈ {0, 1}, let xik(t) ≥ 0 be the populations
of the group k in the ith patch at time t ∈ N. The rate of
migration from the jth patch to the ith patch is ajikxik(t)
with ajik ≥ 0. At the patch i, the death rate is bikxik(t),
with bik ≥ 0; and the reproduction rate is cikxik(t)xik̄(t),
with cik ≥ 0, where we make the convention that k̄ = (k+1)
mod 2. Thus, for a discrete-time step τ > 0, the change of
the populations of the two groups at the ith patch is given by

xik(t+ 1) = xik(t) + τ
(
cikxik(t)xik̄(t)

− bikxik(t) +
∑

j∈[n]\{i}
ajik

(
xjk(t)− xik(t)

))
. (13)

The LV model is monotone on the positive orthant – if the
population xik(t) suddenly increases at time t for some i
and k (e.g., adding new individuals from the outside), then
the growth rate of all other populations will not decrease;
thus, their populations only increase from the increment of
xik(t). To ensure that the time discretization in (13) faithfully
captures this monotonicity property, the time step τ should
satisfy τ < 1/maxk∈{1,2}maxi∈[n]

(
bik +

∑
j∈[n]\{i} ajik

)
for the system (13) to be monotone.

B. Biochemical Control Circuit (BCC) Model.

We also consider the BCC model describing the process
of synthesizing a protein from segments of mRNA E0 in a
cell, through a chain of enzymes E1, ..., En, where En is
the end product. Let x0(t) ≥ 0 be the cellular concentration
of mRNA, xi(t) ≥ 0 be the concentration of the enzyme i
for i ∈ [n] at time t. For each i ∈ [n], the chemical reaction
αiEi−1 → Ei is assumed to happen with unit rate, where
αi > 0. In addition, the end product stimulates the creation
of the mRNA by the rate (xpn(t) + 1)/(xpn(t) +K) for some
K > 1, and p ∈ N. For a discrete-time step τ > 0, the
change of the concentration of the enzyme i is given by

x0(t+ 1) = x0(t) + τ
( xpn(t) + 1

xpn(t) +K
− α1x1(t)

)
;

xi(t+ 1) = xi(t) + τ
(
xi−1(t)− αixi(t)

)
.

(14)

The BCC model is monotone in the positive orthant since
if the concentration of the enzyme i increases with the
concentration of the enzyme i+ 1. To ensure that the time
discretization in (14) does not violate this monotonicity
property, the time step τ should satisfy τ < 1/maxi∈[n] αi
for the system (14) to satisfy Lemma 1, i.e., to be monotone.

C. Evaluation.

We set n = 10 in (13) for the LV model and n = 20 in (14)
for the BCC model, so the dimensions of the system states are
20 and 21, respectively. The training data are drawn from the
system with a random set of initial states x(0). More details
on the selection of system constants, FNN architectures, and
training hyper-parameters are provided in Appendix B of [30].

We compare the performance when training the FNNs with
(I) the proposed loss (12) that enforces both monotonicity and
stability conditions, against (II) monotonicity loss (7) only
(which does not ensure stability), and (III) mean-square loss
only (i.e., neither monotonicity nor Lyapunov conditions are
considered). We test the FNNs by iteratively predicting the
system state T time steps (specifically T = 1500, 2500, 3500)
after a given initial q-window of states that are not contained
in the training data and then compare with the ground truth.
In all cases, the FNN is trained for different windows sizes
(specifically q = 1, 100). The normalized `2-norm errors,
defined by the ratio of the `2-norm of the prediction error to
the `2-norm of the ground truth, are summarized in Table I.
The column headers “monotone and Lyapunov”, “monotone
only” and “baseline” refer to training with the methods (I),
(II), and (III) specified above.



TABLE I: Normalized `2-norm of Errors in Approximated Trajectories

Monotone & Lyapunov Monotone Only Baseline
LV Model

Total Steps\Window 100 1 100 1 100 1
1500 0.1063 0.0514 0.1184 0.5114 0.1578 0.5700
2500 0.1070 0.0886 0.1262 0.9383 0.1628 1.0302
3500 0.1070 0.0966 0.1616 1.2983 0.1970 1.4143

BCC Model
Total Steps\Window 100 1 100 1 100 1

1500 0.0359 0.2169 0.0397 0.2663 0.0376 1.6004
2500 0.0334 0.3878 0.0856 0.4514 0.0349 1.9314
3500 0.0330 0.5543 0.1746 0.6290 0.0377 2.2409

The predicted trajectories for a subset of the states for the
two case studies are shown in Figures 3(a) and 4(a), whereas
the results for all states are provided in Appendix D of
[30]. Imposing either the monotonicity or stability constraints
reduces the prediction errors, and imposing both brings down
the error even further. In addition, when the stability constraint
is imposed (method (I)), the trained FNN becomes much
more stable, which significantly reduces the prediction errors
for long time horizons. Also, Table I shows using a longer
window results in more accurate predictions of future states
– the normalized `2-norm of the prediction errors for the
window size q = 100 is generally much smaller than that
for the window size q = 1. In addition, the prediction errors
ramp up much slower for q = 100 than q = 1 over long time
horizons.

To validate the monotonicity of the trained FNNs, we show
in Figures 3(b) and 4(b) the x(t+ 1) against x(t) relations
for the first 250 steps for a selection of the dimensions of the
states. The figures for all dimensions are given in Appendix
D of [30]. The monotonicity condition is better satisfied when
the monotonicity constraint is imposed in the training loss
(in method (I) and (II)), despite the occasional violations due
to the batch normalization. Besides, imposing the stability
constraint (method (I)) generally does not worsen the violation
of monotonicity.

V. CONCLUSION

We introduced a window-based method to learn the dynam-
ics of unknown nonlinear monotone and stable dynamical
systems. We employed feedforward neural networks (FNNs)
and captured the system’s physical properties by imposing
the corresponding monotonicity and stability constraints
during training. On two high-dimensional complex nonlinear
systems (biological and chemical), we showed that the
combination of the monotonicity and stability constraints
enforces both properties on the learned dynamics while
significantly reducing learning errors.

REFERENCES

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning,
2016.

[2] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner,
B. Upcroft, P. Abbeel, W. Burgard, M. Milford et al., “The limits and
potentials of deep learning for robotics,” The International Journal of
Robotics Research, vol. 37, no. 4-5, pp. 405–420, 2018.

[3] S. M. Richards, F. Berkenkamp, and A. Krause, “The Lyapunov neural
network: Adaptive stability certification for safe learning of dynamical
systems,” in Proceedings of The 2nd Conference on Robot Learning,
2018, pp. 466–476.

[4] Y.-C. Chang, N. Roohi, and S. Gao, “Neural Lyapunov control,” in
Advances in Neural Information Processing Systems 32, 2019, pp.
3240–3249.

[5] J. Z. Kolter and G. Manek, “Learning stable deep dynamics models,”
in Advances in Neural Information Processing Systems, 2019, pp.
11 126–11 134.

[6] H. Smith, Monotone Dynamical Systems: An Introduction to the Theory
of Competitive and Cooperative Systems, 2008, vol. 41.

[7] S. Coogan and M. Arcak, “Efficient finite abstraction of mixed mono-
tone systems,” in Proceedings of the 18th International Conference
on Hybrid Systems Computation and Control - HSCC ’15, 2015, pp.
58–67.

[8] P. D. Leenheer, D. Angeli, and E. D. Sontag, “Monotone chemical
reaction networks,” Journal of Mathematical Chemistry, vol. 41, no. 3,
pp. 295–314, 2007.

[9] R. F. Costantino, J. M. Cushing, B. Dennis, and R. A. Desharnais,
“Experimentally induced transitions in the dynamic behaviour of insect
populations,” Nature, vol. 375, no. 6528, pp. 227–230, 1995.

[10] H. Mukarjee and S. Stern, “Feasible nonparametric estimation of
multiargument monotone functions,” Journal of the American Statistical
Association, vol. 89, no. 425, pp. 77–80, 1994.

[11] A. Ben-David, “Monotonicity maintenance in information-theoretic
machine learning algorithms,” Machine Learning, vol. 19, no. 1, pp.
29–43, 1995.

[12] K. Neumann, M. Rolf, and J. J. Steil, “Reliable integration of continuous
constraints into extreme learning machines,” International Journal of
Uncertainty, Fuzziness and Knowledge Based Systems, vol. 21, no.
supp02, pp. 35–50, 2013.

[13] F. Dondelinger, D. Husmeier, S. Rogers, and M. Filippone, “ODE
parameter inference using adaptive gradient matching with Gaussian
processes,” in Artificial Intelligence and Statistics, 2013, pp. 216–228.

[14] B. Calderhead, M. Girolami, and N. Lawrence, “Accelerating bayesian
inference over nonlinear differential equations with Gaussian processes,”
Advances in neural information processing systems, vol. 21, pp. 217–
224, 2008.

[15] J. Riihimäki and A. Vehtari, “Gaussian processes with monotonicity
information,” in Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, 2010, pp. 645–652.

[16] M. Lorenzi and M. Filippone, “Constraining the dynamics of deep
probabilistic models,” arXiv preprint arXiv:1802.05680, 2018.

[17] A. Gupta, N. Shukla, L. Marla, A. Kolbeinsson, and K. Yellepeddi,
“How to incorporate monotonicity in deep networks while preserving
flexibility?” arXiv:1909.10662 [cs], 2019.

[18] J. Sill and Y. S. Abu-Mostafa, “Monotonicity hints,” in Advances in
Neural Information Processing Systems 9, 1997, pp. 634–640.

[19] X. Liu, X. Han, N. Zhang, and Q. Liu, “Certified monotonic neural
networks,” Advances in Neural Information Processing Systems, vol. 33,
pp. 15 427–15 438, 2020.

[20] A. Wehenkel and G. Louppe, “Unconstrained monotonic neural
networks,” in Advances in Neural Information Processing Systems,
2019, pp. 1543–1553.

[21] N. P. Archer and S. Wang, “Application of the back propagation
neural network algorithm with monotonicity constraints for two-group
classification problems,” Decision Sciences, vol. 24, no. 1, pp. 60–75,
1993.



Fig. 3: (a) Predicted trajectories of the LV model using 100-window up to 3500 time steps; (b) The x(t+1)-x(t) relation of the predicted
LV model trajectory up to 250 time steps.

Fig. 4: (a) Predicted trajectories of the LV model using 100-window up to 3500 time steps; (b) The x(t+1)-x(t) relation of the predicted
LV model trajectory up to 250 time steps.

[22] H. Daniels and M. Velikova, “Monotone and partially monotone neural
networks,” IEEE Transactions on Neural Networks, vol. 21, no. 6, pp.
906–917, 2010.

[23] M. Gupta, A. Cotter, J. Pfeifer, K. Voevodski, K. Canini, A. Mangylov,
W. Moczydlowski, and A. van Esbroeck, “Monotonic calibrated
interpolated look-up tables,” p. 47, 2016.

[24] J. Sill, “Monotonic networks,” in Advances in Neural Information
Processing Systems, 1998, pp. 661–667.

[25] S. You, D. Ding, K. Canini, J. Pfeifer, and M. Gupta, “Deep lattice
networks and partial monotonic functions,” in Advances in Neural
Information Processing Systems 30, 2017, pp. 2981–2989.

[26] P. Márquez-Neila, M. Salzmann, and P. Fua, “Imposing hard con-
straints on deep networks: Promises and limitations,” arXiv preprint
arXiv:1706.02025, 2017.

[27] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Taylor model
flowpipe construction for non-linear hybrid systems,” in 2012 IEEE
33rd Real-Time Systems Symposium, 2012, pp. 183–192.

[28] S. Liang and R. Srikant, “Why deep neural networks for function
approximation?” in The 5th International Conference on Learning
Representations, 2017.

[29] H. K. Khalil, Nonlinear Systems, 3rd ed., 2002.
[30] Y. Wang, Q. Gao, and M. Pajic, “Deep learning for stable monotone

dynamical systems,” Tech. Rep., 2021.
[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” The journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[32] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[33] J. C. Bezdek and R. J. Hathaway, “Convergence of alternating
optimization,” Neural, Parallel & Scientific Computations, vol. 11,
no. 4, pp. 351–368, 2003.


	I Introduction
	II Preliminaries
	III Monotone Neural Network
	III-A Window-Based Learning Method
	III-B Imposing the Monotonicity Constraints
	III-C Imposing Stability Constraints

	IV Case Studies
	IV-A Lotka-Volterra (LV) Model.
	IV-B Biochemical Control Circuit (BCC) Model.
	IV-C Evaluation.

	V Conclusion
	References

