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Abstract— Connectivity-enabled automation of distributed
control systems allow for better anticipation of system distur-
bances and better prediction of the effects of actuator limita-
tions on individual agents when incorporating a model. Auto-
mated convoy of heavy-duty trucks in the form of platooning is
one such application designed to maintain close gaps between
trucks to exploit drafting benefits and improve fuel economy,
and has traditionally been handled with classically-designed
connected and adaptive cruise control (CACC). This paper
is motivated by demonstrated limitations of such a control
strategy, in which a classical CACC was unable to efficiently
handle real-world road grade and velocity transient distur-
bances without the assistance of fleet operator intervention,
and is non-adaptive to varied hardware and loading conditions
of the operating truck. This automation strategy is addressed
by forming a cooperative model predictive control (MPC) for
eco-platooning that considers interactions with trailing trucks
to incentivize platoon harmonization under road disturbances,
velocity transients, and engine limitations, and further improves
energy economy by reducing unnecessary engine effort. This
is accomplished for each truck by sharing load, maximum
engine power, transmission ratios, control states, and intended
trajectories with its nearest neighbors. The performance of the
considerate and cooperative strategy was demonstrated on a
real-world driving scenario against a similar non-considerate
control strategy, and overall it was found that the considerate
strategy significantly improved harmonization between the
platooned trucks in a real-time implementable manner.

I. INTRODUCTION

CACC approaches have been shown effective in passenger
vehicles to both improve traffic capacity and road efficiency
[1], and to improve fuel economy through system-wide traffic
harmonization effects and reduction of braking [2]. Overall,
network connectivity has been shown essential to boost
cooperation of automated agents on the road and promote
positive vehicle-to-vehicle (V2V) interactions for a mutual
benefit [3].

Specifically in the context of truck platooning - in which
heavy-duty trucks are driven in tight formations to exploit
drafting benefits and improve fuel economy from reduced
aerodynamic drag and consequently engine demand - there is
a need for introducing advanced motion planning strategies
to consistently achieve robust and optimal performance. A
classical CACC controller is experimented on in [4] for a 3-
truck platoon and is demonstrably effective in reducing fuel
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Fig. 1: Bi-directional connected and cooperative heteroge-
neous truck platoon.

consumption under a closed-loop test track. However, ex-
perimental performance of classical CACC platooning under
real-world conditions is further studied in [5] when tasked to
compensate for real-world driving conditions including road
grade and traffic cycles. The real-world test results in this
study expose some problematic performance in traditional
CACC approaches when under heavy disturbances that are
not properly compensated, and can completely remove the
benefits of platooning a truck convoy. By this, under typical
real-world driving conditions with traffic, heavy road grade,
and heterogeneous loading conditions, platooning systems
require advanced motion planning techniques over traditional
methods to compensate. Figure 1 displays trucks of het-
erogeneous makeup arranged into a connected platooning
configuration.

Look-ahead predictive control, in particular, is a desirable
choice for motion planning strategies to optimally guide
a system subject to explicit performance criteria and con-
straints. Actuation limitations and dynamics of a system
are accounted for using a model, and ultimately influence
the set of states that are reachable in a finite amount of
time when possibly subject to counter-acting disturbances
[6]. Interactions against other agents in particular rely on
anticipating their motion, and rely on an educated prediction
unless direct communications are available. Distributed MPC
can form a joint optimization problem between the ego agent
and other agents, such as the approach proposed in [7], that
considers a model of surrounding agents directly in the ego
agent optimization to aid in prediction. Other agents are
similarly considered in [8] during optimization for a vehicle
platoon, and their control actions are constrained to follow
a group-expected behavior. For vehicle platoon formation
and motion planning, a one-way communication strategy is
shown in [9] to stabilize.

Anticipative motion planning in automated driving has
already been shown to significantly boost performance. Eco-
platooning approaches have been previously proposed in
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Fig. 2: Experimental test data excerpted from a CACC-
enabled platooned truck in a fleet [5]. The highlighted yellow
region indicates a change to uphill operation where an
up-shifted gear leads to reduced ego climbing ability and
increased gap error; and eventually disengagement of the
CACC - indicated by the red region and discontinuous jump
in gap signal. Operator ∆(·) indicates difference in ego truck
quantity subtracted by preceding truck quantity.

model-based frameworks utilizing a communication network
for guaranteed collision-avoidance in passenger vehicles
[10], for improved energy economy by cutting unnecessary
braking [11], and to exploit drafting effects for reduced
coefficient of drag in heavy trucks [12]. Vehicle awareness
can be sourced from manually-driven vehicles for passive
connectivity as well, and has been shown to further aid in
predicting upcoming traffic disturbances [13]. In the motion
planning of automated trucks for improved fuel economy,
fuel-optimal trajectories are analytically derived in [14] to
guide a heavy truck through a road profile and nominal
traffic disturbance, whereas [15] implement a numerical fuel-
optimal strategy for the motion of a heavy truck during
experimentation.

II. PROBLEM MOTIVATION

This paper is motivated by recent experimental results ob-
served on the highway when engaging a classically-designed
CACC for platooning trucks [5]. In this, several freight trucks

of same mass and hardware specifications were deployed in
a platooning configuration to travel a route with expected
road grade and traffic conditions for heavy-duty long-haul
truck applications. The CACC was designed to closely track
desired intervehicle gaps to enable safe operation (see, for
example, [4], [16]). However, Figure 2 illustrates a data
excerpt exposing some problematic control performance of
the CACC when under transients in preceding truck speed,
and when under a disturbance combination of 1) heavy grade
and 2) an up-shifted gear from the automatic transmission
compared to the preceding truck. The up-shifted gear reduced
the ratio of torque applied at the wheel and thus reduced
its grade-climbing and acceleration capabilities. Ultimately,
despite maximizing allowable engine torque, the ego truck
cannot maintain its platoon with its leader, and the CACC
becomes disengaged. Furthermore, the platoon can be diffi-
cult and inefficient to re-form by expending fuel to accelerate
and close the gaps between trucks, or when in the presence
of surrounding traffic due to allowing cut-ins that need to be
maneuvered around.

The scenario shown in Figure 2 is a difficult, albeit not
uncommon, one when managing a fleet. In it, the ego truck
maximized its engine effort and was not able to keep up
with the preceding truck. In fact, the demonstrated scenario
was a special case in which the deployed trucks in the
fleet had the same mass and hardware specifications, and
therefore same propulsive capabilities, but were still subject
to gap-tracking issues in highway conditions. In sight of this,
we propose that with autonomy-enabled platooning, a more
cooperative strategy is needed from leading trucks to assist
in maintaining platoon compactness and stability, which we
refer to as consideration.

This paper proposes the design of a model-based pre-
dictive controller for the longitudinal motion planning re-
quired in real-world roads with traffic and road grade. To
compensate for propulsive differences that can arise from a
variety of conditions including 1) asynchronous gearing, 2)
heterogeneous loading conditions, and 3) differing power-
train capabilities, a cooperative and distributed model pre-
dictive controller is proposed that solves a joint optimization
problem considering itself and its trailing truck. In doing so,
the ego truck selects actions for itself to be applied in a
receding horizon fashion, as well as aids its own prediction
by computing suggested actions for its trailing truck that are
communicated but not applied.

III. PLATOON MODELING

A longitudinal simulation model of the platoon dynamics
is developed and verified against empirically gathered data
considering 1) powertrain slew rate constraints that limit
abrupt changes in input power, 2) engine torque conversion
through a gearbox to applied force at the wheel, 3) the
slipstream effects that reduce aerodynamic friction when fol-
lowing behind a tractor-trailer truck, and 4) fuel consumption
based on engine torque τ and engine speed ω [17].

Unifying force at the wheel kinetics are used to predict
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Fig. 3: Platooning drag reduction benefit by inter-vehicle
gaps experimentally identified under test track conditions.

the longitudinal response of the truck

me(̂ı)v̇ = F − Fa(d)− Fr(s) (1)

where F = mat is the applied tractive force at the wheel,
m is the total truck mass, at is applied tractive acceleration,
and me(̂ı) is effective inertial mass of the truck considering
rotating components with the current gear ı̂.

The longitudinal aerodynamic drag force Fa when subject
to no external wind is expressed as a function of vehicle
speed v and possibly a function of inter-vehicle gap d if
following behind another truck:

Fa(d) =

{
1
2ρAfCDβ(d)v2 d ∈ [0, 110] following a truck
1
2ρAfCDv

2 otherwise
(2)

where ρ is the density of air, Af is the effective frontal
surface area of the truck, CD is the nominal drag coefficient,
and β(d) is a drag reduction function. This drag reduction
is empirically available and can be expressed as in Figure 3.

Similarly, the longitudinal rolling forces Fr are expressed
as a function of road grade α that varies with position s:

Fr(s) = mg (Cr cosα(s) + sinα(s)) (3)

where g is the gravitational constant and Cr is the rolling
resistance. Sparse preview of upcoming road grade is readily
available from infrastructure-connected technology, and to
treat this, a Legendre polynomial series is fit in a least-
squares fashion to develop a form for the road grade.

α(`) ≈
3∑
j=0

cjPj(`), ` ∈ [−1, 1] (4)

Here, ` is a linearly-mapped variable of the position
interval available within a preview horizon s ∈ [0, s+] 7→
[−1, 1], c is a fitting coefficient, and Pj is the Legendre
polynomial of the j-th kind.

Vehicle propulsion through wheel force F is proportion-
ally related to applied engine torque τ by a gearbox reduction

F =
τw
rw

= τ
η(̂ı)̂ıf ı̂r (̂ı)

rw

where τw is the torque at the wheel, rw is the wheel radius,
ı̂ is the current gear, η is the conversion efficiency, ı̂f is the
final drive ratio, and ı̂r is the current gear ratio.

It follows that maximum force at the wheel from the
engine F is expressed by the maximum engine torque τ

|F | ≤ F (̂ı) = τ
η(̂ı)̂ıf ı̂r (̂ı)

rw
(5)

and also, the force at the wheel is limited by the maximum
engine power P in an isometric, non-convex fashion

Fv ≤ P (6)

Finally, engine torque slew is limited by a possibly dis-
continuous function

τ̇ ≤ g(ω, τ),

and for the purposes of control modeling can be approxi-
mated by a lag equation. Choosing a first-order lag equation
with time-constant τd, the tractive acceleration command u
affects the currently applied tractive acceleration at by

τdȧt + at = u (7)

The state vector is then expressed as

x(t) =
[
s(t) v(t) at(t)

]ᵀ
and so the state-space model follows as

ẋ = f(x, u, w)

=


v

1

me(̂ı)

(
mat − Fa(d)− Fr (s)

)
τ−1d (u− at)

 (8)

with the admissible control set U formed by the relations (5)
and (6).

IV. CONSIDERATE MODEL PREDICTIVE CONTROL

Section II identified challenges in automation and de-
ployment for truck platooning on real roads when using
traditional classes of control. In particular, transient operation
under highway conditions was identified to lead to dissolu-
tion of the platoon - stemming from heavy road grade and
heterogeneous loading and hardware conditions [5].

In response to these experimentally observed challenges
in truck platooning in real-world driving conditions, further
considerate motion planning strategies are proposed to com-
pensate and assist less-capable trucks. The goals of such
strategies are to take actions to 1) maintain platoonable gaps
during highway operation, 2) improve velocity synchroniza-
tion between platooned trucks, 3) reduce disengagements of
automated longitudinal control to reduce driver intervention,
and 4) improve fuel economy of the total platoon.

The strategy relies on a bi-directional communication
topology as illustrated in Figure 1 - in which truck k receives
necessary control parameters from truck k + 1 behind it:
current gear ı̂(k+1); current gap, velocity, and traction for
state x(k+1); mass m(k+1); and engine power and torque
limitations P

(k+1)
. Truck k solves a distributed motion



planning problem for itself that considers the truck behind
it, in which it takes actions to: regulate their combined
control efforts, help truck k + 1 maintain its desired gap,
and, if it is the leader of the platoon, track a target desired
velocity. Solving the combined motion planning problem aids
in predicting the response the ego can take that benefits both
trucks. Truck k then broadcasts its planned forward positions
Sr and suggested control actions Ur for truck k+1 to follow
as a reference for its own motion planning, which serve as
a soft level of compliance so that each following truck is
behaving as expected by others in the platoon [8].

The cost for a truck k is expressed as the following, where
superscript parenthetic terms indicate logic for position-in-
the-platoon-dependent quantities (a term (k|k = 1) applies if
an ego truck is the leader of the platoon, for example)

J (k) = qt

(
sf − s(k)N

tf − tN
− v(k)N

)2

+

N−1∑
i=0

[
qu

(
u
(k)
i

)2
+ qv

(
(vi − ν)(k|k=1)

)2
+ qd

(
(di − Tvi)(k|k>1)

)2
+ qc

(
(ui − µi)(k|k>1)

)2 ]
+ qεε

(k)

Here, i indicates the stage of the control problem with
N total stages, ε is a slack decision variable used to soften
the gap constraint, µi ∈ Ur is the stage-dependent control
action as suggested from the preceding truck, ν is the in-
horizon velocity reference, d , s(k−1) − L(k−1) − s(k)

is the intervehicle gap considering the length L of the
preceding truck and with s(k−1) ∈ Sr available from vehicle
connectivity, and T is a desired following headway time.
A reference terminal speed is added that tracks an average
velocity needed to reach the remaining distance-to-go in the
trip sf − sN in the remaining desired time-to-go tf − tN
at the end of the horizon. Variables q indicate weightings
between each term in the performance metric.

State constraints are additionally imposed to handle safety
and enforce road laws. The velocity is limited to prevent
reversing and excessive speeding, and gap is constrained to
avoid getting too close to the preceding vehicle.

0 ≤ v(k)i + ε
(k)
1 ≤ v

d ≤ d(k)i + ε
(k)
2

(9)

Equations (9) then form the admissible states X for truck k.
In summary, each truck k ∈ 1, . . . ,K − 1 solves a

considerate motion planning problem as in the following

minimize
U (k), U (k+1)

J (k) + J (k+1)

subject to ẋ(k) = f
(
x(k), u(k), w(k)

)
ẋ(k+1) = f

(
x(k), x(k+1), u(k+1), w(k+1)

)
u(k) ∈ U (k), x(k) ∈ X (k)

u(k+1) ∈ U (k+1), x(k+1) ∈ X (k+1)

applying the first action in U (k) only. Similarly, the final
truck in the platoon k = K solves an optimization for itself.

minimize
U (k)

J (k)

subject to ẋ(k) = f
(
x(k), u(k), w(k)

)
u(k) ∈ U (k), x(k) ∈ X (k)

Finally, an anticipative variant of the control strategy is
designated for trucks k ∈ 1, . . . ,K in which the previous
optimization is solved with additionally the compliance
weight qc = 0. This control strategy has been previously
studied in [18] against a flat road, and is already a significant
improvement in fuel performance over a non-anticipative
strategy due to reduced engine demand.

Each optimization results in a non-convex non-linear pro-
gram that must be solved to an optima local to a supplied
initial guess. The Forces Pro solver is used with Casadi
to generate efficient C code to solve the problem [19], [20].
For the considerate optimization with N = 22 and 10 inter-
stage integration nodes, the problem solves in 25 ms on
average with a maximum solution time of 60 ms on a 4-
core 2.8 GHz processor. The anticipative strategy solved in
12 ms on average with a maximum solution time of 40 ms.

V. RESULTS

A 3-truck platoon of varied loading conditions is con-
structed and simulated to demonstrate controller perfor-
mance. The considerate controller (C) and anticipative con-
troller (A) variants are both first demonstrated on a nominal
S-Road shaped profile of a heavy downhill and heavy uphill
section of road, where the leading truck is at an unloaded
mass of 14 t and the two trailing trucks are at a heavy loaded
mass of 38 t.

Figure 4 indicates time taken to reach a given position
along the road for the first and last trucks in the platoon
for each controller. Although the anticipative leading truck
finishes the route sooner, it breaks away from the heavier,
slower trucks and dissolves the platoon. However, the con-
siderate strategy maintained the platoon for the entire route
and finished in a similar time to the trailing trucks of the A
strategy.

Figure 5 then examines the performance of the trucks k =
1 and k = 2 for the considerate strategy. Here it can be seen
that the leading truck throttles down its speed during the
uphill portion as a necessary method to maintain a close gap
with the truck behind it, and thereby behaves similar to as
if it were a heavier truck. As in the motivating experimental
scenario shown in Figure 2, the trailing truck k = 2 is seen
here to maximize its engine to its capabilities during the
uphill portion, and so is at the limit of its climbing ability
and requires the assistance of k = 1 to remain near its target
gap.

The 3-truck platoon is then simulated on the 70 km stretch
of U.S. highway travelling from Lanesville, IN to Siberia, IN
for a nominal model of road grade conditions for heavy-duty
long-haul truck applications [21]. A batch of scenarios is
generated where each truck is loaded with a mass sampled
from m ∈ {14, 22, 30, 38}t and all possible permutations
of truck orderings with these loadings are simulated (24
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Fig. 4: First and last trucks of the heterogeneous platoon
travelling through the S-Road profile. The considerate (C)
MPC maintains the platoon, whereas the anticipative (A)
MPC does not maintain the platoon.
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Fig. 5: Performance of the considerate strategy for the
heterogeneous platoon over the S-Road profile. The front
truck (1) is lighter loaded and so drops its velocity uphill to
accommodate the heavier following truck (2).
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Fig. 6: Excerpt of Lanesville-Siberia route [21]. Considerate
MPC (blue, solid) improved harmonization between the
trucks and reduced transients compared to the anticipative
MPC (red, dashed). Operator ∆(·) indicates difference in
ego truck quantity subtracted by preceding truck quantity.

total simulations). As before, the considerate and anticipative
MPC variants are used to guide the platoon through the route.

Figure 6 depicts an excerpt of the route for the final truck
in the platoon when loaded with the first-to-last configu-
ration {30, 38, 38}t. It is seen that the considerate control
improved velocity harmonization between trucks, and as a
result better improved the harmonization between selected
gears as determined by the automatic transmission. Gap
tracking performance was similarly steadied in contrast to
the anticipative strategy during the uphill portion of the road
segment, despite that the engine torque is maximized.

Finally, the mean results - with one standard deviation



TABLE I: Performance of the considerate MPC.

k Fuel [kg/100km] Headway [s] Gap RMSE [m] Diseng. [-]

1 5.16 (0.29) - - -
2 4.90 (0.28) 0.72 (0.01) 1.25 (0.17) 0
3 4.87 (0.25) 0.68 (0.01) 4.60 (0.25) 0

TABLE II: Performance of the anticipative MPC.

k Fuel [kg/100km] Headway [s] Gap RMSE [m] Diseng. [-]

1 5.12 (0.26) - - -
2 5.03 (0.41) 1.40 (0.14) 276.7 (43.1) 0.50 (0.5)
3 5.05 (0.38) 0.94 (0.41) 36.09 (46.5) 0.38 (0.5)

denoted as (·) - of the batch simulations on the route
are summarized in Tables I and II for the considerate and
anticipative variants, respectively. Travel time and distance
travelled are the same in all cases. For this route, the A-MPC
strategy still performed well in terms of fuel performance
and is a known improvement over classical CACC due to
reduced engine demand [18], but similarly to the CACC
shown in Section II, exhibits large velocity transients, poor
harmonization, and is prone to disengagement that requires
operator intervention in nearly half of the scenarios. Over-
all, the C-MPC had greatly consistent performance with
its low standard deviations in each metric and significant
improvements to root-mean-square-error (RMSE) in target
gap tracking from the preceding truck, as well as a moderate
1.8% improvement in fuel economy for the entire platoon.

VI. CONCLUSION

This paper developed a distributed model predictive con-
trol that is considerate of interacting agents to address
experimentally evaluated limitations in heavy-duty truck
platooning if deploying a classically designed CACC, in
which we propose that assistance is needed from leader
trucks in the platoon to maintain stability under the presence
of disturbances and actuator limitations. The MPC forms
an optimization of the ego truck that is considerate of its
follower to determine a sequence of actions it can take
that benefit both trucks. The considerate controller was then
tasked to drive a multi-truck platoon through a nominal-
shaped corridor and a corridor based on a U.S highway,
and its performance was compared against a non-considerate
variant of the controller. Overall, it was found that the consid-
erate strategy significantly improved harmonization between
the platooned trucks without harming real-time feasibility.
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