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Abstract— This work addresses the problem of risk-sensitive
control for nonlinear systems with imperfect state observations,
extending results for the linear case. In particular, we derive an
algorithm that can compute local solutions with computational
complexity similar to the iterative linear quadratic regulator al-
gorithm. The proposed algorithm introduces feasibility gaps to
allow the initialization with non-feasible trajectories. Moreover,
an approximation for the expectation of the general nonlinear
cost is proposed to enable an iterative line search solution to the
planning problem. The optimal estimator is also derived along
with the controls minimizing the general stochastic nonlinear
cost. Finally extensive simulations are carried out to show
the increased robustness the proposed framework provides
when compared to the risk neutral iLQG counter part. To
the authors’ best knowledge, this is the first algorithm that
computes risk aware optimal controls that are a function of
both the process noise and measurement uncertainty.

I. INTRODUCTION

Recently there has been an increased interest in computing
optimal decisions that reason not only about the mean of a
certain outcome or cost [1], [2] but also about the higher
order statistics of the problem. A particular class of such
algorithms is known as risk sensitive optimal control, which
takes into account the variability of a certain cost and
is concerned with the infrequent occurrences of undesired
events besides the frequent most common outcomes. Risk
sensitive problems have been widely used in economics [3],
[4] and have recently gained popularity in robotics [5], [6]
and reinforcement learning [7].

In linear quadratic Gaussian (LQG) control [8], the expec-
tation of a quadratic cost function E [L] is minimized over
the decision variables. The main result in LQG theory, is that
the optimal control is the same as that of the deterministic
linear quadratic regulator (LQR) case. This is not the case
anymore in the linear risk-sensitive control case with noisy
measurements.

The risk-sensitive optimal control problem of interest in
this paper was introduced by Jacobson [9] which instead
minimizes the cost

J = −σ−1 lnE
[
e−σL

]
(1)

where σ is a scalar whose role will become clear later. Under
this particular transformation, and in the limit as σ → 0 this
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transformed cost can be approximated as

J ≈ E [L]− σ

2
V ar [L] + . . . (2)

where . . . contains terms that are functions of higher order
moments of L. For σ < 0 (risk-averse case) the variability
of the original cost L contributes positively to the newly
transformed cost, thus an optimizer will seek a solution
reducing the variability of the original cost and minimizing
the possibility of infrequent events occurring. The opposite
is true for the case of σ > 0 (risk-seeking case). Other
forms of risk sensitivity have been studied [10], [11] and
will not be considered in this paper. The solution for the
stochastic optimal control problem under the exponential
transformation given linear process model with additive
Gaussian noise and a quadratic cost which we shall denote
LQEG was derived by Jacobson [9].

The case with noisy measurements (and no direct access
to the state) was studied in Speyer [12], who introduced
a solution that grows with the history of observations for
linear process and measurement models. The problem involv-
ing linear process and measurement models was eventually
solved satisfactorily by Whittle [13] for the quadratic cost
case. Variations of this problem were later studied either for
the case of partially observable systems [14], [15] or the
nonlinear case with full state knowledge [16]. Ponton [17]
proposed an iterative algorithm to solve the case with
measurement noise that requires augmenting the true state
dynamics with the dynamics of an Extended Kalman Filter.
However the derivation was heuristic with an incorrect line-
search step which led to difficult to converge iterations and
an incorrect update of the feedforward control.

This work aims to provide the first iterative algorithm
that computes a locally optimal solution to the nonlinear
risk-sensitive optimal control problem with measurement
uncertainty. We extend the results of Whittle [13] to the
general nonlinear case of process and measurement dy-
namics with additive Gaussian noise. We propose a two-
stage algorithm, where the first stage computes a nominal
trajectory given the observations available at the starting
point using an efficient line-search method. The second
stage computes the optimal estimator along with the control
optimizing the risk sensitive cost function as measurements
are made during execution. Finally, extensive simulations
of a nonlinear dynamical system involving stiff interactions
with the environment demonstrate the capability of such
controllers.

Notation: The gradient of a function f with respect to
a vector v is denoted as fv , similarly for second order
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derivatives w.r.t vectors u, v will be denoted as fuv . The
determinant of a matrix M will be denoted by |M |. All
functions are assumed to be C2 unless otherwise stated. If
(vi)i∈N is a sequence of vectors, then vk:t denotes the batch
vector of all vi for k ≤ i ≤ t.

II. BACKGROUND

This section gives an overview of the Linear Quadratic
Exponential Gaussian problem (LQEG), where both process
and measurement models are linear and the cost is an
exponential of a quadratic in the state and control variables.
We go over the main results from Jacobson [9] and Whittle
[13] which we will build upon for our extension to the
general nonlinear problem. Consider the following discrete
time process and observation models,

xt+1 = fxt xt + fut ut + ωt+1 (3a)
yt+1 = hxt xt + γt+1 (3b)

where xt, yt and ut are the state, observation and control
at time t respectively. Given a belief x̂0, the initial state is
assumed to follow a Gaussian distribution x0 ∼ N (x̂0, χ0).
The process and measurement disturbances are considered
to be Gaussian and denoted by ωt ∼ N (0,Ωt) and γt ∼
N (0,Γt). Then, given control inputs (or a policy), the joint
probability density of the entire trajectory can be written

p (x0, w1:T , γ1:T ) =
1

κ
exp (−D) (4)

where D = d0 +

T∑
t=1

dt

d0 =
1

2
(x0 − x̂0)Tχ−1

0 (x0 − x̂0)

dt =
1

2
ωTt Ω−1

t ωt +
1

2
γTt Γ−1

t γt

κ = |2πχ0|
1
2

T∏
t=1

|2πΩt|
1
2 |2πΓt|

1
2

Observations available at time t are denoted by Wt and
take the form

Wt = (x̂0, y1:t, u0:t−1) . (5)

It is important to note that the observation history also
includes x̂0 the belief of the initial state. Then, the risk-
sensitive optimal control problem of the imperfectly observ-
able system at time t becomes a problem of computing the
optimal policy π to minimize the following cost function

J (π,Wt) = −σ−1 ln (Eπ [exp (−σL) | Wt]) (6)

where L =
1

2
xTT l

xx
T xT +

1

2

T−1∑
t=0

xTt l
xx
t xt + uTt l

uu
t ut

where the expectation is taken over every wt, γt and x0.
Taking the expectation conditioned on Wt determines u0:t−1,
however, control inputs, ut:T , are taken according to the
policy π. We consider policies that only depend on previous
observations. Before time t, observations are determined by
Wt but after time t, the observations are random variable

therefore future control inputs are also random variables.
The optimal policy is then a function of the current available
observations

π?(Wt) = argmin
π

J (π,Wt) (7)

A. Optimal Control with Imperfect Observations

The expectation at time t = 0 of the total cost of the
control problem can be expressed as

Eπ
[
e−σL

∣∣W0] =

∫
e−σLp (x0, w1:T , γ1:T ) dx0dw1:T dγ1:T

=
1

κ

∫
e−σ(L+σ−1D)dx0dw1:T dγ1:T (8)

Defining the total stress as S = L + σ−1D. Whittle then
uses the quadratic lemma introduced by Jacobson [9] and
summarized in Appendix A in order to compute the expec-
tation in (8). The main idea is that an integration over an
exponential of a quadratic of a variable x can be replaced
by an optimization over the exponential of a quadratic of this
variable. Then using induction, Whittle [13] proves that

Eπ?

[
e(−σL) | Wt

]
=

αt
p(Wt)

e(−σSt(Wt)) (9)

where αt is provided in appendix B and

St(Wt) = min
ut

ext
yt+1

St+1(Wt+1) (10a)

ST (WT ) = ext
x0,...,xT

S (10b)

Here ext denotes an extremization, i.e. computation of either
a maximum or a minimum. We say that a variable extremizes
S if it minimises S when σ < 0 and maximizes S when σ >
0. This is due to the fact that the total stress could possess
either a maximum or a minimum in the random variables
depending on the sign of σ. Obtaining the optimal policy
then boils down to the following minimization

min
ut,...,uT−1

ext
x0,...,xT

ext
yt+1,...,yT

S (11)

The optimal ut is then the optimal control at time t given
the current observations. Whittle’s certainty equivalence prin-
ciple says that the order of the successive extremization and
minimization can be interchanged. If σ is negative, then the
minimization problem is well defined only if S is negative
definite in the extremizing variables. This condition ensures
that the optimal cost is finite. More precisely, there exist a
threshold value σ̄ < 0 depending on the problem parameters
such that for all σ > σ̄, the problem 7 is well defined. The
implications of this condition on σ will become obvious later.

We provide a brief proof of these results in Appendix B.
Unlike the iterative linear quadratic Gaussian iLQG [2], or
the fully observable case of LQEG [9], the optimal control
cannot be obtained with a single backward recursion in a
dynamic programming fashion. This is due to the fact that
the terminal condition (10b) includes an optimization over
the entire state trajectory.



B. Separation principle

As Whittle concluded, at time t the problem includes
minimizing over future controls, and extremizing over future
observations and the entire state trajectory. Whittle [13] then
suggested breaking the problem into two sub problems while
keeping the current state xt as a free variable, thus introduc-
ing the past stress P (xt,Wt) and future stress F (xt) at each
time t1, which are defined by

P (xt,Wt) = ext
x0:t−1

t−1∑
i=0

li + σ−1
t∑
i=0

di, (12)

F (xt) = min
ut:T−1

ext
xt+1:T

yt+1:T

T∑
i=t

li + σ−1
T∑

i=t+1

di. (13)

The past and future stress problems can then be computed
sequentially separately as

P (xt,Wt) = ext
xt−1

lt−1 + σ−1dt + P (xt−1,Wt−1) , (14)

F (xt) = min
ut

ext
xt+1

lt + σ−1dt+1 + F (xt+1) , (15)

where Whittle shows that optimizing over future observations
yt+1:T yields a prediction of the form yt+1 = hxt xt. In other
words, for all h > t + 1, γt = 0. The recursions have the
following boundary conditions:

σP(x0,W0) =
1

2
(x0 − x̂0)Tχ−1

0 (x0 − x̂0), (16)

F(xT ) =
1

2
xTT l

xx
T xT . (17)

As the the current state xt has been kept as a free variable
in optimization, the optimal control can be written as a
function of xt: ut = πxt(Wt). xt is then determined by
the last extremization

x̌t = argmin
xt

P (xt,Wt) + F (xt) (18)

The solution x̌t of this extremization then gives us the
optimal control: u?t = πx̌t

(Wt) = π?(Wt). This means
that the optimal control is not obtained by only solving
a backward recursion, but instead by optimizing an entire
trajectory of states, while the policy as a function of these
optimal states is obtained during the backward recursion.
We will appeal next to these results to deriving an iterative
algorithm for the nonlinear case.

III. ALGORITHM OVERVIEW

To solve the nonlinear problem, we propose an algorithm
consisting of two stages. The first stage (discussed in details
in Sec. IV) optimizes a nominal trajectory X ,U and a policy
π(δx̌t) where δx̌t is the deviation of the state minimizing
the total stress S from the nominal trajectory. The second
stage (discussed in Sec. V) is executed at run-time as
measurements are made available and includes computing the

1Note that P and F should be index by t, but in order to simplify the
notations, we omit this time index as the latter can be inferred thanks to xt.

minimum stress deviations δx̌t along with the corresponding
optimal policy.

Then the algorithm proceeds at follows, first, before run-
time, the nominal trajectory and the policy π are optimized
according to Algorithm 1 until convergence. Once Algo-
rithm 1 has converged, the reference trajectory X along with
the policy parameters kt and Kt and the future stress Hessian
and gradient along the trajectory Vt and vt are stored for the
second stage.

The second stage happens at run-time. As each observa-
tions yt becomes available, the past stress is propagated one
time step forward as described in Algorithm 2 to obtain x̂t
and Pt, then the minimum stress estimate x̌t at time t is
computed, and the optimal control is obtained and executed.

IV. NOMINAL TRAJECTORY OPTIMIZATION

Consider the general nonlinear process and measurement
models with independent identically distributed (i.i.d) addi-
tive Gaussian noise ωt and γt

xt+1 = ft (xt, ut) + ωt+1 (19a)
yt+1 = ht (xt) + γt+1 (19b)

where ft and ht are differentiable. Along with the general
nonlinear cost function of the form

L = lT (xT ) +

T−1∑
0

lt (xt, ut) (20)

where lt (xt, ut) is any twice differentiable nonlinear func-
tion of the states and controls. With this cost, the minimiza-
tion (7) generally leads to an intractable optimal control
problem that might possess multiple local minima [18]. A
common approach to find one such local minimum is to
follow an iterative approach similar to that of iterative linear
quadratic regulator [1] and perform a line search on the cost
function [19] until some convergence criteria is achieved.
So, we seek some iterative updates to the state and control
trajectories in the form

[
X
U

]i+1

=

[
X
U

]i
+ α

[
δX
δU

]i
(21)

X and U denote the nominal state and control trajectories
at the indicated iterations respectively. The δ is used to
denote a small change around these trajectories and α is
the step length corresponding to the search direction δX , δU
and determined via line search.

A. Step Direction
In order to generate a descent direction for the line search a

linear approximation of the dynamics and observations along
the nominal trajectory is computed and a quadratic approx-
imation of the cost is considered. These approximations are
computed along the nominal trajectory at iteration i denoted
by X i,U i and are given by

xt+1 ≈ ft(xit, uit) + fxt δxt + fut δut + ωt+1 (22a)

yt+1 ≈ ht(xit) + hxt δxt + γt+1 (22b)



and

lt
(
xit + δxt, u

i
t + δut

)
≈ lt

(
xit, u

i
t

)
+ δlt (23)

where δxt = xt − xit, δut = ut − uit and δyt = yt − ht(xit).
In the remainder of the paper we will omit the dependence
of f(x, u) and l(x, u) on x and u for brevity. The quadratic
approximation of the cost is then given by

δlt =
1

2

 1
δxt
δut

T  0 lx
T

t lu
T

t

lxt lxxt lxut
lut luxt luut

 1
δxt
δut

 (24)

Following [20] we introduce feasibility gaps along the
nominal trajectory to form

f̄t+1 = f(xit, u
i
t)− xit+1 (25)

Hence, we optimize Eπ
[
e−σδL

]
subject to the process and

observation deviation dynamics

δxt+1 = fxt δxt + fut δut + f̄t+1 + ωt+1 (26a)
δyt+1 = hxt δxt + γt+1 (26b)

The optimal search direction at iteration i is obtained by
computing the optimal control deviation δu?t according to
the future stress. We provide an alternative derivation to that
of Whittle’s in an extended document provided along with
the code in 2. The document proves that the future stress
optimization is independent of the future observations. The
optimal control deviations are then given by the following
theorem

Theorem 4.1: Assuming that F(δxt+1) has the form

F(δxt+1) =
1

2
δxTt+1Vt+1δxt+1 + δxTt+1vt+1 + v̄t+1 (27)

Then the optimal control deviations δu?t minimizing
Eπ
[
e−σδL|W0

]
are given recursively by

δu?t = −Quu
−1

t Qut︸ ︷︷ ︸
kt

−Quu
−1

t Qux︸ ︷︷ ︸
Kt

δxt (28)

where Qut , Quut and Quxt are defined in (31).

Proof:
We start by writing the future stress, we know from [13]

that the measurement uncertainty yields a prediction and that
the future stress takes the form

F (δxt) = min
δut

ext
δxt+1

lt + F(δxt+1) (29)

+
σ−1

2
(δxt+1 − zt)T Ω−1

t+1 (δxt+1 − zt)

where zt = fxt δxt+f
u
t δut+f̄t+1. The first step is to optimize

with respect to δxt+1 and rearrange the partially optimized
future stress into a quadratic in the current controls and states
δut and δxt respectively

2https://github.com/hammoudbilal/irisc

F (δxt) = min
δut

1

2

 1
δxt
δut

T  q̄t Qx
T

t Qu
T

t

Qxt Qxxt Qxut
Qut Quxt Quut

 1
δxt
δut

 (30)

where

Qxt = lxt + fx
T

t Mtf̄t+1 + fx
T

t Nt (31a)

Qut = lut + fu
T

t Nt + fu
T

t Mtf̄t+1 (31b)

Quut = luut + fu
T

t Mtf
u
t (31c)

Quxt = luxt + fu
T

t Mtf
x
t (31d)

Qxxt = lxxt + fx
T

t Mtf
x
t (31e)

Mt =
(
σΩt+1 + V −1

t+1

)−1
(31f)

Nt = vt+1 − σMtΩt+1vt+1 (31g)

And where q̄t is a constant. Being quadratic in δut, the re-
maining optimization is obtained by solving ∇δut

F(δxt) =
0 which concludes the proof for the control recursions. A
more detailed version of the proof that includes straightfor-
ward yet lengthy algebraic manipulations is provided in our
public repository along with the code implementing all the
simulations.

Theorem 4.2: The future stress is a quadratic in the state
deviations δxt and takes the form

F(δxt) =
1

2
δxTt Vtδxt + δxTt vt + v̄t (32)

where

Vt = Qxxt +KT
t Q

uu
t Kt +KT

t Q
ux
t +Qxut Kt (33a)

vt = Qxt +KT
t Q

uu
t kt +KT

t Q
u
t +Qxut kt (33b)

v̄t =
1

2
q̄t + kTt Q

u
t +

1

2
kTt Q

uu
t kt (33c)

Proof: The proof follows directly by replacing the
optimal controls in F(δxt) and regrouping, details of the
calculations are provided in the accompanying repository.

B. Approximating the Cost Expectation

In order to implement a line search procedure, it is neces-
sary to evaluate the nonlinear risk sensitive cost. However,
for a general nonlinear cost, computing the expectation
is generally intractable analytically. Therefore, we use a
quadratic approximation of the cost and a linearization of
the dynamics to obtain an approximation of the risk sensitive
cost. The linearization and quadratic approximations are
done only over the states as the candidate control trajectory
is considered to be fixed. More precisely, given a candidate
control sequence U and a nominal trajectory X , we evaluate:

J̃ = −σ−1 ln
(
E
[
e−σL̃|u0:T−1

])
(34)

subject to

δx0 = x0 − x̂0 (35a)
δxt+1 = fxt δxt + f̄t+1 + ωt+1 (35b)

https://github.com/hammoudbilal/irisc


with:

L̃ =

T∑
t=0

l(xnt , ut)︸ ︷︷ ︸
l̄t

+
1

2
δxTt l

xx
t δxt + lx

T

t δxt︸ ︷︷ ︸
δlt

(36)

Theorem 4.3:

J̃ = σ−1 ln(α) + v̄0 −
1

2
vT0 (V0 + σ−1χ−1

0 )−1v0 (37)

with

α = |I + σV0χ0|
1
2 ΠT

t=1|I + σVtΩt|
1
2 (38)

and where v̄0, v0, V0 are the terminal values of the recursion:

Vt = lxxt + fxt
TMtf

x
t (39a)

vt = lxt + fxt
TMtf̄t+1 + fxt

TNt (39b)

v̄t = l̄t + v̄t+1 + f̄Tt+1Nt +
1

2
f̄Tt+1Mtf̄t+1 (39c)

− 1

2
vTt+1(Vt+1 + σ−1Ω−1

t+1)−1vt+1

where Mt and Nt have the same form as (31f) and (31g)
but evaluated at Vt and vt given in (39)

Proof: The proof follows a similar logic of theorem 4.1
and is provided fully in the repository.

C. Step Length & Partial Update of the Gaps

We choose to update the gaps partially as is done in [21].
This allows for a partial contraction of the gaps unless a full
step α = 1 is taken thus allowing for a better convergence
when initialized from infeasible nominal trajectories, the
update equations are then

ui+1
t = uit − αkt −Kt

(
xi+1
t − xit

)
, (40)

xi+1
t+1 = ft

(
xi+1
t , ui+1

t

)
− (1− α) f̄ it+1. (41)

with the initial condition xi+1
0 = xi0. We perform a simple

backtracking line search for a set of values of α until no more
decrease in the approximated cost is observed. The pseudo-
code algorithm is provided in Algorithm 1.

V. ESTIMATION & OPTIMAL CONTROLS

The actual optimal control problem of the imperfectly
observable system is not fully solved yet. So far we only
have the optimal control if optimal xt were known. The next
step consists of solving for the past stress

A. Past Stress Optimization

The solution to the past stress (12) optimization with
the cost approximation (37) and linear dynamics (26) can
be obtained using a forward recursion as described in the
following theorem:

Theorem 5.1:

σP(δxt,Wt) =
1

2
(δxt − δx̂t)T P−1

t (δxt − δx̂t) (42)

Algorithm 1: Planning Phase
Input: nonlinear cost, nonlinear dynamics, nonlinear

measurement, sensitivity, X 0, U0

1 Initialization: compute dynamics & cost
approximations (26), (24)

2 while Not Converged do
// backward pass

3 for t = T ; t ≥ 0; t - - do
4 kt,Kt ← eqn. (28)
5 Vt, vt, v̄t ← eqn. (33)
6 end

// forward pass

7 for α ∈ A do
8 for t = 0; t+ +; t ≤ T do
9 ui+1

t ← eqn. (40)
10 xi+1

t ← eqn. (41)
11 end
12 J i+1 ← eqn. (37)
13 if J i+1 ≤ J i then
14 X ,U ← xi+1

0:T , u
i+1
0:T−1

15 compute dynamics & cost
approximations (26), (24)

16 break
17 end
18 end
19 if |J i+1 − J i| ≤ 10−12 then
20 Converged← True
21 end
22 end

Output: X , U , K0:T−1, V0:T , v0:T

where Pt and δx̂t are subject to the following recursion

δx̂t+1 = fxt δx̂t + fut δut + f̄t+1 +Gt (δyt+1 − hxt δx̂t)
− σfxt Ht (lxxt δx̂t + lxut δut + lxt ) (43)

Ht =
(
P−1
t + hx

T

t Γ−1
t+1h

x
t + σlxxt

)−1

(44a)

Gt = fxt Hth
xT

t Γ−1
t+1 (44b)

Pt+1 = Ωt+1 + fxt Htf
xT

t (44c)

Proof: The proof is done by induction. Given
P (δxt−1,Wt−1), We first notice that:

σlt−1 + σP (δxt−1,Wt−1) = (45)
1

2
(δxt−1 − δx̃t−1)

T
P̃−1
t−1 (δxt−1 − δx̃t−1) + Cste

where:

P̃t−1 =
(
P−1
t−1 + σlxxt−1

)−1
(46a)

δx̃t−1 = P̃t−1

(
P−1
t−1δx̂t−1 − σlxut−1δut−1 − σlxt−1

)
(46b)

Hence, (12) can be written as:



σP (δxt,Wt) = Cste (47)

+ ext
δxt−1

dt +
1

2
(δxt−1 − δx̃t−1)

T
P̃−1
t−1 (δxt−1 − δx̃t−1)

Carrying out this optimization over δxt−1 and rearranging
the terms to construct a perfect square concludes the proof.
This last step is included in the accompanying repository.

B. Minimum Stress State & Optimal Control

Now that both P (δxt,Wt) and F(δxt) are obtained, what
remains is optimizing the last remaining variable δxt, i.e.
solving

δx̌t = argmin
δxt

P(δxt,Wt) + F(δxt)

= (I + σPtVt)
−1

(δx̂t − σPtvt) (48)

which results in the minimum stress state deviation δx̌t. And
finally we obtain the optimal control law

u∗t = unt −Kt (I + σPtVt)
−1

(δx̂t − σPtvt) (49)

Algorithm 2: Run Time Estimation & Control
Input: X , U , K0:T−1, V0:T , v0:T , δyt, δx̂t−1, Pt−1

1 Ht−1, Gt−1, Pt ← eqn. (44)
2 δx̂t ← eqn. (43)
3 δx̌t ← eqn. (48)
4 u?t ← eqn.(49)

Output: u?t

VI. RESULTS

To demonstrate the capabilities of the algorithm with
nonlinear systems with measurement noise, we optimize the
motion of a one dimensional pneumatic hopper depicted in 1.
The state vector is four dimensional xT = [qh, qf , vh, vf ]
including the hip position relative to the ground, the foot
position relative to the hip position, and their velocities re-
spectively. The control vector is one dimensional controlling
the acceleration of the foot relative to the hip. The distance
from the foot position to the ground can then be defined as
e = qf − qh.
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Fig. 1: Simulation snapshots with pneumatic hopper.

The simulation uses a stiff visco-elastic contact model
λ(e, ė) = ke− bė. For optimization we will use the relaxed
contact model

λ(e) =


0., if e < 0.
k

2αe
2, if 0 ≤ e < α.

ke− 1
2kα otherwise.

(50)

To solve the optimal control problem, we use α = 0.01
and k = 500, where the simulation parameters use k = 105

and b = 300 (we aim to demonstrate that feedback can
compensate for the unexpectedly stiff contact in simulation).
The cost function used includes three phases, the stance
phase, which is along the horizon T except for t = T/2,
the jumping cost for t = T/2 and terminal cost for time
t = T . We choose to write the original cost as lt =
1
2 (xt − xdes)

T lxxt (xt − xdes) + 1
2u

T
t l
uu
t ut where xTdes =

[0.5, 0., 0., 0.] for the stance and terminal costs and xTdes =
[2., 0., 0., 0.] for the jump phase. The cost weights are set as
follows, for the stance phase lxx = diag(101, 1, 10−4, 0.),
for the jump phase lxx = diag(101, 10−2, 10−1, 0.), for the
terminal phase we have lxx = diag(101, 101, 1., 1.), and
luu = 10−3 for all running costs. The noise is assumed to
be uniform with Ωt = Γt = diag(10−3, 10−3, 10−3, 10−3).
One thousand simulations are carried out for each of the
three scenarios, a risk neutral controller and estimator namely
DDP [21] combined with an extended kalman filter. A
risk averse controller with σ = −0.5 and a risk seeking
controller with σ = 10. All the results below are presented
in terms of the mean/average and standard deviation of
the data obtained. Risk Sensitive behavior achieves superior
performance compared to the two other formulations as we
will show below.
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(a) DDP Plan
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(b) Risk Averse Plan
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(c) Risk Seeking Plan

Fig. 2: Planned Trajectories, Solid lines represent the hip
trajectory and dashed lines represent the foot trajectory.

A. Optimized Trajectories

One advantage of the proposed procedure is that it is
capable of generating different trajectories depending on



the noise and sensitivity parameters, this is evident from
the resulting plans. As the results in Fig. 2 show, both
DDP and risk seeking scenarios generate a plan that reaches
exactly the desired height Fig. 2a and Fig. 2c, whereas the
risk averse scenario generates a higher maximum height
Fig. 2b. The penetration into the ground in the plan is due
to using a relaxed contact model that does not generate stiff
contact behaviors. The goal is to have the control feedback
compensate for the stiff behavior in the simulations.

B. Simulation Statistics

In order to compare performance, the statistics of the
accumulated original cost L is computed for each of the three
scenarios studied and summarized in Table I. Risk averse
design achieves a lower cost average, and a significantly
tighter standard deviation. Whereas risk seeking design gen-
erates the highest cost average and ddp generates the highest
standard deviation (Fig. 3).

DDP σ = −0.5 σ = 10
Total average 5.79× 10−2 5.13× 10−2 13.92× 10−2

Maximum Std 13.17× 10−2 3.53× 10−2 12.92× 10−2

TABLE I: Cost Statistics
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Fig. 3: Cost Statistics for DDP, Risk Averse and Risk
Seeking control designs after 1000 simulations.

The tracking error statistics is computed with respect to
the optimized plans for each of the scenarios, and presented
for each of the states in Table II. We see that the risk-
averse design maintains the lowest average position errors
and lowest standard deviations for all four states. Although
the planned trajectory aims for a higher height, the actual
average hip height reaches the desired hip height as shown
in Fig. 4.

State Max. Average Max. STD
DDP σ = −0.5 σ = 10 DDP σ = −0.5 σ = 10

qh 0.354 0.334 0.410 0.248 0.230 0.244
qf 0.351 0.306 0.370 0.133 0.122 0.150
vh 3.83 3.337 3.135 1.815 1.652 1.585
vf 2.35 2.182 3.959 1.256 0.743 1.704

TABLE II: Tracking Error Statistics
On the other hand, DDP comes short from the desired

height, and experiences a foot bounce off the ground more
often as shown in Fig. 4b. The risk seeking design achieves
a higher height than desired, much later than planned and
also exhibits a foot bouncing back off the ground (Fig. 4).

Another interesting aspect is the maximum average forces
generated. Even though the forces are not explicit states that
are penalized in the cost, the force plays a crucial role in
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Fig. 4: Hip and Foot Simulated Position Statistics
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Fig. 5: Average contact force

taking off, reaching the desired height and landing safely.
DDP generates the lowest takeoff force, which explains
the lower average peak height (Table III). For the landing
phase DDP generates the highest impact force (Fig. 5) while
risk seeking generates the lowest, but then diverges. Risk
averse generates the most stable contact force profiles, a
highly sought behavior for systems establishing and breaking
contact with the environment instead of avoiding it.

Takeoff f Landing f Hip Height Foot Height
DDP 118.099 106.902 1.888 0.698

σ = −0.5 106.146 100.527 2.007 0.801
σ = 10. 103.712 330.583 2.380 0.816

TABLE III: Maximum average force at takeoff and landing,
hip height and foot height

VII. CONCLUSION

In this paper we present, to our knowledge, the first
computationally efficient iterative algorithm to compute risk-
sensitive optimal trajectories and control policies that handle
both process and measurement noise. The plan is obtained
before any observations are collected, as observations be-
come available, an estimator that takes into account the cost
accumulated generates state estimates that are then used to
update both the control signal and the feedback controls. We
tested the proposed algorithm on a one dimensional hopper
in intermittent contact with the environment, subject to both
model disturbances and measurement noise. In the risk averse
scenario the proposed algorithm proves to be superior to its
deterministic counter part namely DDP.
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APPENDIX

A. Integration of Exponential of a Quadratic form.

Lemma 1.1: For a quadratic form in x and y

Q(x, y) =
1

2

1
x
y

T  q̄ qTx qTy
qx Qxx Qxy
qy Qyx Qyy

1
x
y

 (51)

We have:∫
exp (−Q(x, y)) dx = |2πQ−1

xx |
1
2 exp (−Q(x̂, y)) (52)

x̂ = argmin
x

Q(x, y) = −Q−1
xx (Qxyy + qx) (53)

Proof: We notice that:

Q(x, y)−Q(x̂, y) =
1

2
(x− x̂)TQxx(x− x̂) (54)

Then, the following equality concludes the proof:∫
exp

(
−1

2
(x− x̂)TQxx(x− x̂)

)
dx =

√
|2πQ−1

xx | (55)

B. main theorem

Theorem 1.2:

Eπ? [exp (−σL) | Wt] =
αt

p(Wt)
exp (−σSt(Wt)) (56)

Proof:
According to [22], we have

Eπ? [exp (−σL) |Wt] (57)

= ext
ut

∫
Eπ? [exp (−σL) |Wt+1] p(yt+1|Wt)dyt+1

The proof is then a backward induction based on the
recursion equality (57). We first notice that:

Eπ? [exp (−σL) |WT ] (58)

=

∫
e−σL p(x0:T |WT )dx0:T

=
1

p(WT )

∫
e−σL p(x0:T , y0:T )dx0:T

= αT exp(−σ min
x0,...xT

S)

The last equality comes from the lemma therefore, we
have:

αT =
|2πσ ∂2S

∂2x0:T
| 12

p(WT )|2πχ0|
1
2

∏T
t=1 |2πΩt|

1
2

(59)

Now, assuming the Equation 56 for t + 1, let’s show the
property at time t: Thanks to (57), we have

Eπ? [exp (−σL) |Wt] (60)

= ext
ut

∫
αt+1

p(Wt+1)
exp [−σ(St+1(Wt+1))] p(yt+1|Wt)dyt+1

=
αt+1

p(Wt)
ext
ut

∫
exp [−σSt+1(Wt+1)] dyt+1

=
αt

p(Wt)
ext
ut

ext
yt+1

exp [−σSt(Wt)]

The last equality comes from the lemma therefore, we
have:

αt = αt+1

∣∣∣∣2πσ∂2St+1(Wt+1)

∂2yt+1

∣∣∣∣ 12 (61)
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