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Abstract— We propose to solve a constrained distribution
steering problem, i.e., steering a stochastic linear system from
an initial distribution to some final, desired distribution subject
to chance constraints. We do so by characterizing the cumu-
lative distribution function in the chance constraints and by
using the absolute distance between two probability density
functions using the corresponding characteristic functions. We
consider discrete-time, time-varying linear systems with affine
feedback. We demonstrate the proposed approach on a 2D
double-integrator perturbed by various disturbances and initial
conditions.

I. INTRODUCTION

In many autonomous systems, the uncertainties that affect
the system evolution are quite complex and non-Gaussian.
For example, in urban air mobility scenarios, uncertainties
may arise from the sensing and perception subsystems, the
operating environment (i.e., wind gusts, ground effects), the
presence of humans in the loop, or from unmodeled physical
phenomena (i.e., higher-order nonlinearities in lift or drag
forces) among many others. Methods that ensure robustness
to such uncertainties are important for improving the re-
liability and robustness of autonomous systems. Recently,
distribution steering, by which a controller manipulates the
stochasticity of the state to guide at states towards a de-
sirable probability distribution, has emerged as a promising
approach to directly control system uncertainty [1]–[5]. How-
ever, most of these works to date assume Gaussian noise, In
this paper, we describe an approach to synthesize feedback
controllers for distribution steering of discrete-time linear
systems subject to general (e.g., non-Gaussian) disturbances.

Recent work in covariance steering, in which a system
is steered from an initial Gaussian distribution to a desired
Gaussian distribution, captures the covariance and the mean
as extended state variables [3], [6]–[10]. However, extending
this approach to non-Gaussian disturbances is not straight-
forward. For non-Gaussian disturbances, the distribution is
characterized by higher order moments and the computa-
tional complexity of the problem increases as the number
of moments we need to steer increases. Additionally, when
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X = Ax0 + BU +DW
Xk

ψx0
ψxf

Fig. 1: We seek to steer a stochastic system from an
initial distribution to a desired final distribution, subject to
probabilistic constraints on the state and input.

incorporating chance, or probabilistic, constraints into the
problem formulation, it is not clear how one can make
these constraints tractable (for example, as second order cone
constraints through Boole’s inequality [11], [12]) with non-
Gaussian state evolution, since closed form expressions often
do not exist. Methods in optimal transport theory [1], [3] can
steer to and from arbitrary distributions, but presume that the
disturbance is a Wiener process (i.e., Gaussian increments).

In this paper, we formulate the problem of steering non-
Gaussian distributions under affine feedback as the min-
imization of the absolute distance between the final and
desired state probability densities. We consider a broad class
of disturbances for linear systems, which places very few
assumptions on the disturbance pdf. Our approach employs
characteristic functions, which circumvent the need to steer
all moments individually, and enable straightforward calcu-
lation of the absolute distance between distributions. The
key insight is that expressions for the chance constraints
(previously implemented in an open-loop context [13], [14])
and the terminal absolute distance constraint can be rep-
resented efficiently using characteristic functions and their
compositions.

Section II reviews some preliminaries and formulates the
problem we wish to solve. We present our analysis of chance
constraints within the framework of characteristic functions
in Section III. The terminal density matching constraint is
presented in IV. Section V presents our reformulation of
the constrained stochastic optimal control problem using
characteristic functions. Section VI presents an example of a
2D double integrator under various disturbances and initial
conditions.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation and Definitions
We denote real-valued vectors with lowercase u ∈ Rm,

matrices with uppercase V ∈ Rn×m, and random vectors
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with bold case w ∈ Rp. The n-dimension identity ma-
trix is denoted by In, and the m × n dimensional zero
matrix is denoted by 0m,n. We define a diagonal matrix
as V = diag(u) and a block diagonal matrix as V =
diag(V1, · · · , Vi · · · , Vn). The imaginary unit is denoted by
i; given a complex vector ϕ ∈ Cp, its conjugate is denoted
by ϕ. We denote intervals of integers using N[a,b] where
a, b ∈ N, a < b. The vector ei,d = [0 · · · 1 · · · 0]ᵀ ∈ Rd
is a basis vector for Rd and isolates the ith component of a
vector ψ ∈ Rd by ψi = eᵀi,dψ.

For a random vector w, the probability space is
(Ω,B(Ω),Pw) with Ω the set of all possible outcomes,
B(Ω) the Borel σ-algebra on Ω, and Pw the probability
measure on B(Ω) [15, Sec. 2]. We consider only random
vectors that are continuous, i.e., with probability measure
P ({w ∈ S}) =

∫
S ψw(z) dz for S ∈ B(Ω), and probability

density function (pdf) ψw that satisfies ψw ≥ 0 almost
everywhere (a.e.) and

∫
R ψw(z) dz = 1. For a random

variable y = aᵀw, a ∈ Rp, we denote P{aᵀw ≤ α} by
the cumulative distribution function (cdf) Φaᵀw : R→ [0, 1]
via P{aᵀw ≤ α} = Φaᵀw(α), which follows by definition
[15, Sec. 14]. We write w ∼ ψw to denote the fact that w is
distributed according to the pdf ψw. We define the Lebesgue
space of measurable pdfs with bounded d-norm by Ld(Rn)
where 1 ≤ d < ∞. The Lebesgue norm of a probability

density function ψw is ‖ψw‖d =
(∫

Rp |ψw(z)|d dz
)1/d

. The
space of all (continuous) probability density functions forms
a subset of L1(Rp) since ψw ≥ 0 a.e. and

∫
Rp ψw dz = 1.

B. Problem Formulation

Consider the discrete, linear time-varying system

xk+1 = Akxk +Bkuk +Dkwk, k ∈ N[0,N−1], (1)

with state xk ∈ Xk ⊆ Rn, control input uk ∈ Uk ⊆ Rm,
disturbance wk ∼ ψw,k, and matrices Ak, Bk, Dk of
appropriate dimensions. We assume that the system starts
at x0 ∼ ψx0

, and we seek to steer the final state at N to a
desired distribution xN ∼ ψxf

.

Assumption 1. Random vectors and elements of random
vectors are independent, but not necessarily identically dis-
tributed.

Given a deterministic reference trajectory xd,k ∈ Rn for
all k ∈ N[0,N−1], we consider the quadratic cost

J(u0, . . . ,uN−1) =

N−1∑
k=0

E[(xk − xd,k)ᵀQk(xk − xd,k)

+ uᵀ
kRkuk], (2)

where Qk � 0, and Rk � 0. Following the formulation in
[16],

we can concatenate the dynamics (1) as

X = Ax0 + BU +DW, (3)

where X = [xᵀ
0 , . . . ,x

ᵀ
N ]ᵀ ∈ R(N+1)n, U =

[uᵀ
0 , . . . ,u

ᵀ
N−1]ᵀ ∈ RNm, W = [wᵀ

0 , . . . ,w
ᵀ
N−1]ᵀ ∈ RNp,

for some matrices A ∈ R(N+1)n×n, B ∈ R(N+1)n×Nm, and
D ∈ R(N+1)n×Np. The concatenated disturbance follows
the distribution W ∼ ψW =

∏N−1
k=0 ψw,k. Probabilistic

constraints are imposed on the state and input, namely,

P

{
N∧
k=1

EkX ∈ Xk

}
≥ 1−∆X , (4a)

P

{
N−1∧
k=0

FkU ∈ Uk

}
≥ 1−∆U , (4b)

where Xk = ∩NX
j=1{x ∈ Rn : αᵀ

j,kx ≤ βj,k} and Uk =

∩NU
j=1{u : aᵀj u ≤ bj} are polytopic sets defined as intersect-

ing hyperplanes, and where Ek = [0n×nk, In, 0n(N−k)×n],
and Fk = [0m×mk, Im, 0m(N−k−1)×m] isolate the kth el-
ement of the state and input, respectively, and ∆X ,∆U ∈
[0, 1) are constraint violation thresholds.

Using (3), the cost in (2) can be re-written as

J(U) = E [(X−Xd)
ᵀQ(X−Xd) + UᵀRU] , (5)

with Q = diag (Q0, . . . , QN−1), R = diag (R0, . . . , RN−1),
and Xd = [xd,0 · · · xd,N ]

ᵀ ∈ R(N+1)n. Since Qk � 0 and
Rk � 0, ∀k ∈ N[0,N−1], it follows that Q � 0 and R � 0.

Problem 1. Solve the optimization problem

minimize
U

J(U), (6a)

subject to (3), (4), and (6b)
E0X ∼ ψx0

, ENX ∼ ψxf
, W ∼ ψW. (6c)

The goal of Problem 1 is to minimize the quadratic cost
(5), satisfy the constraints in (3), (4), while steering the state
of (1) from the given initial distribution ψx0 to the desired
terminal state distribution ψxf

.

C. Characteristic Functions

One way to represent the underlying system stochasticity
is via characteristic functions (CF).

Definition 1. For a continuous random vector w ∈ Rp such
that w ∼ ψw, the CF is defined by the Fourier transform
F{ψw}(t) of its pdf,

ϕw(t) = Ew[exp(itᵀw)] =

∫
Rp

eit
ᵀzψw(z) dz, (7)

where t, z ∈ Rp.

The CF has the following properties [17], [18]:

• It is uniformly continuous.
• ϕw(0) = 1.
• It is bounded, i.e., |ϕw(t)| ≤ 1, for all t ∈ Rp.
• It is Hermitian, i.e., ϕw(−t) = ϕw(t).

Assumption 2. The CF ϕw is absolutely integrable, that is,
it is an element of L1(Rp).

To recover the pdf from its CF, we use the following result.



Theorem 1 (Inversion Theorem for pdfs, [18, Theorem
1.2.6]). If the CF ϕw ∈ L1(Rp), then the pdf can be
recovered via the inverse Fourier transform F−1{ϕw}(z),

ψw(z) =

(
1

2π

)p ∫
Rp

e−it
ᵀzϕw(t) dt. (8)

Below, we summarize useful properties of CFs. Let
w1,w2,w, z be random vectors of appropriate dimensions.

1) If z = w1 + w2, then ψz(z) =
(
ψw1
∗ ψw2

)
(z) (i.e.,

convolution of their pdfs), and ϕz(t) = ϕw1(t)ϕw2(t)
[19, Sec. 21.11].

2) If z = Fw + g for F ∈ Rn×p, g ∈ Rn, then ϕz(t) =
exp(itᵀg)ϕw(F ᵀt) [19, Sec. 22.6].

3) Given w1 and w2, then z = [wᵀ
1 ,w

ᵀ
2 ]ᵀ has the pdf

ψz(z) = ψw1(eᵀ1z1)ψw2(eᵀ2z2), z = [zᵀ1 , z
ᵀ
2 ]ᵀ, and CF

ϕz(t) = ϕw1(eᵀ1t)ϕw2(eᵀ2t), t = [tᵀ1 , t
ᵀ
2 ]ᵀ, where e1

and e2 isolate the first and second component of the
vector, respectively [19, Sec. 22.4].

4) If z = [z1 · · · zi · · · zp]ᵀ ∈ Rp is a vector of scalar
random variables zi with pdfs ψzi

, then the pdf of aᵀz,
a ∈ Rp, is ψaᵀz(z) =

∏p
i=1 ψzi(e

ᵀ
i,paz), and the CF is

ϕaᵀz(t) = ϕz(tz) =
∏p
i=1 ϕzi

(ti), for tz = at, and
ti = eᵀi,ptz [19, Sec. 22.4].

We can also recover the cdf via the CF using the following
theorem.

Theorem 2 (Gil-Pelaez Inversion Theorem, [18], [20]).
Given a random variable y with CF ϕy and pdf ψy

satisfying the property that
∫
R log(1 + |x|)ψx(z)dz < ∞,

then the cdf of y, Φy, at each point y that is continuous,
can be evaluated by

Φy(y) =
1

2
− 1

π

∫ ∞
0

1

t
Im [exp (−ity)ϕy(t)] dt, (9)

where y, t ∈ R.

Remark 1. The requirement
∫
R log(1 + |x|)ψx(z)dz < ∞

is a mild condition which is satisfied by many distribu-
tions [21], including those used in this paper.

D. Proposed Distribution Steering Controller

The following assumption outlines the controller structure
used in this work.

Assumption 3 (Feedback law). The controller in (3) has an
affine state feedback structure, given by

uk =

k∑
i=0

Lk,ixi + gk. (10)

Concatenating these vectors yields U = LX + g, where
L ∈ RNm×(N+1)n is a lower block triangular matrix and
g = [gᵀ0 , . . . , g

ᵀ
N−1]ᵀ ∈ RNm.

Note that this feedback law uses the full state history to
determine the control input at every time step k, as opposed
to just using the current state xk.

Proposition 1 (Affine disturbance feedback [16]). The feed-
back law in (10) results in the state and input sequences

X = (I − BL)−1(Ax0 +DW + Bg), (11a)

U = L(I − BL)−1(Ax0 +DW + Bg) + g. (11b)

Proof. Plugging (10) into (3) yields (11a). Similarly, plug-
ging (11a) into (10) yields (11b).

Corollary 1. Given the affine disturbance feedback terms,

K = L(I − BL)−1, (12a)

v = L(I − BL)−1Bg + g, (12b)

then the state and input sequences in (11) can be equivalently
written as

X = (I + BK)(Ax0 +DW) + Bv, (13a)
U = K(Ax0 +DW) + v, (13b)

Proof. We substitute (12a) and (12b) into (11b), and substi-
tute U into (3), to obtain

X = Ax0 + B
(
L(I − BL)−1(Ax0 +DW + Bg) + g

)
+DW, (14a)

U = (I + BL(I − BL)−1)(Ax0 +DW)

+ L(I − BL)−1Bg + g. (14b)

Simplifying (14a) and (14b) yields the desired result (13a)
and (13b).

III. CHANCE CONSTRAINTS WITH AFFINE FEEDBACK
VIA CHARACTERISTIC FUNCTIONS

In this section, we present a decomposition of the chance
constraints using Boole’s inequality via affine disturbance
feedback and represent the probabilistic constraints (also
known as chance constraints) using CFs. The resulting con-
straint is an integral transform over the linear system and the
polytopic constraints.

A. Reformulation of Chance Constraints

1) State Chance Constraints: The joint state chance con-
straints in (4a) can be transformed into a set of individual
chance constraints through Boole’s inequality [22]–[24]

P{αᵀ
j,kEkX ≤ βj,k} ≥ 1− δxj,k,

N∑
k=1

NX∑
j=1

δxj,k ≤ ∆X , (15)

equivalently,

Φαᵀ
j,kEkX (βj,k) ≥ 1− δxj,k,

N∑
k=1

NX∑
j=1

δxj,k ≤ ∆X , (16)

where δxj,k ∈ [0,∆X), k ∈ N[1,N ], j ∈ N[1,NX ]. Plugging
(13a) into (16) yields

Φcj,k
(βj,k − αᵀ

j,kEkBv) ≥ 1− δxj,k, (17)

where cj,k = αᵀ
j,kEk(I + BK)(Ax0 +DW).



2) Input Chance Constraints: Similar to the state chance
constraints, we transform the joint chance constraints in (4b)
into a set of individual chance constraints as follows

P{aᵀjFkU ≤ bj} ≥ 1− δuj,k,
N∑
k=1

NU∑
j=1

δuj,k ≤ ∆U . (18)

Equivalently,

Φaᵀj FkU(bj) ≥ 1− δuj,k,
N∑
k=1

NU∑
j=1

δuj,k ≤ ∆U , (19)

where δuj,k ∈ [0,∆U ), k ∈ N[0,N−1], j ∈ N[1,NU ]. Using
(13b) in the chance constraints (19) yields

Φdj,k
(bj − aᵀjFkv) ≥ 1− δuj,k, (20)

where dj,k = aᵀjFkK(Ax0 +DW).

B. Encoding Chance Constraints in the Presence of Affine
Feedback

To illustrate how to encode the chance constraints (17)
and (20) via CFs, consider first the state chance constraint
in (17). Expanding the random variable cj,k we can write

cj,k = µᵀ
c,j,kx0 + νᵀc,j,kW, (21)

where µᵀ
c,j,k = αᵀ

j,kEk(I +BK)A and νᵀc,j,k = αᵀ
j,kEk(I +

BK)D are non-random variables that are linear in the
decision variable K. Under Assumption 1, Property 3 of CFs
allows us to decompose ϕcj,k

as

ϕcj,k
(t) = ϕµᵀ

c,j,kx0
(t)ϕνᵀ

c,j,kW
(t). (22)

Next, Property 2 yields

ϕµᵀ
c,j,kx0

(t) = ϕx0(tcx0
), (23a)

ϕνᵀ
c,j,kW

(t) = ϕW(tcW). (23b)

where tcx0
= µc,j,kt and tcW = νc,j,kt. Finally, Property 4

yields

ϕx0
(tcx0

) =

n∏
i=1

ϕx0,i
(tcx0,i

), (24a)

ϕW(tcW) =

pN∏
i=1

ϕWi(t
c
Wi

). (24b)

where tcx0,i
= eᵀi,nt

c
x0

and tcWi
= eᵀi,pN t

c
W. Theorem 1

gives an analytical expression for the cdf of cj,k evaluated
at γj,k = βj,k − αᵀ

j,kEkBv as

Φcj,k
(γj,k) =

1

2
− 1

π

∫ ∞
0

1

t
Im
(
e−itγj,kϕcj,k

(t)
)

dt, (25)

where ϕcj,k
(t) is given in (22). Thus, (25) provides a means

to compute the cdf in the state chance constraints (17), and
encodes the decision variables K and v through Theorem 1.

Similarly, we can also derive the input chance constraints
in (20) for the random variable dj,k by rewriting

dj,k = µᵀ
d,j,kx0 + νᵀd,j,kW, (26)

where µᵀ
d,j,k = aᵀjFkKA and νᵀd,j,k = aᵀjFkKD. From

Property 3 of CFs, the CF of dj,k is therefore

ϕdj,k
(t) = ϕµᵀ

d,j,kx0
(t)ϕνᵀ

d,j,kW
(t). (27)

Further, by Properties 2 and 4, we have

ϕµᵀ
d,j,kx0

(t) = ϕx0(tdx0
) =

n∏
i=1

ϕx0,i
(tdx0,i

), (28a)

ϕνᵀ
d,j,kW

(t) = ϕW(tdW) =

pN∏
i=1

ϕWi
(tdWi

) (28b)

where tdx0
= µd,j,kt, t

d
W = νd,j,kt, tdx0,i

= eᵀi,nt
d
x0

, and
tdWi

= eᵀi,pN t
d
x0

. Thus, the expression for the cdf of dj,k
evaluated at γd,j,k = bj − aᵀjFkv is given by

Φdj,k
(γj,k) =

1

2
− 1

π

∫ ∞
0

1

t
Im
(
e−itγd,j,kϕdj,k

(t)
)

dt.

(29)

Note that the constraints encoded by the CF in (25) and
(29) result in nonlinear constraints in terms of the decision
variables K and v.

IV. TERMINAL DENSITY CONSTRAINTS

Our approach aims at matching probability densities using
the machinery of characteristic functions. The benefit of
using characteristic functions to match between densities as
opposed to other metrics such as KL-divergence or Wasser-
stein distance is two-fold. First, it can be shown that the
largest absolute difference between two pdfs is bounded by
the L1 difference of their CFs. Second, this holds for all
distributions (including mixture distributions) which have a
CF in L1(Rn) and directly results in an explicit integral
expression over the frequency domain, and not an integration
over the entire state-space [2]. This is convenient, as it is
difficult to formulate the terminal constraints analytically
in the state-space due to the non-Gaussian state evolution
requiring several convolutions at each time step (see Property
1 of operations on CFs).

Next, we first derive a joint distribution representation
which results in an n-dimensional integral. We then show
that due to the independence property of the disturbances,
we can compute this integral using n separate matching
constraints at the final time.

A. Joint CF Representation of the Terminal Density

Using Properties 1 and 2 of operations on CFs, the joint
CF of the terminal state xN is

ϕxN
(t) =

n∏
i=1

ϕxN ,i(ti)

=

n∏
i=1

exp(iσᵀ
i t)ϕx0

(tNx0
)ϕW(tNW), (30)



where

ϕx0
(tNx0

) =

n∏
j=1

ϕx0,j
(tNx0,j

), (31)

ϕW(tNW) =

pN∏
j=1

ϕWj
(tNWj

), (32)

and where tNx0
= µit, tNx0,j

= eᵀj,nt
N
x0
, tNW = νit, tNWj

=

eᵀj,pN t
N
W, and µᵀ

i = eᵀi,nEN (I + BK)A, νᵀi = eᵀi,pEN (I +
BK)D, and σᵀ

i = eᵀi,mENBv. Similarly, the joint CF of the
desired terminal state is

ϕxf
(t) =

n∏
i=1

ϕxf,i
(ti). (33)

We now introduce the L1 distance as an upper bound
on the maximum L1 deviation between two probability
distributions.

Theorem 3 ( [18, Sec. 1.4]). If the joint pdf for the terminal
state of the system is ψxN

with CF (30) and the desired joint
pdf is ψxf

with CF (33), then

∆ψxN
(K, v) = sup

z∈Rn

|ψxN
(z;K, v)− ψxf

(z)| ≤ D(K, v),

(34)

where

D(K, v) =

(
1

2π

)n
‖ϕxN

−ϕxf
‖1

=

(
1

2π

)n ∫
Rn

∣∣ϕxN
(t)−ϕxf

(t)
∣∣dt. (35)

Proof. See Appendix A.

Corollary 2. Let ε > 0 such that D(K, v) < ε for some K
and v. Then, supz∈Rn

∣∣ψxN
(z;K, v)− ψxf

(z)
∣∣ ≤ ε.

B. Matching Densities

We derive a simpler representation of the n−dimensional
integral of the joint representation in (34). Specifically, we
construct n separate density matching expressions with re-
spect to each terminal state variable, that is, for all i ∈ N[1,n],

∆ψxN
,i(K, v) = sup

zi∈R

∣∣ψxN ,i(zi;K, v)− ψxf,i
(zi)
∣∣

≤ Di(K, v), (36)

where

Di(K, v) =
1

2π

∫
R

∣∣ϕxN ,i(ti)−ϕxf ,i(ti)
∣∣dt, (37)

which follows from Theorem 3. The next result provides a
relationship between (35) and (37).

Theorem 4. Suppose there exists (K, v) such that, for all
i ∈ N[1,n], Di(K, v) ≤ εi. Then, D(K, v) ≤ (1/2π)n−1ε,
where ε =

∑
i εi.

Proof. See Appendix B.

V. RESULTING OPTIMIZATION PROBLEM

With the elements derived for both the chance constraints
and the terminal distribution constraint, we present the re-
sulting optimization problem.

Problem 2. Solve the optimization problem

min
K,v,δx,δu

J(K, v) +

n∑
i=1

λiDi(K, v) (38a)

s.t. Φcj,k
(βj,k − αᵀ

j,kEkBv) ≥ 1− δxj,k, (38b)

Φdj,k
(bj − aᵀjFkv) ≥ 1− δuj,k, (38c)

N∑
k=1

NX∑
j=1

δxj,k ≤ ∆X ,

N∑
k=1

NU∑
j=1

δuj,k ≤ ∆U , (38d)

where J(K, v) is given by

[(I + BK)(AE[x0] +DE[W]) + Bv −Xd]
ᵀQ·

[(I + BK)(AE[x0] +DE[W]) + Bv −Xd]

+ [K(AE[x0] +DE[W]) + v]
ᵀR

+ tr
[(

(I + BK)ᵀQ(I + BK) +KᵀRK
)
Σ
]
, (39)

where Σ = AΣx0
Aᵀ +DΣWDᵀ.

We treat the matching constraint as a soft constraint, as
in [2]. By penalizing this L1 distance in the cost, we provide
flexibility to the underlying nonlinear program solver and
enable increased feasibility.

VI. NUMERICAL EXAMPLE - 2D DOUBLE INTEGRATOR

We demonstrate our approach on a 2D double integrator
with different disturbances and initial conditions. Consider
the system (1) with state x = [x ẋ y ẏ]ᵀ. The expressions for
the system matrices Ak, Bk, and Dk are given in [10] with
∆T = 1 and N = 5. We assume polytopic state constraints
Xk, with α1k =

[
1 1 0 0

]
, β1k = 12.75, α2k =[

1 0.1 0 0
]
, β2k = 8.75 for k ∈ N[1,N ], and assume

x0 ∼ ψx0
must be within the state polytopic constraints, as

well. We let Uk = [−4, 4]2 for k ∈ N[0,N−1]. The desired
trajectory Xd is interpolated from waypoints (4, 5) to (8, 5)
for k ∈ N[0,2] and from (9, 5) to (7.875, 3) for k ∈ N[3,5]. We
seek to drive the final state to xN ∼ ψxf

= N (µxf
,Σxf

)
with mean µxf

= [7.75 2 0 0]ᵀ and variance Σxf
=

diag([0.06 0.006 0.6 0.006]). We choose ∆X = 0.1 and
∆U = 0.1, and Qk = diag([10 1 10 1]), Rk = diag([1 1])
for i ∈ N[0,N−1]. The weighting of the distance metrics in
the cost is λ = [10 1 10 1]ᵀ.

All computations were done in MATLAB with an Intel
Core i9-10900K processor and 64GB RAM. The optimiza-
tion problems were solved using fmincon. The CF inver-
sion (25) uses CharFunTool [21] and the density matching
constraint in (37) was implemented using trapezoidal quadra-
ture. We used 104 Monte-Carlo samples to verify average
state and input constraint violation (denoted as ∆X,MC and
∆U,MC, respectively) and cost (denoted as JMC(K, v)).



A. Standard Gaussian Distribution

To validate our approach, we first considered x0 ∼
ψx0

= N (µx0
,Σx0

) with µx0
= [4 0 5 0]ᵀ and

Σx0 = diag([0.18 0.002 0.18 0.002]); the disturbance is
N (µW,ΣW) with mean µW = [0 0]ᵀ and variance ΣW =
diag([1 1]) for the entire horizon. As shown in Figure 2a,
our method drives the system to follow the reference tra-
jectory, while not significantly violating the state constraints
(Table II). Likewise, input violation is minimal, as shown
in Figure 2b and Table II. Since we steer the state from an
initial Gaussian distribution to a final Gaussian distribution,
the maximum deviation between the final and desired pdfs
and the corresponding L1 distances are small (Table I).

B. Heavy Tail - Laplace Distribution

Heavy-tailed distributions are of interest as they decay
much more slowly than Gaussians, but with a similar mean
and variance. The Laplace distribution has the pdf Lµ,β(x) =
exp (−|x− µ|/β) /2β. We assume the initial condition x0 ∼
L(µx0 , βx0) with location µx0 = [4 0 5 0]ᵀ and scale βx0 =
[0.3 0.01 0.3 0.01]ᵀ. The disturbance also follows a Laplace
distribution W ∼ L(µW, βW) with location µW = [0 0]ᵀ

and scale βW = [1 1]ᵀ. Although the Laplace distribution is
not smooth (Figure 3a), our method is able to steer to the
final desired density with little constraint violation (Table II).
The input in Figure 3b shows that there is some violation of
the bounds, but it is within the violation threshold (Table
II). The larger deviation between the final and desired pdfs
(Table I) reflects the fact that we modify a random variable
that is not Gaussian so as to behave like a Gaussian one.

C. Mixture Distributions - Normal Mixture

Lastly, we consider a Gaussian mixture with x0 ∼ ψx0 =
0.5N (µx0,1 ,Σx0,1)+0.5N (µx0,2 ,Σx0,2) with means x0,1 =
[4 0 5 0]ᵀ, x0,2 = [3.5 0.1 3.5 0.1]ᵀ and covariances Σx0,1

=
diag([0.3 0.01 0.3 0.01]), Σx0,2

= diag([0.1 0.01 0.5 0.01]).
The disturbance is a Gaussian mixture, W ∼ ψW =
0.5N (µW1 ,ΣW1)+0.5N (µW2 ,ΣW2), with means µW1 =
[0 0.1]ᵀ, µW2 = [0.1 0]ᵀ and covariances ΣW1 =
diag([1 1]), ΣW2

= diag([1 1]). The affine controller steers
the Gaussian mixture to a single Gaussian (Figure 4a) with
minimal violation of the state constraints (Table II). The input
remains within acceptable limits (Table II) despite the multi-
modal nature of the noise (Figure 4b). The deviation between
final and desired pdfs are much smaller than seen with the
Laplace pdf (Table I). This is likely because the controller
alters the weights of the multi-modal Gaussian elements to
match the desired, final Gaussian density.

VII. CONCLUSIONS

We have formulated a tractable solution of the distribution
steering problem under general, not necessarily Gaussian,
disturbances. We showed that using Boole’s inequality and
characteristic functions, we can turn the problem into a
nonlinear optimization problem. Future work will aim to
further utilize the structure of the CFs to obtain faster, real-
time solutions and extend the approach to nonlinear systems.
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The controller from (38) yields an L1 distance that upper bounds the largest deviation in each case.
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Carlo (MC) samples for validation. The MC average cost is consistent with the computed cost, and the MC state and input
constraint violations are lower than the computed violations.

(a) State evolution (x and y) over 5 timesteps, subject to state chance constraints and terminal density constraints. The system is steered
from the initial density to the final, desired density without collision, even though the reference trajectory violates the constraints.

(b) Inputs u1 and u2 satisfy input chance constraints with violation less than ∆U .

Fig. 2: Distribution steering from one Gaussian distribution to another Gaussian distribution.
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APPENDIX

A. PROOF OF THEOREM 3

Proof. Since∣∣∣∣∣ ∫
Rn

exp(itᵀz)ϕxN
(t)dt

∣∣− ∣∣ ∫
Rn

exp(itᵀz)ϕxf
(t)dt

∣∣∣∣∣
≤
∫
Rn

∣∣exp(itᵀz)ϕxN
(t)− exp(itᵀz)ϕxf

(t)
∣∣ dt, (A.1)

by multiplying both sides by (1/2π)n and using (8), yields

|ψxN
(z)− ψxf

(z)| ≤
(

1

2π

)n
‖ϕxN

−ϕx‖1. (A.2)

Lastly, since this holds for all z ∈ Rn, we get (34).

B. PROOF OF THEOREM 4

Proof. By definition of the L1 distance, for each i ∈ N[1,N ],

1

2π

∫
R
|ϕeᵀi,nxN

(ti)−ϕxf,i
(ti)| dti ≤ εi. (B.1)

Let ai = ϕeᵀi,nxN
(ti) and bi = ϕxf,i

(ti). Then,
since |ϕeᵀi,nxN

(ti)|, |ϕxf,i
(ti)| ≤ 1, it follows that

|ϕxN
(t) − ϕxf

(t)| = |
∏
iϕeᵀi,nENX(ti) −

∏
iϕxf,i

(ti)| ≤∑
i |ϕeᵀi,nxN

(ti) − ϕxf,i
(ti)|, where we have used the fact

that for ai, bi ∈ C, i ∈ N[1,n] where |ai|, |bi| ≤ 1,
|
∏
i ai −

∏
i bi| ≤

∑
i |ai − bi|. The result now follows

immediately from the definition of D(K, v).



(a) State evolution (x and y) over 5 time steps, subject to state chance and terminal density constraints. The Laplace distribution is
non-smooth at its peak, and is heavy-tailed. Our approach drives the system from a Laplace distribution to a Gaussian distribution, while
maintaining state constraint violation below ∆X .

(b) Inputs u1 and u2 satisfy input chance constraints with violation less than ∆U .

Fig. 3: Distribution steering from a Laplace distribution to a Gaussian distribution.

(a) State evolution (x and y) over timesteps, subject to the state chance and terminal density constraints. The multi-modal Gaussian is
transformed into a Gaussian with a single mode with minimal state constraint violation.

(b) Inputs u1 and u2 satisfy input chance constraints with violation less than ∆U .

Fig. 4: Distribution steering from a Gaussian mixture to a Gaussian distribution.
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