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A High-Gain Observer for Stage-Structured Susceptible-Infectious
Epidemic Model with Linear Incidence Rate

D. Bouhadjra 1,2, A. Alessandri 1, P. Bagnerini 1, A. Zemouche2

Abstract— Epidemiological models play a vital role in under-
standing the spread and severity of a pandemic or epidemic
caused by an infectious disease in a host population. The
mathematical modeling of infectious diseases in the form of
compartmental models are often employed in studying the
probable outbreak growth. In this paper, we study the problem
of state estimation for a stage-structured SI model with two
classes of infected which can be considered as a simplified
modelling approach to chronic diseases with progressive sever-
ity, as is the case with AIDS. Towards this end, a high-gain
observer design based on system state augmentation approach
is proposed to estimate the states of the SI model. Simulation
results are reported with some comparisons to the standard
high-gain observer.

Index Terms— Epidemiological modeling, Stage-structured
models, SI model, High-gain observer.

I. INTRODUCTION

The spatial spread of infectious diseases, following their
introduction at distinct locations, has always been a major
concern for human populations due to their high death
mortality in both developed and developing countries. Epi-
demiological models play an important role in analyzing the
origins, dynamics and spread of such diseases. These models
provide notation, concepts, intuition and disease-related fac-
tors such as the infectious agent, mode of transmission, latent
and infectious periods, susceptibility and resistance which
can be used to capture features that are most influential in
the spread of diseases.

Epidemiological constraints, such as delays in symptom
appearance and positive test confirmation (due to limited
testing and detection resources), may limit the real-time use
of epidemiological models [1], [2]. In order to overcome such
constraints, mathematical modeling of infectious diseases
was employed in epidemiology, as recognized by WHO [3]
and proven to be effective [4], [5]. Compartmental modeling
as a class of mathematical modeling are often employed in
studying the probable outbreak growth [6]. These models
consist of two parts: compartments and rules. The compart-
ments divide the population into the different possible states
with respect to the disease. The rules specify the proportion
of individuals moving from one class to another.

Besides the various modelling assumptions underlying the
derivation of these Compartmental models, their practical
use rely on two other assumptions: the model parameters
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are known and an appropriate initial condition, i.e., the
current state of the population is known [7]. The problem
of estimating the model parameters is certainly important
but will not be addressed in this work, one can see for
example [8], [9] and [10]. Once the model parameters are
known, we can identify the current population state. In most
classical models the total population is conserved and this
yields an estimate of one of the compartments in terms of
estimates of the remaining ones.

Although the literature on the behaviors of epidemic
models endowed with a treatment function is vast, there are
fewer works on these models from the observer point which
allows to predict and control the propagation of diseases
and virus mutation [11]. Earlier work using observers in
an epidemiological context dates back to the works in [12]
and since 2012 there was a growing interest in the literature
such as: the estimation of sequestered infected erythrocytes
in Plasmodium falciparum malaria patients in [13], param-
eters and states estimation for a SI-SI Dengue epidemic
model [14], interval observer for uncertain SIR and SIIR-SI
models [11], a state observer for a continuous and discrete
time SEIR model whose values are then used to implement
a vaccination strategy [15].

In this work, we analyze a class of stage-structured SI
models with 2 infectious stages which can be considered
as a simplified modelling approach to chronic diseases with
progressive severity, as is the case with AIDS. Then, we
propose a high-gain observer to track the states of the SI
epidemic model in the presence of measurement uncertainty.
The proposed observer is based on system state augmentation
approach which transforms the original system of dimension
n into an augmented system of dimension n+js resulting in
a new threshold for the observer parameter θ that guarantees
the exponential convergence of the estimation error and
reduces the value of the observer gain [16]. The obtained
results are compared with the standard high-gain observer to
further show the efficiency and superiority of the proposed
technique.

II. MATHEMATICAL MODELING

The SI model splits the population into two groups, the
susceptible individuals who may contract the disease and
the infected individuals who may spread the disease to the
susceptible. Once a susceptible becomes infected, he or she
moves into the infected group, increasing the size of the
infected class and decreasing the size of the susceptible class
as described in the flow diagram depicted in Figure 1.
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Fig. 1: The transfer diagram for SI model.

In SI modeling some assumptions are made about the
population and disease. First, each person in the susceptible
population is assumed to be equally likely to transmit the
disease through contact with an infected individual and
once a person is infected, they cannot recover; they remain
in the infected class forever [17]. Second, the length of
the disease outbreak is short compared with the average
person’s lifespan, so death is not a factor [18]. Therefore,
this model can be applied to diseases for which individuals
never recover and for which disease spread is relatively
quick. During an epidemic, the population is divided into
two compartments: the healthy individuals likely to catch
the disease and the infected ones, denoted by S and I ,
respectively, the total population is represented by N .

Let us consider a class of stage-structured SI model with
n infectious stages:

Ṡ = ∆−
∑n

i=1
βiIiφ(S)− µ0S

İ1 =
∑n

i=1
βiIiφ(S)− (µ1 + γ1) I1

İ2 = γ1I1 − (µ2 + γ2) I2
...

İn−1 = γn−2In−2 − (µn−1 + γn−1) In−1

İn = γn−1In−1 − µnIn (1)

where ∆ is the recruitment and βi is the per capita contact
in the compartment Ii. The function φ is assumed to be
continuous, positive and increasing that models the exposure
of susceptible individuals to contacts with infectious ones,
for instance, one can use φ(S) = Sp or φ(S) = S

1+aS (with
a > 0) to take into account saturation effects. The parameter
µ0 is the natural death rate of the susceptible individuals and
µi is the death rate of the infected individuals in stage i, in
general µi = µ0 + di with di being the additional disease
induced mortality rate and γi is the transition rate from stage
i to i+ 1.

Let x(t) =
[
S(t) I1(t) . . . In(t)

]⊤
be the state

vector of the system (1) and suppose that we can only
measure the level of infection in the last stage, i.e., the
measurable output of the system is y(t) = In(t). The aim

of this work is to derive estimates Ŝ(t) and Îi(t) satisfying
lim
t→∞

(
Ŝ(t)−S(t)

)
= 0 and lim

t→∞

(
Î(t)−I(t)

)
= 0 with only

the knowledge of In(t), ∀ t ≥ 0 using high-gain observer
techniques.

III. HIGH-GAIN OBSERVER DESIGN

A. Standard high-gain observer

Let us recall some basic concepts related to the standard
high-gain observer. Given a system written under the follow-
ing form: {

ẋ = Ax+Bf(x)
y = Cx

, (2)

where

B =
[
0 . . . 0 1

]T
, C =

[
1 0 . . . 0

]
(3)

and the state matrix A is defined by

(A)i,j =

{
1 if j = i+ 1
0 if j ̸= i+ 1

. (4)

f : Rn → R is a nonlinear function satisfying the Lipschitz
condition formulated under the following form:∣∣∣f(x1 +∆1, . . . , xn +∆n)− f(x1, . . . , xn)

∣∣∣
≤ kf

n∑
j=1

|∆j | . (5)

Then, the standard high-gain observer is defined as

˙̂x = Ax̂+Bf(x̂) + L
(
y − Cx̂

)
(6)

where, the observer gain L is written under the following
form:

L := T(θ)K, θ ≥ 1 (7)

and
T(θ) := diag

(
θ, . . . , θn

)
with K ∈ Rn×p.

Using a transformed estimation error

ˆ̃x := T−1(θ)x̃, (8)

where x̃ = x− x̂, the dynamics of the error ˆ̃x are given by:

˙̂
x̃ = θ

(
A−KC

)
ˆ̃x+

1

θn
B∆f. (9)

From the Lipschitz condition (5) and the fact that θ ≥ 1, we
can show as in [19] that there always exists a positive scalar
constant kf , independent of θ, such that

∥T−1(θ)B∆f∥ ≤ kf∥ˆ̃x∥. (10)

Following the high-gain methodology, the following theorem
is derived.

Theorem 1 ( [20]): If there exist P > 0, λ > 0, Y of
appropriate dimensions, such that

ATP + PA− CTY − Y TC + λI < 0, (11)

then the observer converges exponentially to zero for

θ > max{1, 2kfλmax(P )

λ
}, (12)



and
K = P−1Y T

where λmax(P ) is the largest eigenvalue of the matrix P .

Proof: For more details about the proof of this theorem,
we refer the reader to [20], [19], [21].

B. State augmentation based high-gain observer

This novel approach has been proposed in [16], indeed,
as demonstrated in this work, if the nonlinear function f(.)
satisfies the condition

∂f

∂xj
(x) ≡ 0,∀ j > n− js (13)

for a given js ≥ 0, then the Lipschitz inequality (10)
becomes

∥T−1(θ)B∆f∥ ≤ kf
θjs

∥ˆ̃x∥. (14)

It follows that the high-gain inequality (12) becomes

θ >

(
2kfλmax(P )

λ

) 1
1+js

≜ θ
1

1+js
0 . (15)

This new threshold on θ is significantly reduced due to the
power 1

1+js
. Hence, instead of T(θ) in L, we have T(θ)

1
1+js .

The main idea is to transform a system of dimension n, from
its original coordinates, into a new system whose dimension
is n+ js, where the new nonlinear function does not depend
on js last components of the new state. The following
theorem is derived.

Theorem 2 ( [16]): Let us consider the uniformly ob-
servable system: {

ẋ=ψ(x, u)
y=ϕ(x, u)

(16)

Assume that there exists a state transformation given as:

Ψ : Rn → Rn+js

x→ z = Ψ(x) (17)

which transforms the system (16) into the following:{
ż = AΨz +BΨfΨ(z)
y = CΨz

(18)

where AΨ, BΨ, and CΨ have the same structure than A,B,
and C, respectively, but with dimension n+ js.
We also have:

fΨ(z) ≜ fΨ(z1, . . . , zn) ⇔ ∂fΨ
∂zj

(z) ≡ 0,∀ j > n. (19)

Consider the state observer described by (20){
˙̂z = AΨx̂+BΨfΨ(ẑ) + LΨ

(
y − CΨẑ

)
x̂ = Φ(ẑ),

(20)

where Φ is a continuous left invert of the embedding Ψ
satisfying x = Φ(z) and LΨ ≜ TΨ(θ)KΨ, with TΨ(θ) ≜

diag(θ, . . . , θn+js). If there exist P > 0, λ > 0, Y , and
θ ≥ 1 such that:

A⊤
ΨP + PAΨ − C⊤

ΨY − Y ⊤CΨ + λI < 0, (21)

KΨ ≜ P−1Y ⊤, (22)

θ >
1+js

√
2kfΨλmax(P )

λ
≜ θ

1
1+js

Ψ , (23)

then the estimation error x̃ = x− x̂ converges exponentially
towards zero.

Proof: For the proof we refer the reader to [16].
Remark 1: One way of transforming system (2) into a

higher dimensional system is by adding a chain of inter-
grators (js integrators) and keeping the properties stated in
Theorem 2.

IV. ISS WITH RESPECT TO MEASUREMENT NOISE

In this section we compare the properties of the standard
high-gain observer (6) and the proposed observer (20) with
respect to measurement noises. To this end, we consider the
following system where the measurement is corrupted by a
bounded disturbance:

ẋ = Ax+Bf(x)
y = Cx+ ν

(24)

where ν represents the disturbance affecting the measure-
ment y. We will show that an upper bound on the estimation
error, in a ISS sens with appropriate norms, can be ensured
by the observers (6) and (20), respectively. However, we will
demonstrate that the use of state augmentation approach can
lead to a smaller bound on the estimation error, compared to
the one we get using the standard high-gain observer.

A. ISS property with standard high-gain observer

Consider system (24) and the standard high-gain ob-
server (6), then the transformed error dynamics system is
given as

˙̂
x̃ = θ

(
A−KC

)︸ ︷︷ ︸
AK

ˆ̃x+
1

θn
B∆f −Kν. (25)

Therefore, the observer parameters designed by Theorem 1
ensure an ISS property as introduced in the following propo-
sition.

Proposition 1: Assume that there exist a symmetric pos-
itive definite matrix P , a positive constant λ and a matrix
Y of appropriate dimensions such that the inequalities (11)-
(12) hold. Then with the observer gain L given in (7), there
exists a positive constant α such that the estimation error
x̃(t) verifies the following ISS conditions:

∥x̃(t)∥ ≤ θn−1

√
λmax(P )

λmin(P )
∥x̃0∥e−

β
2 t

+ θn

√
γ(1− e−βt)

βλmin(P )
sup
s∈[0,t]

∥ν(s)∥, (26a)

lim
t→+∞

∥x̃(t)∥ ≤ θn
√

γ

βλmin(P )
sup

s∈[0, +∞]

∥ν(s)∥, (26b)



where

β =
θλ− 2kfλmax(P )− α

λmax(P )
, γ =

∥Y ∥2

α
. (27)

Proof: The proof is omitted.

B. ISS property with the proposed high-gain observer

By a straightforward analogy, we know that we can apply
the results of Proposition 1 on the augmented system (18).
That is the observer (20) ensures a similar ISS property than
that in (26a)-(26b). However, the presence of the power 1

1+js
in the case of augmented state based observer (20), especially
in the high-gain threshold condition (23), allows reducing
significantly the values of the observer gain. For instance,
for an ϵ > 0, if we take θ = θ0+ϵ in the standard high-gain,
then according to (26b), the upper bound of the estimation
error satisfies:

lim
t→+∞

∥x̃(t)∥ ≤ (θ0 + ϵ)
n
√

γ

βλmin(P )
sup

s∈[0, +∞]

∥ν(s)∥

(28)
while with the augmented approach for θ = θϵΨ ≜ θΨ + ϵ,
we get

lim
t→+∞

∥x̃(t)∥ ≤ (θϵΨ)
n+js
1+js

√
γΨ

βΨλmin(PΨ)
sup

s∈[0, +∞]

∥ν(s)∥.

(29)

V. APPLICATION TO A TWO-STAGE-STRUCTURED
EPIDEMIC MODEL

In this section we study the special case where infected
batch I is made up of two compartments, namely, the
infected in the first stage of the disease and the infected
in the terminal phase of the infection, denoted I1 and I2,
respectively. The corresponding SI model is given as follows,

Ṡ = ∆− (β1I1 + β2I2)S − µ0S,

İ1 = (β1I1 + β2I2)S − (µ1 + γ)I1,

İ2 = γI1 − µ2I2

(30)

where
- S, I1, I2 represent the compartments of susceptible, first

stage infected and second stage infected, respectively.
- ∆, µ, α, 1/γ are recruitment, mortality rate, recovery

rate and time taken for an early-stage infected to become
in the final phase of infection, respectively.

Let x(t) =
[
S(t) I1(t) I2(t)

]⊤
and y = I2 ∈ R3, so the

model given by (30) has the following form:

Γ :

{
ẋ = f(x)
y = h(x).

(31)

When system (30) is observable, the map Ψ : x → Ψ(x)
is a diffeomorphism and,

z = Ψ(x) =

 I2
γI1 − µ2I2

γ(β1I1 + β2I2)S − γmI1 + µ2
2I2

 , (32)

where
m = µ1 + µ2 + γ.

With the change of variable z = Ψ(S, I1, I2), the expression
of Ψ−1 is

Ψ−1 : z →



µ2 (µ1 + γ) z1 + (µ1 + µ2 + γ) z2 + z3
(µ2β1 + γβ2) z1 + β1z2

,

µ2

γ z1 +
1
γ z2

z1
(33)

Then, system given by (30) is rewritten in the following
triangular form:

Γ′ :



ż = F ′(z) =

 ż1
ż2
ż3

 =

 z2
z3
φ(z)

 ,

y = Cz =
[
1 0 0

]  z1
z2
z3


(34)

This latter form allows us to make use of the high-
gain observer techniques presented in the previous section
to estimate the evolution of susceptible individuals S(t)
and infected individuals I(t). The parameters used in these
simulations are given as follows: ∆ = 40, β1 = 0.01,
β2 = 0.15, µ0 = µ1 = 0.01, µ2 = 0.025 and γ = 0.02.

In order to test the efficiency of the proposed observer
given in (20), we performed a batch of numerical simulations
to compare with the standard high-gain observer in the
presence of high-frequency measurement noise, numerically
taken as Gaussian distributed noise with zero mean and
standard deviation of 0.01. First, we design a standard high-
gain observer for the system (34) following Theorem 1, then
by using Matlab & YALMIP, we can obtain the value of
the observer gain K and the tuning parameter θ. Next, by
augmenting the state of the system following the transfor-
mation described in Section III-B, we obtain the values for
the corresponding gain Kψ and the new observer parameter
θψ . The results are summarized in Table I where we can
clearly notice that the proposed observer provides lower gain
with smaller value of the tuning parameter compared to the
standard high-gain observer.

TABLE I: Simulation results for the two observers.

Standard high-gain observer
θ K

24.2308 8.8781 15.7945 7.9158

State augmentation approach js = 1

θψ Kψ

4.7056 6.0195 12.0353 11.4500 4.5601

In Figure 2, the absolute value of the estimation error
∥x̂i,HG−xi∥ and ∥x̂i1−xi∥ are plotted for i = 1 . . . 3, where
x̂i,HG denotes the state estimate using the standard high-
gain observer and x̂i1 the state estimate using the proposed
observer. An additional zero mean Gaussian disturbances



with standard deviation of 0.01 are applied to the output
measurements during time t= 5s and t=10s. It is clear that
both observers converge towards the true state with roughly
the same speed, however, our proposed observer has better
transient response, in particular for the states x2 and x3.
We also note that our proposed observer is less sensitive to
measurement noises since the peaking phenomenon that is
typical of the standard high-gain observer is prevented using
our proposed structure as shown particularly by the plot of
∥x̂3 − x3∥.
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Fig. 2: Absolute values of estimation errors with the presence
of measurement noise.

VI. CONCLUSION

In this paper, we considered a SI epidemiological model
with two stages of infected individuals. For this class, we
have proposed simple and easy implementable observer
based on the high-gain approach. This proposed observer is
characterized by two main features, namely better transient
performances and less sensitivity to measurement noises
with respect to the standard high-gain observer. The stability

and robustness properties are established analytically using
the theory of input-to-state stability. The efficiency of the
obtained results is illustrated through numerical simulations.
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