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Abstract— In this paper, we propose a virtual clinical trial for
assessing the performance and identifying risks in closed-loop
diabetes treatments. Virtual clinical trials enable fast and risk-
free tests of many treatment variations for large populations
of fictive patients (represented by mathematical models). We
use closed-loop Monte Carlo simulation, implemented in high-
performance software and hardware, to quantify the uncer-
tainty in treatment performance as well as to compare the
performance in different scenarios or of different closed-loop
treatments. Our software can be used for testing a wide variety
of control strategies ranging from heuristical approaches to
nonlinear model predictive control. We present an example of a
virtual clinical trial with one million patients over 52 weeks, and
we use high-performance software and hardware to conduct the
virtual trial in 1 h and 22 min.

I. INTRODUCTION

Clinical trials of medical treatments are crucial to en-
suring a high level of safety and efficacy. However, they
are also very expensive and time-consuming. Therefore, it
is important to assess the treatment performance, identify
potential risks, and rigorously compare with state-of-the-
art prior to the trials. Virtual clinical trials are used for
exactly this purpose. In a virtual clinical trial, each patient
is represented by a mathematical model and the clinical trial
is simulated using high-performance software and hardware.
The simulation is carried out for a large population of virtual
patients, many different scenarios, and several variations of
the treatment. This allows for thorough and fast testing of a
large variety of different treatment designs.

In this paper, we specifically consider the treatment of
type 1 diabetes (T1D). One in eleven adults suffer from
diabetes (both types), and in 2019, 10% of the global health
expenditure (USD 760 billion) was spent on diabetes [1]. Due
to autoimmune destruction of β-cells, people with T1D are
unable to produce insulin. Consequently, life-long treatment
involving daily injections of insulin is necessary to avoid ele-
vated blood glucose (BG) levels (hyperglycemia), which can
lead to several complications and chronic conditions [2]. The
BG concentration must be measured in order to determine
an appropriate insulin dose. While too little insulin results
in hyperglycemia, too much insulin results in hypoglycemia
(low BG levels), which can be fatal in very severe cases.

As monitoring the BG and determining the appropriate
insulin dose is laborious, there is significant interest in auto-
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mated closed-loop diabetes treatment systems. Such systems
are referred to as artificial pancreases (APs), and they consist
of 1) a continuous glucose monitor (CGM), 2) a control
algorithm that determines the insulin dose, and 3) a pump
which delivers the insulin to the patient (it is possible to
use other hormones, e.g., glucagon or amylin, in addition
to insulin). Many AP algorithms have been proposed and
the majority is based on heuristics [3], proportional-integral-
derivative (PID) control [4], fuzzy logic [5], linear model
predictive control (MPC) [6]–[8], or nonlinear MPC [9], [10].

All AP algorithms contain hyperparameters, e.g., the gains
in a PID controller, and performance assessment is essential
to choosing suitable values for these. There exist both
process-independent performance measures for this purpose,
e.g., setpoint deviation and variance, and process-specific
measures [11]–[13]. For diabetes treatment, including closed-
loop systems, time-in-range (TIR), Hb1Ac values, and the
probability of severe hypoglycemia [14]–[18] are commonly
used (process-specific) performance measures. The perfor-
mance of an AP can vary significantly between T1D patients
due to differences in physiology (e.g., in pharmacodynamics
and pharmacokinetics). Therefore, it is necessary to evaluate
the performance measures for a large population of patients
in order to accurately estimate the uncertainty. However,
due to computational limitations of standard software, it is
common to evaluate the performance using only a small
number of patients and over a short time span (days or a
few weeks).

In this work, we describe an approach for high-
performance uncertainty quantification of the performance
of AP algorithms in large-scale long-term virtual clinical
trials. The approach involves mathematical models based on
stochastic differential equations (SDEs), and we use closed-
loop Monte Carlo simulation to quantify the performance
uncertainty. Furthermore, we propose multiple ways of 1) vi-
sualizing the uncertainty in the performance measures and
2) comparing the performance for different scenarios or
AP algorithms. We implement the Monte Carlo simulation
and the AP in parallelized high-performance C code, and
the computations are carried out on a high-performance
computing (HPC) cluster. Finally, we present a numerical
example of a virtual clinical trial with one million patients
over 52 weeks which can be carried out in 1 h and 22 min.

The remaining part of this paper is organized as follows.
In Section II, we describe the virtual clinical trial, and in
Section III, we present the approach for uncertainty quantifi-
cation of AP algorithms. Section IV contains the numerical
examples, and conclusions are presented in Section V.
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II. VIRTUAL CLINICAL TRIAL

The virtual clinical trial consists of 1) a population of
patients, 2) a protocol containing the trial activities (size
and duration of meals, intensity and duration of exercise,
etc.), 3) one or more mathematical models of the patients,
4) values of the model parameters, and 5) one or more
APs (i.e., control algorithms). Furthermore, it is possible to
include both incorrectly announced and unannounced meals
and exercise which are some of the key challenges that an
AP should be able to address. Finally, the virtual clinical trial
allows for stochastic mathematical models which can repre-
sent unmodeled physiological phenomena, uncertain model
parameters, and uncertainty related to meals and exercise, as
well as noisy sensor measurements.

A. Patients

The virtual clinical trial contains one million fictive pa-
tients. Each patient is represented by the same information
that would be available for a real patient. Specifically, each
fictive patient is associated with a unique ID and a set of
attributes including first and last name, date and place of
birth, sex, height, body weight, and resting heart rate. The
height, the body weight and the resting heart rate are sampled
from normal distributions, and the date of birth is sampled
from a uniform distribution.

B. Protocols

A protocol consists of a sequence of model disturbances,
i.e., uncontrolled inputs to the patient model. Common
disturbances are meals and exercise. Each protocol has an
ID and for each disturbance, it contains the disturbance type
and size as well as time stamps indicating the beginning and
end of the disturbance.

Next, to illustrate the concept, we describe a protocol
designed to mimic a Northern European lifestyle in terms
of meal times, seasons, work weeks, and the number of va-
cation weeks and public holidays. Furthermore, the protocol
involves a high-carb diet (in particular during winter and
autumn), which is challenging for APs. We divide the year
into 4 seasons each consisting of 13 weeks, and we assume
6 weeks of vacation and 10 public holidays, represented as
an additional 2 weeks of vacation. Each season is a different
combination of three basis weeks; a standard week, an active
week, and a vacation week. Furthermore, each basis week is
a different combination of four basis days; a standard day,
an active day, a day with a movie night, and a day with a
late night. Table I shows the compositions of the seasons
and the weeks.

The patients are less active and eat more during vacation
weeks, they also eat more during winter and autumn, and
active weeks contain more active days. Compared to the
standard day, 1) the active day has an exercise session, 2) the
movie night has an additional snack in the evening, and 3) the
late night has two additional snacks in the evening. Fig. 1
shows schematics of the basis days, and Table II shows the
meal sizes which depend on the body weight.

TABLE I
COMPOSITIONS OF THE SEASONS AND THE WEEKS

Compositions of the seasons
Season Standard week Active week Vacation week
Winter 6 4 3
Spring 6 6 1
Summer 7 3 3
Autumn 9 3 1

Compositions of the weeks
Week type Standard day Active day Movie night Late night
Standard 4 1 1 1
Active 3 3 1 0
Vacation 5 0 0 2

Medium meal
Small meal

Large meal

snack

Medium meal
Small meal

Large meal

snack Exercise

snack

Medium meal
Small meal

Large meal

snack

snack

Medium meal
Small meal

Large meal

snack snack

Fig. 1. Overview of the basis days in winter and autumn. From the top,
we show 1) the standard day, 2) the active day, 3) the movie night, and 4)
the late night. During the summer and spring, the dinner is a medium meal
and the snack is before lunch.

C. Database

A key component of the virtual clinical trial is a database
containing the fictive patients, protocols, model parameters,
and simulation results. We use the open-source database sys-
tem PostgreSQL. Using a database makes it straightforward
to share the virtual clinical trial and compare performance
results for the exact same patients and protocols. It also
allows the user to carry out the clinical trial for a specific
demographic, e.g., people with a certain body weight or sex.
Furthermore, the database includes several basis days and
weeks which the user can combine to form new protocols.
Finally, the database can be extended with a graphical user
interface in order to 1) visualize the AP performance and
characteristics of the patients and protocols and 2) add

TABLE II
WEIGHT-DEPENDENT MEAL SIZES

Meal size Amount of carbohydrates For a 70 kg patient
Large meal 1.29 g CHO/kg 90 g CHO
Medium meal 0.86 g CHO/kg 60 g CHO
Small meal 0.57 g CHO/kg 40 g CHO
Snack 0.29 g CHO/kg 20 g CHO



new elements such as patients, protocols, and mathematical
models to the database.

III. CLOSED-LOOP MONTE CARLO SIMULATION

In Monte Carlo simulation, the uncertainty of a quantity
of interest (e.g., the TIR for a T1D patient) is estimated
by simulating the system (i.e., the clinical trial) with dif-
ferent values of the uncertain quantities (e.g., the model
parameters). In this work, we extend the high-performance
toolbox for closed-loop Monte Carlo simulation developed
by Wahlgreen et al. [19] with a low-memory implementation
which circumvents the high storage requirements associated
with large numbers of long-term simulations.

A. Mathematical model
The virtual clinical trial can be used for mathematical

models of patient physiology in the general stochastic form

x(t0) = x0, (1a)
dx(t) = f(t, x(t), u(t), d(t), p)dt

+ σ(t, x(t), u(t), d(t), p)dw(t), (1b)
z(t) = h(t, x(t), p) (1c)
y(tk) = g(tk, x(tk), p) + v(tk). (1d)

Here, t is time, and the virtual clinical trial starts at time t0.
The states, x, represent the physiological state of the patient,
e.g., the BG concentration and amount of insulin in the body,
and x0 are the initial states. The manipulated inputs, u, are
the quantities computed by the AP, e.g., the insulin flow
rate. The disturbance variables, d, represent the uncontrolled
inputs, e.g., meals and exercise, and p are model parameters.
The first term in (1b) is the deterministic drift term and the
second term is the stochastic diffusion term.

The AP receives measurements of the observed variables,
y, obtained from the measurement function, g, at discrete
points in time, tk, and the outputs, z, obtained from the
output function, h, are the quantities relevant to the control
objective of the AP. The standard Wiener process w is used to
represent uncertainty. Its increment is distributed as dw(t) ∼
Niid(0, Idt), and the measurement noise is assumed to be
normally distributed: v(tk) ∼ Niid(0, R(tk)). Furthermore,
the inputs are assumed to be piecewise constant between
sampling times:

u(t) = uk, t ∈ [tk, tk+1[, (2a)
d(t) = dk, t ∈ [tk, tk+1[. (2b)

Finally, we stress that the form (1b) also includes determin-
istic dynamical systems, i.e., ordinary differential equations
(ODEs), where σ is zero.

B. Control algorithm
At time tk, 1) the control state, xck, is updated, and 2) the

AP (i.e., the closed-loop feedback control strategy) computes
values of the manipulated inputs based on the previous
control state and the measurements, yk = y(tk):

xck+1 = κk(xck, yk, ūk, ȳk, d̂k, pκ), (3a)

uk = λk(xck, yk, ūk, ȳk, d̂k, pµ). (3b)

Here, ūk and ȳk are setpoints, and d̂k are estimates of the
disturbances. This form can represent many types of closed-
loop control strategies including heuristic strategies based
on physiological insight, PID-based strategies, and MPC
(including state estimation). Many different values of the
hyperparameters pµ and pκ can be tested using the virtual
clinical trial.

C. Software and hardware

The closed-loop Monte Carlo simulation, the mathematical
models, and the AP are implemented using high-performance
C code which we parallelize for shared-memory architectures
using OpenMP. Whenever a simulation is completed, we im-
mediately compute its contribution to performance indicators
such as TIR as well as mean, minimum, and maximum BG
concentration as functions of time. Subsequently, the simu-
lation is only stored if it is worse than previous simulations
according to some criterion (e.g., lowest BG concentration
reached).

We use two AMD EPYC 7542 32-core processors with
a clock speed of 2.9 GHz [20]. As the Monte Carlo simu-
lation is highly parallelizable, the speedup in computational
performance increases almost linearly with the number of
cores. Consequently, the parallel implementation runs almost
64 times faster than a corresponding sequential implementa-
tion. Furthermore, it would be computationally infeasible to
carry out large-scale long-term virtual clinical trials using a
sequential Matlab implementation [19] or similar.

IV. EXAMPLE OF A VIRTUAL CLINICAL TRIAL

In this section, we present an example of a virtual clinical
trial involving a million virtual patients following the exam-
ple protocol described in Section II-B. We briefly describe
the mathematical model of the patients’ physiology and the
AP used in the trial, and we demonstrate how to visualize
the uncertainty in the AP performance. Furthermore, we also
show how to compare the performance of the AP in two
different scenarios; one where the basal rate is correct (trial
A) and another where it is underestimated by 50% (trial B).
Finally, the computation time is 1 h and 22 min (with a time
step size of 30 s in the simulations). Consequently, several
virtual clinical trials can be carried out in a single day.

A. Performance measures

We divide the BG concentration into 5 ranges [14] given
in mmol/L. Red: severe hypoglycemia (below 3). Light
red: hypoglycemia (3–3.9). Green: normoglycemia (3.9–10).
Yellow: hyperglycemia (10–13.9). Orange: severe hyper-
glycemia (above 13.9). Furthermore, we also consider the
distributions of the total daily basal and bolus insulin as well
as bolus glucagon.

B. Patient model

We use an extension of the model presented by Hovorka
et al. [9] to represent the pharmacokinetic and pharmacody-
namical responses of the virtual patients to carbohydrate ab-
sorption and subcutaneous infusion of insulin and glucagon.



The model is extended with 1) a one-state model of the
measured BG concentration, 2) a two-state pharmacokinetic
model of subcutaneous glucagon injection [21], and 3) a
three-state model of the effect of exercise on the plasma BG
concentration [22].

The model parameters related to the measured BG concen-
tration, glucagon infusion, and exercise have the same values
for all virtual patients. We sample the remaining model
parameters from the distributions presented by Hovorka et
al. [23]. We only use parameter sets where the parameter
values are nonnegative, the normally distributed parameters
are within one standard deviation from the mean, and the
insulin basal rate is at least 0.4 U/h.

C. Artificial pancreas

We demonstrate the capabilities of the virtual clinical trial
using a dual-hormone AP which switches between an insulin
mode and a glucagon mode. Glucagon is used to mitigate hy-
poglycemia. The insulin mode involves 1) microadjustments
of the basal rate, 2) a meal bolus calculator, 3) superboli, and
4) an insulin-to-carb ratio estimator. In the glucagon mode,
only microboli are administered. In both modes, a 100 µg
glucagon bolus is administered at the beginning of exercise
if the blood glucose concentration is below 7 mmol/L.
No insulin is administered in the glucagon mode, and no
glucagon, apart from the exercise bolus, is administered in
the insulin mode. The AP uses filtered estimates of the
glucose concentration obtained with a low-pass filter, and
several hyperparameters have different values depending on
whether the patient is exercising or not.

Fig. 2 shows week 14 of a simulation for a single patient.
The AP administers insulin boli at meal times, the basal
rate is turned off for a period after the meals, and a small
glucagon bolus is administered during exercise, i.e., it is not
the 100 µg bolus at the beginning of exercise. As is evident,
the TIR is high for the shown period.

D. Performance of the artificial pancreas

Fig. 3 shows the amount of time spent below different BG
concentrations. It allows us to inspect the worst-case patient
(lowest BG concentration reached), the population average,
and the values reached by at least one patient (the span).
The worst-case patient is useful for identifying weaknesses
in the AP. Here, it seems unlikely that the basal rate is too
high because the patient suffers from severe hyperglycemia
almost 40% of the time. This can also be seen from the
stacked bar chart in the middle of Fig. 4. The population
mean can reveal systemic issues. On average, the patients
spend almost all of their time above the target of 6 mmol/L.
Perhaps too little insulin is administered. Finally, the shaded
area can be used to conclude that, e.g., 1) no patient spends
more than 6% of their time below 3.9 mmol/L and 2) nobody
is above 13.9 mmol/L more than 40% of the time.

Whereas the two stacked bar charts in the left of Fig. 4
provide an intuitive overview, the box plot on the right gives
a comprehensive picture of the TIR for the entire population.
The red markers show that only a few patients experience

Fig. 2. Week 14 of a simulation for 1 patient. From the top we show:
1) The BG concentration (BGC), 2) the meal carbohydrate content (shown
as a rate dependent on the body weight), 3) the resting heart rate reserve
(HRR), 4) the administered insulin basal rate, 5) the insulin boli, and 6) the
glucagon boli.

Fig. 3. Cumulative distribution of the BG concentration in a virtual clinical
trial with 1 million patients over 52 weeks. Blue solid line: The mean BG
concentration. Red solid line: The worst-case patient. Red dashed line: The
setpoint. Grey shaded area: The span of all the patients.

hypoglycemia. On average, the patients spend 77% of their
time in range, and for most patients, this value is at least
55%. However, a significant part spends between 5% and
40% above 13.9 mmol/L. Finally, Fig. 5 shows distributions
of the total insulin and glucagon administered per day. These
distributions can be compared with dosage guidelines to
see if extreme amounts are administered. For instance, it
is positive that for the most part, only small amounts of
glucagon are administered here.

E. Comparison of scenarios

When comparing different scenarios or APs, the plots in
Fig. 3–5 can be overlaid or combined as shown in Fig. 6–
8. It is clear from Fig. 6 that the basal rate is too low in
trial B. However, the worst-case patients reach equally low



Fig. 4. Distribution of the TIRs for a virtual clinical trial with 1 million patients over 52 weeks. Left: Mean TIRs for all patients. Middle: TIRs for the
worst-case patient. Right: Box plot of the TIRs for all patients.

Fig. 5. Distributions of the total daily basal and bolus insulin and bolus
glucagon for a virtual clinical trial with 1 million patients over 52 weeks.
Top: Basal insulin. Middle: Bolus insulin. Bottom: Bolus glucagon.

BG concentrations in both trials. Fig. 7 also clearly shows
that far better TIRs are reached with the correct basal rate
although the worst-case patient experiences hypoglycemia
more often with the correct basal rate. Fig. 8 allows for
direct comparison of how much insulin and glucagon that is
administered on a daily basis. Obviously, less basal insulin
is administered in trial B, and as a result, more bolus insulin
is given. Consequently, more glucagon is given in trial B.

V. CONCLUSION

In this paper, we present a virtual clinical trial for as-
sessing the uncertainty in the performance of closed-loop
diabetes treatments. We use a high-performance closed-loop
Monte Carlo method for quantifying the uncertainty, and we
evaluate the performance by examining 1) the distributions of
the TIRs for the patient population and 2) the distributions
of the total daily doses of basal and bolus insulin as well
as bolus glucagon. Furthermore, this approach can be used
to compare the performance in different scenarios and for
different closed-loop treatments. Finally, we demonstrate that
a virtual clinical trial with one million patients over 52 weeks
can be completed in 1 h and 22 min by using parallel
high-performance software and hardware. The developed
software can be used for closed-loop systems with any drug

Fig. 6. Cumulative distribution of the BG concentration in two virtual
clinical trials of 1 million patients over 52 weeks. Blue solid line: The mean
BG concentration of trial A. Blue dotted line: The mean BG concentration of
trial B. Red solid line: The patient that reaches the lowest BG concentration
in trial A. Red dotted line: The patient that reaches the lowest BG
concentration in trial B. Red dashed line: The setpoint. Grey shaded area:
The span of all patients in trial A. Light blue shaded area: The span of all
patients in trial B.

administration device (pump or pen) and measurement device
(CGM or self-monitoring of blood glucose (SMBG) device).
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