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Abstract— Value-based methods play a fundamental role in
Markov decision processes (MDPs) and reinforcement learning
(RL). In this paper, we present a unified control-theoretic
framework for analyzing valued-based methods such as value
computation (VC), value iteration (VI), and temporal differ-
ence (TD) learning (with linear function approximation). Built
upon an intrinsic connection between value-based methods and
dynamic systems, we can directly use existing convex testing
conditions in control theory to derive various convergence
results for the aforementioned value-based methods. These
testing conditions are convex programs in form of either linear
programming (LP) or semidefinite programming (SDP), and
can be solved to construct Lyapunov functions in a straightfor-
ward manner. Our analysis reveals some intriguing connections
between feedback control systems and RL algorithms. It is
our hope that such connections can inspire more work at the
intersection of system/control theory and RL.

I. INTRODUCTION

Over the past 10 years, many research ideas have emerged
from the fields of control, optimization, and machine learn-
ing. A big research focus is on fundamental connections
between control systems and iterative algorithms. The re-
search on this topic has led to exciting new results on
algorithm analysis and design. For example, iterative opti-
mization methods have been analyzed as feedback control
systems [1]–[15], and control-theoretic tools have been lever-
aged to design new optimization algorithms in various set-
tings [16]–[22]. Recently, there has been an attempt to extend
such control perspectives to reinforcement learning (RL).
In [23], a fundamental connection between temporal differ-
ence learning and Markovian jump linear systems (MJLS)
has been established. In [24], the switching system theory has
been combined with the ODE method [25], [26] to analyze
the asymptotic convergence of Q-learning. More recently,
value iteration has also been connected to PID control [27].
Our paper is inspired by these prior results, and establishes a
new connection between RL and control theory. Specifically,
we tailor various convex testing conditions in control theory
for unifying the analysis of value-based algorithms.

RL refers to a collection of techniques for solving Markov
decision processes (MDPs), and has shown great promise
in many sequential decision making tasks [28]–[30]. Value-
based methods including value computation (VC), value iter-
ation (VI), and temporal difference (TD) learning [29] have
played a fundamental role in modern RL. The convergence
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proofs for these methods are typically derived in a case-by-
case manner [28]–[37]. Such case-by-case analysis may not
be easily generalized. For example, the convergence proof for
VI is based on applying the contraction mapping theorem,
and requires identifying the right distance metric via deep
expert insights. The same distance metric may not be directly
used in analyzing other algorithms such as TD learning.

In this paper, we present a unified control-theoretic frame-
work for the convergence analysis of value-based methods. A
key observation is that value-based methods can be viewed as
dynamical control systems whose behaviors can be directly
analyzed using convex programs. In this paper, VC is mod-
eled as a linear time invariant (LTI) positive system, and VI
is viewed as a switched positive affine system. In addition,
we also borrow the Markovian jump linear system (MJLS)
perspective on TD learning from [23]. Notice that there exist
many convex testing conditions for analyzing LTI positive
systems [38], [39], switched positive systems [40]–[45], and
MSLS [46]–[51]. We show that valued-based methods can
be analyzed by directly applying the existing linear program-
ming (LP) or semidefinite programming (SDP) conditions
from the positive system or MJLS theory. Importantly, we
can solve these convex conditions analytically to build our
Lyapunov-based proofs in a more transparent manner. It is
our hope that the proposed framework can inspire more work
at the intersection of system/control theory and RL.

Our analysis makes direct use of existing convex programs
in control theory, and complements the work in [23], [24],
[32] which rely on other types of stability analysis tools.
There are many other convex conditions in control theory,
and our work opens the possibility of re-examining these
conditions in the context of RL. Compared with [23], our
SDP approach has led to new stepsize bounds for TD
learning. This result will be given in Section III-C.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation

The set of n-dimensional real vectors is denoted as Rn.
The set of m×n real matrices is denoted as Rm×n. We use
Rn+ to denote the set of the n-dimensional real vectors whose
entries are all non-negative. For x ∈ Rn, we denote its i-th
element as x(i). The inequality x > 0 (x ≥ 0) means that
x(i) > 0 (x(i) ≥ 0) for all i. For A ∈ Rn×n, the inequality
A > 0 (A ≥ 0) means all the entries of A are positive (non-
negative). We use AT and ρ(A) to denote the transpose and
the spectral radius of A, respectively. A matrix A is said to
be Schur stable if ρ(A) < 1. The inequality G � 0 (G � 0)
means that the matrix X is positive (semi-)definite.
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B. Markov Decision Process and Reinforcement Learning
First, we present some background materials on MDPs

and RL. Many decision making tasks can be formulated as
MDPs. Consider a MDP defined by the tuple (S,A, P,R, γ),
where S is the set of states, A is the set of actions, P is the
transition kernel, R is the reward function, and γ ∈ (0, 1) is
the discount factor. In this paper, both S and A are assumed
to be finite. Without loss of generality, we assume S =
{1, 2, . . . , n} and A = {1, 2, . . . , l}. The transition kernel is
specified by P ((s, a), s′) = P(sk+1 = s′|sk = s, ak = a).

A policy is a feedback law mapping from states to actions.
A policy can be stochastic and maps each state to a prob-
ability distribution over A. The goal is to find an optimal
policy that maximizes the total accumulated rewards:

π∗ = arg max
π

E

[ ∞∑
k=0

γkR(sk, ak)
∣∣ak ∼ π(·|sk), s0

]
.

To obtain an optimal policy, one can solve the optimal
value function J∗ from the optimal Bellman equation:

J∗(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

P ((s, a), s′)J∗(s′)

)
. (1)

Once J∗ is found, one can construct the optimal policy as

π∗(s) = arg max
a∈A

(
R(s, a) + γ

∑
s′∈S

P ((s, a), s′)J∗(s′)

)
.

The optimal Bellman equation depends on the transition
kernel. If the transition model is unknown, RL methods (e.g.
TD learning, Q-learning, policy gradient, etc) can be applied.

C. Value Computation
The performance of a given policy π can be evaluated

from the associated value function Jπ , which is defined as

Jπ(i) = E

[ ∞∑
k=0

γkR(sk, ak)
∣∣ak ∼ π(·|sk), s0 = i

]
.

For given π, denote the probability transition matrix of {sk}
as Pπ . Then Jπ can be solved from the Bellman equation:

Jπ(i) = Rπ(i) + γ
∑
j

Pπ(i, j)Jπ(j), (2)

where Pπ(i, j) is the (i, j)-th entry of Pπ , and Rπ(i) is the
immediate reward obtained from state i under the policy π.
The above Bellman equation can be compactly rewritten as

Jπ = Rπ + γPπJπ. (3)

Obviously, Jπ can be calculated as Jπ = (I − γPπ)−1Rπ
for any 0 < γ < 1. To avoid matrix inversion, a popular
approach for solving Jπ is to apply the following iterative
value computation (VC) scheme:

Jk+1 = γPπJk +Rπ. (4)

It is known that the above method is guaranteed to converge
to Jπ at a linear rate γ. This is actually obvious from the
linear system theory. For the right stochastic matrix Pπ ,
we have ρ(Pπ) = 1. Hence the convergence of (4) can be
guaranteed by the fact that we have ρ(γPπ) = γ ∈ (0, 1).

D. Value Iteration
One can solve the optimal value function J∗ by recursively

applying the Bellman operator T (·) : Rn → Rn. This leads
to the famous value iteration (VI) method which iterates as

Jk+1(s) = max
a∈A

(
R(s, a) + γ

∑
s′

P ((s, a), s′)Jk(s′)

)
.

A pseudo-code for VI is provided as follows.

Algorithm 1: Value iteration algorithm

Initialization: J(s)← J0(s),∀ s ∈ S;
Repeat
For all s ∈ S ;
J(s)←maxa∈A (R(s, a) + γ

∑
s′ P ((s, a), s′)J(s′));

Until J converge

The iteration of VI can be compactly rewritten as

Jk+1 = T (Jk), (5)

where T (·) is the Bellman optimality operator. It is known
that VI converges to J∗ at the rate γ, and a standard way to
prove this is to apply the contraction mapping theorem [28].

E. TD Learning with Linear Function Approximation
It is very common that the transition kernel of MDP is

unknown. In this case, the VC scheme (4) is not appli-
cable. Instead, TD learning can be used to estimate the
value function from sampled trajectories of the underlying
Markov chain {sk}. Most applications have enormous state
spaces, making policy evaluation difficult. Then one needs
to incorporate function approximation techniques. Suppose
the value function is estimated as Jπ(s) ≈ φ(s)Tθπ where
φ is the feature vector and θπ is the weight to be estimated.
One model-free way to estimate θπ is to apply the following
TD(0) recursion:

θk+1 = θk − αφ(sk)
(
(φ(sk)− γφ(sk+1))Tθk −Rπ(sk)

)
,

where Rπ is the reward, γ is the discount factor, and α is
the learning rate. The Markov nature of {sk} has caused
trouble for the finite time analysis of the above method.
Very recently, various specialized tricks [23], [31], [32] have
been developed to address this technical difficulty, leading to
several useful finite time results for TD(0) with sufficiently
small α.

F. Main Objective: Unified Analysis of VC, VI, and TD
The objective of this work is to develop a simple routine

unifying the analysis of VC, VI, and TD(0) with linear
function approximation. Built upon the connections between
value-based methods and dynamic systems, we can directly
use existing convex programs (LP/SDP) in control theory
to analyze the above value-based methods. In addition,
these convex programs lead to different types of Lyapunov
functions, making the Lyapunov-based convergence analysis
transparent. Table I summarizes our main results in this work.
Our analysis sheds new light on how to combine convex
programs and Lyapunov analysis in the context of RL.



TABLE I
CONVEX PROGRAMS FOR VALUE-BASED METHODS

Value-based Algorithms Type of Dynamic Systems Convex Programs Lyapunov functions
Value Computation LTI Positive system Eq.(6) LP & SDP (Theorem 1) Eq. (10)

Value Iteration Switched positive system Eq.(11) LP (Condition (13)) Eq. (16)
TD(0) with Linear Function Approximation MJLS Eq.(22) SDP (Proposition 3) Eq. (24)

III. UNIFIED ANALYSIS OF VALUE-BASED METHODS

A. LPs and SDPs for Analyzing VC

To analyze VC, we apply (3) and (4) to rewrite VC as

ζk+1 = Aπζk (6)

where ζk = Jk−Jπ , and Aπ = γPπ ∈ Rn×n. Notice that (6)
is actually a positive system since Aπ = γPπ ≥ 0. To verify
the Schur stability of Aπ , the following convex conditions
for positive linear systems can be directly applied.

Proposition 1: Suppose Aπ ≥ 0. Then each of the follow-
ing conditions provides a necessary and sufficient condition
for the stability of (6):

1) ∃ ξ ∈ Rn s.t. ξ > 0, and Aπξ − ξ < 0,
2) ∃ ν ∈ Rn s.t. ν > 0, and νTAπ − νT < 0,
3) ∃ G ∈ Rn×n s.t. G � 0 AT

πGAπ ≺ G.
Proof: This result is just the discrete-time counterpart

of Proposition 1 in [39] and can be proved similarly.

The above convex programs can be solved to obtain three
types of Lyapunov functions for (6). Let 1n denote the n-
dimensional vector whose entries are all equal to 1. Then
our results can be stated as follows.

Theorem 1: Consider the recursion (6). Set (ξ, ν,G) as

ξ = 1n, ν = ω, G = diag

(
ν(1)

ξ(1)
, · · · , ν(n)

ξ(n)

)
,

where ω is the stationary distribution of Pπ . Then we have

ξ > 0 and Aπξ ≤ γξ, (7)

ν > 0 and νTAπ ≤ γνT, (8)

G � 0 and AT
πGAπ � γ2G. (9)

This leads to the following three types of Lyapunov functions

V1(ζ) = max
i
|ζ(i)|, V2(ζ) = |νTζ|, V3(ζ) = ζTGζ,

(10)
which satisfy V1(ζk) ≤ C1γ

k, V2(ζk) ≤ C2γ
k, and V3(ζk) ≤

C3γ
2k for some fixed positive constants (C1, C2, C3).
Proof: Since Pπ is always a right stochastic matrix, we

have Pπ1n = 1n and ωTPπ = ωT. Therefore,

Aπ1n − γ1n = γ(Pπ1n − 1n) = 0

ωTAπ − γωT = γ
(
ωTPπ − ωT

)
= 0.

Hence (7) and (8) hold. The third condition can be proved
as discussed by Proposition 2 in [39]. The rest of the results
follow from standard arguments in positive system theory.

Notice that the conditions (7) (8) are LPs, and (9) can be
solved as SDPs. Theorem 1 provides three different types of
Lyapunov functions for the positive system (6):

1) `∞-type: V1(ζ) = maxi |ζ(i)|;
2) Linear-type copositive: V2(ζ) = |νTζ|;
3) Quadratic: V3(ζ) = ζTGζ.

It is trivial to show V1(ζk+1) ≤ γV1(ζk) and V3(ζk+1) ≤
γ2V3(ζk). For i = 2, the Lyapunov function is copositive
and works slightly differently. Here we briefly explain how
it works. For any ζ0 ∈ Rn, ∃ζ+

0 , ζ
−
0 ∈ Rn+ s.t. ζ0 = ζ+

0 −ζ
−
0 .

Let {ζ+
k } and {ζ−k } be the state trajectories of (6) initialized

from ζ+
0 and ζ−0 , respectively. By linearity, we have ζk =

ζ+
k −ζ

−
k . Based on the condition (8), we can show V2(ζk) ≤

V2(ζ+
k ) +V2(ζ−k ) ≤ γk(V2(ζ+

0 ) +V2(ζ−0 )). This ensures the
convergence of VC.

A key message from the above analysis is that the Lya-
punov function construction for positive linear systems can
be simpler than general LTI systems due to the use of
LPs. Since the construction of the max-type (or `∞-type)
Lyapunov function V1(·) is independent of the underlying
policy, we may construct an `∞-type common Lyapunov
function for cases where the policy is changing over time.

B. LPs and Common Lyapunov Functions for VI

Next we establish the connection between VI and switched
positive affine systems. This will lead to LP conditions for
analyzing VI. The VI scheme Jk+1 = T (Jk) can be recast as

Jk+1 = γPσk
Jk +Rσk

(11)

where σk ∈ {1, 2, . . . , ln}. Recall l and n denote the
size of action space and state space, respectively. When
σk = m, we set Pσk

= Pm and Rσk
= Rm.

For all m ∈ {1, 2, · · · , ln}, Pm is an n × n matrix
whose i-th row (for all i) is a row vector in the form
of
[
P ((i, a), 1) P ((i, a), 2) . . . P ((i, a), n)

]
with some

a ∈ A. Similarly, for all m, the vector Rm is a vector whose
i-th element (for all i) is equal to R(i, a) for some a ∈ A.
The total number of the (Pm, Rm) pairs is ln, and we denote
the set of all such pairs as Λ. Therefore, we can just view
(11) as a switched positive affine system, and it is not that
surprising that we can analyze VI via switched system theory.

For ease of exposition, we first address the case where
Rm = 0 for all m. In this case, we have J∗ = 0, and (11)
can be rewritten as a switched positive linear system:

Jk+1 = AmJk, m ∈ {1, 2, · · · , ln}, (12)

where Am = γPm ∈ Rn×n. A well-known fact is that
the system state of (12) may diverge for some switching
sequence even when Am is Schur stable for all m [52].
The stability guarantees for (12) are typically obtained by
extending the Lyapunov approach presented in Proposition 1.
One way is to use the common Lyapunov function (CLF).



Proposition 2: Suppose Am ≥ 0 for all m. Then each of
the following conditions provides a sufficient condition for
the stability of the switched positive system (12):

1) ∃ξ ∈ Rn s.t. ξ > 0 and Amξ − ξ < 0 for all Am.
2) ∃ν ∈ Rn s.t. ν > 0 and νTAm − νT < 0 for all Am.
3) ∃ a matrix G � 0 s.t. AT

mGAm −G ≺ 0 for all Am.
Proof: The proof is standard. The third condition actu-

ally does not require Am to be positive. If AT
mGAm−G ≺ 0,

then ∃ ε > 0 such that AT
mGAm − (1− ε)G � 0. Hence we

can define a Lyapunov function V (Jk) = JT
kGJk satisfying

V (Jk+1) ≤ (1− ε)V (Jk). This ensures the stability of (12).
The first and second conditions do require Am to be positive,
and can be proved similarly. See [44], [45] for details.

Similar to Theorem 1, the testing conditions in Proposi-
tion 2 can be modified to analyze convergence rates of (12).
One will obtain similar rate bounds as presented in Theo-
rem 1 if any of the following is feasible:

∃ ξ ∈ Rn s.t. ξ > 0 and Amξ ≤ γξ ∀ m. (13)

∃ ν ∈ Rn s.t. ν > 0 and νTAm ≤ γνT ∀ m. (14)

∃ G ∈ Rn×n s.t. G � 0 and AT
mGAm � γ2G ∀ m. (15)

It is interesting to see that in general, the system (12) does not
have a common linear copositive Lyapunov function since
the stationary distributions for different Pm are typically
not the same. It also seems difficult to construct a common
solution G for the SDP (15). However, since all Pm share
the same right eigenvector 1n, we have γPm1n = γ1n for
all m. Hence we can solve (13) to obtain an `∞-type CLF:

V (Jk) = ‖Jk − J∗‖∞. (16)

Condition (13) can be used to guarantee V (Jk) ≤ γkV (J0).
Now, we can extend the above analysis to the general case

where Rm 6= 0. In this case, we will show that the iterations
of VI can be upper and lower bounded by the trajectories
of two stable positive linear systems. Hence positive system
theory can still be applied. We need the following lemma.

Lemma 1: Consider the switched positive affine sys-
tem (11) with a switching sequence {σk} completely de-
termined by the Bellman optimality operator1. Then the
following inequality holds for all k

γP ∗(Jk − J∗) ≤ Jk+1 − J∗ ≤ γPσk
(Jk − J∗). (17)

Proof: Since J∗ = T (J∗), there exists a pair
(P ∗, R∗) ∈ Λ such that J∗ = γP ∗J∗+R∗. By the definition
of the Bellman optimality operator, one can show that the
following two inequalities holds for all m:

γPmJ
∗ +Rm ≤ γP ∗J∗ +R∗, (18)

γPmJk +Rm ≤ γPσk
Jk +Rσk

. (19)

Using (18), (19), and the fact that J∗ = γP ∗J∗ + R∗, one
can verify γP ∗(Jk − J∗) ≤ Jk+1 − J∗ ≤ γPσk

(Jk − J∗).
This leads to the desired conclusion.

Based on Lemma 1, we obtain the following main result.

1In other words, the trajectory of such a switched system now exactly
matches the sequence generated by the VI method.

Theorem 2: Consider the switched positive affine sys-
tem (11) with a switching sequence {σk} completely de-
termined by the Bellman optimality operator T . Suppose the
sequence {Juk } is generated by the system Juk+1 − J∗ =
γPσk

(Juk −J∗) with the same switching sequence {σk}. Let
the sequence {Jok} be generated by the system Jok+1−J∗ =
γP ∗(Jok − J∗). Suppose J0 = Ju0 = Jo0 . Then we have

Jok − J∗ ≤ Jk − J∗ ≤ Juk − J∗, ∀k (20)

Proof: This theorem can be proved using induction.
When k = 0, it is straightforward to verify that (20) holds
as a consequence of Lemma 1. Suppose (20) holds for k = t.
For k = t+ 1, we can apply Lemma 1 to show

Jt+1 − J∗ ≤ γPσk
(Jt − J∗) ≤ γPσk

(Jut − J∗) = Jut+1 − J∗

where the second step follows from the fact that Pσk
is

right stochastic. Based on Lemma 1, we can use a similar
argument to show Jt+1 − J∗ ≥ Jot − J∗. Hence (20) holds
for k = t+ 1. This completes the proof.

Therefore, we can directly apply the LP condition (13)
to construct an `∞-type CLF for VI and prove the rate
bound ‖Jk − J∗‖∞ ≤ max{‖Juk − J∗‖∞, ‖Jok − J∗‖∞} ≤
γk‖J0 − J∗‖∞. This demonstrates how to apply the simple
LP condition (13) to analyze VI.

C. SDPs for TD(0) with Linear Function Approximation
In this section, we provide SDP-based finite time analysis

for TD(0) with linear function approximation. Since TD(0)
can be viewed as a MJLS, the SDP-based stability conditions
for MJLS can be directly applied. Recall that TD(0) (with lin-
ear function approximation) follows the update rule θk+1 =
θk − αφ(sk)

(
(φ(sk)− γφ(sk+1))Tθk −Rπ(sk)

)
, where φ

is the feature vector, and θ is the weight to be estimated.
We can augment

[
sTk+1 s

T
k

]T ∈ S ⊕ S as a new vector zk.
Obviously, there is a one-to-one mapping from S ⊕S to the
set N = {1, 2, · · · , n2}. Without loss of generality, {zk} can
be set up as a Markov chain sampled from N . Suppose θπ is
the solution to the projected Bellman equation for the fixed
policy π. Due to the one-to-one correspondence between[
sTk+1 s

T
k

]T
and zk, the iteration of TD(0) can be recast as

θk+1 − θπ = θk − θπ + α (Azk(θk − θπ) + bzk) , (21)

where Azk = φ(sk)(γφ(sk+1) − φ(sk))T and bzk =
φ(sk)

(
Rπ(sk) + (φ(sk)− γφ(sk+1))Tθπ

)
. When zk = i ∈

N , we have Azk = Ai and bzk = bi. We denote ζk = θk−θπ .
Then (21) can be rewritten as the following MJLS:

ζk+1 = Hzkζk + αbzkuk. (22)

where Hzk = I+αAzk , and uk = 1 ∀k. When zk = i ∈ N ,
we have Hzk = Hi. Denote pij = P(zk+1 = j|zk = i), and
N = n2. Then the following mean square stability condition
[46]–[48] can be directly applied to analyze (22).

Proposition 3: The MJLS (22) is mean square stable
(MSS) if and only if there exist matrices Gi � 0 for
i = 1, · · · , N such that the following SDP is feasible:

Gi −HT
i

 N∑
j=1

pijGj

Hi � 0, for i = 1, · · · , N. (23)



Proof: This stability condition is well known. For more
details, see discussions in [46] or [47].

There are multiple ways to prove the mean square stability
of (22) from the SDP condition (23). One way is to construct
the following quadratic Lyapunov function from {Gi}:

V (ζk) = E
[
ζTkGzkζk

]
. (24)

Once the MJLS (22) is shown to be MSS, Theorem 3.33 in
[46] can be applied to show that (22) is also asymptotically
wide sense stationary, and then the mean square TD error
can be exactly calculated via Proposition 3.35 in [46]. As a
matter of fact, the convergence bounds in Corollary 2 of [23]
can be directly applied whenever (22) is MSS. Therefore,
the finite time analysis of TD(0) boils down to checking the
mean square stability of the MJLS (22). Next, we show how
to construct solutions for the SDP condition (23) under the
following standard assumption.

Assumption 1: Suppose {zk} is irreducible and aperiodic.
Denote p∞i = limk→∞P(zk = i) and Ā =

∑N
i=1 pi

∞Ai.
We assume Ā is Hurwitz, and

∑N
i=1 p

∞
i bi = 0.

Under Assumption 1, let Ḡ be the solution to the Lyapunov
equation ĀTḠ + ḠĀ = −I . We also denote Xi = AT

i Ḡ +
ḠAi + I/(p∞i N). Now we can state the following result.

Lemma 2: Supposed Assumption 1 is given. For suffi-
ciently small α, we can solve the SDP (23) by choosing
Gi = Ḡ+αG̃i, where G̃N = 0 and G̃i (for i = 1, · · · , N−1)
is solved from the following linear equation:

G̃i −
N−1∑
j=1

pijG̃j = Xi, for i = 1, · · · , N − 1. (25)

Proof: First, notice that (25) does have a unique solu-
tion. To see this, let P̂ ∈ R(N−1)×(N−1) be a substochastic
matrix whose (i, j)-th entry is equal to pij . Then P̂ is
a submatrix of the transition matrix of {zk}, and has a
spectral radius which is smaller than 1. Hence (IN−1 − P̂ )
is invertible, and (25) admits a unique well-defined solution.
Since Xi is symmetric for all i, the resultant matrices {G̃i}
are also symmetric. Now we briefly explain our choices of
Gi. If we substitute Gi = Ḡ+ αG̃i into (23), we get

G̃i −
N∑
j=1

pijG̃j − (AT
i Ḡ+ ḠAi) +O(α) � 0, ∀i (26)

For i = 1, · · · , N − 1, we can substitute (25) and G̃N = 0
into (26) to simplify it as I/(p∞i N) + O(α) � 0, which
clearly holds for sufficiently small α. For i = N , we can
use the fact ĀTḠ+ ḠĀ = −I to show

AT
N Ḡ+ ḠAN =

1

p∞N

(
−I −

N−1∑
i=1

p∞i (AT
i Ḡ+ ḠAi)

)
We have AT

i Ḡ+ ḠAi = G̃i−
∑N−1
j=1 pijG̃j − I/(p∞i N) for

i < N (see (25)). Substituting these into (26) for i = N
leads to I/(p∞NN) +O(α) � 0, which holds for small α.

Next, we provide an explicit upper bound on α. To make
sure that {Ḡ+αG̃i} solves the SDP condition (23), we need

Ḡ+ αG̃i � 0, I/(p∞i N) + αMi + α2M̃i � 0, ∀i (27)

where M̃i = −AT
i (
∑N
j=1 pijG̃j)Ai, and Mi = −AT

i ḠAi −
AT
i (
∑N
j=1 pijG̃j)− (

∑N
j=1 pijG̃j)Ai. We know Ḡ � 0 and

I/(p∞i N) � 0. Notice {G̃i}, {Mi}, and {M̃i} are symmetric
matrices which are completely determined by {Ai} and pij .
Hence the SDP condition (23) is feasible with Gi = Ḡ+αG̃i
if for all i ∈ N , α satisfies λmin(Ḡ) + αλmin(G̃i) > 0 and

1/(p∞i N) + αλmin(Mi) + α2λmin(M̃i) > 0. (28)

where λmin denotes the smallest eigenvalue. Let 1D denote
the indicator function for any set D. We have λmin(Ḡ) +

αλmin(G̃i) > 0 for any 0 < α < λmin(Ḡ)

|λmin(G̃i)|(1−1G̃i�0)
. When

G̃i � 0, this bound becomes +∞. It is also straightfor-
ward to verify that (28) is true for any 0 < α < ᾱi,
where ᾱi is defined as ᾱi = 1

p∞i N |λmin(Mi)|(1−1Mi�0) if

M̃i � 0, and ᾱi =
−λmin(Mi)−

√
λ2
min(Mi)−4λmin(M̃i)/(p∞i N)

2λmin(M̃i)
otherwise. This leads to the following result.

Theorem 3: Given Assumption 1, the TD(0) method (21)

with step size 0 < α < mini∈N

{
ᾱi,

λmin(Ḡ)

|λmin(G̃i)|(1−1G̃i�0)

}
is MSS, and the mean square estimation error E‖θk − θπ‖2
converges exponentially to its stationary value.

Proof: From the above discussion, our stepsize bound
can guarantee (27), and hence (21) is MSS. Then the
convergence behavior of E‖θk − θπ‖2 can be shown using
Proposition 3.35 of [46] or Corollary 2 of [23].

With the MSS property, we can directly apply Corollary 2
in [23] to obtain explicit formulas for the convergence rate
and the steady state error. We skip those formulas. Clearly,
our result is closely related to [23] which also analyzes TD
learning using MJLS theory. A key difference is that the
analysis in [23] boils down to an LTI system formulation
without exploiting the SDP (23). Our SDP approach brings
a new benefit in providing an explicit stepsize bound guar-
anteeing MSS, as specified by Theorem 3. In contrast, the
analysis in [23] relies on advanced eigenvalue perturbation
theory and only shows that TD(0) is MSS for sufficiently
small α without providing such explicit stepsize bounds.

IV. CONCLUSION AND FUTURE WORK

In this paper, we show that existing convex programs in
control theory can be directly used to analyze value-based
methods such as VC, VI, and TD(0) with linear function
approximation. It is possible that these convex programs can
be extended to address the impacts of computation error and
delay. This will be investigated in the future.
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