
ar
X

iv
:2

20
3.

12
52

0v
1 

 [
m

at
h.

O
C

] 
 2

3 
M

ar
 2

02
2

Navigation with Probabilistic Safety Constraints: Convex

Formulation

Joseph Moyalan, Yongxin Chen, and Umesh Vaidya

Abstract— We consider the problem of navigation with

safety constraints. The safety constraints are probabilis-

tic, where a given set is assigned a degree of safety,

a number between zero and one, with zero being safe

and one being unsafe. The deterministic unsafe set will

arise as a particular case of the proposed probabilistic

description of safety. We provide a convex formula-

tion to the navigation problem with probabilistic safety

constraints. The convex formulation is made possible

by lifting the navigation problem in the dual space of

density using linear transfer operator theory methods

involving Perron-Frobenius and Koopman operators.

The convex formulation leads to an infinite-dimensional

feasibility problem for probabilistic safety verification

and control design. The finite-dimensional approximation

of the optimization problem relies on the data-driven

approximation of the linear transfer operator.

I. INTRODUCTION

The obstacle avoidance problem is one of the neces-

sities for robots and unmanned vehicles operating in

a structured or unstructured environment. The classical

approach to obstacles modeling and avoidance is deter-

ministic in nature [1]–[3]. However, increasingly there

is a shift in focus for obstacle modeling and avoidance

to a probabilistic or stochastic setting. This shift in

focus is mainly driven by navigation applications in

unstructured or off-road terrain where environmental

uncertainty is a norm.

The authors of [4] investigate the probabilistic col-

lision checking between uncertain configurations for

two objects, which is referred to as collision chance

constraints. They provide a probability of collision that

accounts for both robot and obstacle uncertainty. In

[5], an investigation of risk metrics, i.e., mapping from

a random variable corresponding to costs to a real

number, for different probabilistic applications is done.

The authors of [5] provide various axioms that help in
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the selection of risk metrics which is utilized in the cost

function. However, finding such risk metrics for every-

day applications is, in general, not trivial. In [6], the

authors tackle the problem of autonomous traverse in an

unknown environment by efficient risk and constraint-

aware kinodynamic motion planning using sequential

quadratic programming-based (SQP) model predictive

control (MPC). They propose a tail risk assessment

using the Conditional Value-at-Risk (CVaR). However,

the problem is formulated in a nonlinear setting with

highly non-convex constraints on the robot’s motion.

In [7], a new probabilistic navigation function (PNF)

has been proposed to work in a stochastic environment.

The proposed PNF provides an analytic proof for

convergence and considers both the geometries and the

location probability functions without inflating the am-

bient space dimension. But so far, all the formulations

involving navigation with probabilistic descriptions of

the obstacle set are formulated as non-convex problems.

This non-convex nature of the problem is one of the

main challenges in developing systematic analysis and

synthesis methods.

In this paper, we provide a probabilistic description

of safety using a probability measure. The probability

measure is used to assign a varying degree of safety

for any given set based on the value of the probability

measure on the set. Larger the value of probability

measure on a set more unsafe the set. Furthermore,

the deterministic description of an unsafe set will arise

as a particular case of the proposed probabilistic de-

scription. We consider the problem of navigation with

probabilistic safety constraints. The main contribution

is in providing convex formulation to the verification

and control synthesis for the navigation problem. The

convex formulation is made possible by lifting the nav-

igation problem in the space of density using methods

from linear operator theory involving Perron-Frobenius

and Koopman operators [8]. This convex formulation

builds on our past work on providing convex formu-

lation to navigation, stabilization, and optimal control

problems [2], [9]–[11]. The convex formulation leads

http://arxiv.org/abs/2203.12520v1


to an infinite-dimensional convex feasibility problem

for the probabilistic safety verification and synthesis

problems. The infinite-dimensional feasibility problem

is approximated using a data-driven method developed

for the finite-dimensional approximation of the linear

transfer operator.

The rest of the paper is structured as follows. In

Section II, we provide a brief introduction to our frame-

work’s necessary preliminaries. Section III consists of

a probabilistic description of unsafe sets, and the main

theoretical results are described in section IV. In Sec-

tion V, we develop the computational framework based

on the linear operator framework. This is followed by

simulation examples in Section VI and a conclusion in

Section VII.

II. PRELIMINARIES AND NOTATIONS

Notations: R
n denotes the n dimensional Euclidean

space and R
n
≥0 is the positive orthant. Given X ⊆ R

n

and Y ⊆ R
m, let L1(X,Y),L∞(X,Y), and Ck(X,Y)

denote the space of all real valued integrable functions,

essentially bounded functions, and space of k times

continuously differentiable functions mapping from X

to Y respectively. If the space Y is not specified then

it is understood that the underlying space is R. B(X)
denotes the Borel σ-algebra on X and M(X) is the

vector space of real-valued measure on B(X). st(x)
denotes the solution of dynamical system ẋ = F(x)
starting from initial condition x. X0, Xr are assumed to

be the initial set and final terminal set respectively. With

no loss of generality we will assume that Xr = {0}.

Let Nδ be the neighborhood of Xr for some fixed δ > 0
i.e., Xr ⊂ Nδ. Let X1 := X \ Nδ. Let h0(x) be

the probability density function corresponding to the

probability measure µ0 with support on set X0.

A. Perron-Frobenius and Koopman Operator

Consider a dynamical system of the form

ẋ = F(x), x ∈ X ⊆ R
n. (1)

where the vector field is assumed to be F(x) ∈
C1(X,Rn). There are two different ways of lifting the

finite dimensional nonlinear dynamics from state space

to infinite dimension space of functions namely using

Koopman and Perron-Frobenius operators. The defini-

tions of these operators along with the infinitesimal

generators of these operators are defined as follows [8].

Definition 1 (Koopman Operator): Ut : L∞(X) →
L∞(X) for dynamical system (1) is defined as

[Utϕ](x) = ϕ(st(x)). (2)

The infinitesimal generator for the Koopman operator

is given by

lim
t→0

(Ut − I)ϕ

t
= F(x) · ∇ϕ(x) =: KFϕ, t ≥ 0. (3)

Definition 2 (Perron-Frobenius Operator):

Pt : L1(X) → L1(X) for dynamical system (1)

is defined as

[Ptψ](x) = ψ(s−t(x))

∣

∣

∣

∣

∂s−t(x)

∂x

∣

∣

∣

∣

, (4)

where |·| stands for the determinant. The infinitesimal

generator for the P-F operator is given by

lim
t→0

(Pt − I)ψ

t
= −∇ · (F(x)ψ(x))

=: PFψ, t ≥ 0. (5)

These two operators are dual to each other where the

duality is expressed as follows.
∫

X

[Utϕ](x)ψ(x)dx =

∫

X

[Ptψ](x)ϕ(x)dx.

Property 1: These two operators enjoy positivity

and Markov properties which are used in the finite

dimension approximation of these operators.

1) Positivity: The P-F and Koopman operators are

positive operators i.e., for any 0 ≤ ϕ(x) ∈
L∞(X) and 0 ≤ ψ(x) ∈ L1(X), we have

[Ptψ](x) ≥ 0, [Utϕ](x) ≥ 0, ∀t ≥ 0. (6)

2) Markov Property: The P-F operator satisfies

Markov property i.e.,
∫

X

[Ptψ](x)dx =

∫

X

ψ(x)dx. (7)

Assumption 1: We assume that x = 0 is locally

stable equilibrium point for the system (1) with local

domain of attraction denoted by Nδ for a fixed δ > 0.

We let X1 := X \ Nδ

Definition 3 (Almost everywhere (a.e.) uniform stability):

The equilibrium point is said to be a.e. uniform stable

w.r.t. measure µ0 ∈ M(X) if for any given ǫ, there

exists a time T (ǫ) such that
∫ ∞

T (ǫ)
µ0(Bt)dt < ǫ, (8)

where Bt := {x ∈ X1 : st(x) ∈ B} for every set

B ∈ B(X1).
The following theorem is from [12, Theorem 13]

providing necessary and sufficient condition for a.e.

uniform stability.



Theorem 1: The equilibrium point x = 0 for system

(1) satisfying Assumption 1 is a.e. uniformly stable

w.r.t. measure µ0 if and only if there exists a function

ρ(x) ∈ C1(X \ {0},R≥0) ∩ L1(X1) and satisfies

∇ · (Fρ) = h0. (9)

where h0 ∈ L1(X,R≥0) is assumed to be the density

function corresponding to the measure µ0.

B. Data-Driven Approximation: Naturally Structured

Dynamic Mode Decomposition

Naturally structured dynamic mode decomposition

(NSDMD) is a modification of Extended Dynamic

Mode Decomposition (EDMD) algorithm [13], one

of the popular algorithms for Koopman approxima-

tion from data. The modifications are introduced to

incorporate the natural properties of these operators

namely positivity and Markov. For the continuous-time

dynamical system (1), consider snapshots of data set

obtained as time-series data from single or multiple

trajectories

X = [x1,x2, . . . ,xM ], Y = [y1,y2, . . . ,yM ], (10)

where xi ∈ X and yi ∈ X. The pair of data sets

are assumed to be two consecutive snapshots i.e.,

yi = s∆t(xi), where s∆t is solution of (1). Let

Ψ = [ψ1, . . . , ψN ]⊤ be the choice of basis functions.

The popular Extended Dynamic Mode Decomposition

(EDMD) algorithm provides the finite-dimensional ap-

proximation of the Koopman operator as the solution

of the following least square problem.

min
K

‖ GK−A ‖F , (11)

where,

G =
1

M

M
∑

m=1

Ψ(xm)Ψ(xm)⊤, (12)

A =
1

M

M
∑

m=1

Ψ(xm)Ψ(ym)⊤, (13)

with K,G,A ∈ R
N×N , ‖ · ‖F stands for Frobenius

norm. The above least square problem admits an ana-

lytical solution

KEDMD = G†A. (14)

Convergence results for EDMD algorithms in the limit

as the number of data points and basis functions go

to infinity are provided in [14], [15]. In this paper, we

work with Gaussian Radial Basis Function (RBF) for

the finite-dimensional approximation of the linear oper-

ators. Under the assumption that the basis functions are

positive, like the Gaussian RBF, the NSDMD algorithm

propose following convex optimization problem for the

approximation of the Koopman operator that preserves

positivity and Markov property in Property 1.

min
P̂

‖ ĜP̂− Â ‖F (15)

s.t. [P̂]ij ≥ 0, P̂1 = 1,

where,

Ĝ = GΛ−1, Â = AΛ−1, & Λ =

∫

X

ΨΨ⊤dx, (16)

with G and A are as defined in 12 and 1 is a vector of

all ones. All the matrices in Eq. (16) are pre-computed

from the data. In fact, since the basis functions are

assumed to be Gaussian RBF, the constant Λ matrix

can be computed explicitly as

Λi,j = (
πσ2

2
)n/2 exp

−‖ci−cj‖
2

2σ2 , i, j = 1, 2, . . . , N,

where ci, cj are the centers of the ψi and ψj Gaussian

RBFs respectively. The constraints in (15) ensure that

finite-dimensional approximation preserves the positiv-

ity property and Markov property respectively. The

approximation for the P-F operator and its generator

are obtained as the solution of the optimization problem

(15) as

P∆t ≈ P̂⊤ =: P, PF ≈
P̂⊤ − I

∆t
=: M. (17)

III. PROBABILISTIC DESCRIPTION OF UNSAFE SET

In this paper, we consider a probabilistic description

of the unsafe set defined as follows. Let p(x) is the

probability density function describing the unsafe set

and µp ∈ M(X) is the associated probability measure

i.e., dµp(x) = p(x)dx. Let A ∈ B(X), then the

probability that the set A is unsafe is defined using

p(x) as

Prob(A is Unsafe) =

∫

A
p(x)dx =: µp(A). (18)

The above definition include the deterministic descrip-

tion of unsafe set as the special case. In particular, if

Xu is an unsafe set then it can described using the

following definition of the uniform probability density

function

p(x) =
1

m(Xu)
1Xu

(x) (19)



where m(·) is the Lebesgue measure and 1Xu
is the

indicator function of the set Xu. So by allowing p(x)
to be nonuniform probability density function we can

consider cases where different regions of the state space

X have varying degree of safety. Note that when p(x)
is supported on the entire set X, then the entire region

of the state space X is potentially hazardous; however,

the degree of hazard is determined by the probability

density function p(x). In particular, if

µp(A1) < µp(A2)

where Ai ∈ B(X), then the region A2 is more haz-

ardous than region A1. Strictly speaking, in the above

described probabilistic setting, it may not be appro-

priate to use the terminology of a safe or unsafe set

as it has a connotation of carrying binary information.

Consider the case when p(x) is supported on the entire

space X, then potentially the entire space X is haz-

ardous. However, with nonuniform probability density

p(x), some regions of X are more favorable to navigate

and hence potentially less hazardous than others. The

objective then is to navigate through regions of X

where µp is small. With some abuse of terminology,

we will continue to refer to the sets in X as safe and

unsafe where the degree of safety is characterized by

p(x). We defined the probability of collision as follows.

Definition 4: The probability of collision with the

unsafe set under the system dynamics (1) with the

initial condition distributed w.r.t. probability measure

µ0 is given by
∫ ∞

0

∫

X

p(st(x))dµ0(x)dt (20)

The objective is to minimize the above collision proba-

bility while navigating the system dynamics from some

initial set X0, supported on measure µ0 to some final

terminal set Xr asymptotically.

The reason for using the formula (20) in the defini-

tion of collision probability stems from the following

Lemma. The following Lemma essentially points to the

fact that the formula (20) is a measure of occupancy

in the unsafe region, and this connection is evident in

the case of a deterministic unsafe set.

Lemma 1: Let p(x) = 1
m(Xu)

1Xu
(x). If

∫ ∞

0

∫

X

p(st(x))dµ0(x)dt = 0 (21)

then
∫

X1

1Xu
(st(x))h0(x)dx = 0, ∀t ≥ 0. (22)

i.e., the amount of time system trajectories spend in

the unsafe set Xu starting from the positive measure

set of initial condition corresponding to the initial set,

X0, with density h0(x) is equal to zero.

Proof: Proof by contradiction. Assume (22) is not

true, i.e., there exists some time t0 for which
∫

X1

1Xu
(st0(x))h0dx =

∫

X1

[Ut01Xu
](x)h0dx > 0

Then using the continuity property of the Koopman

semi-group, we know there exists a ∆ such that
∫ t0+∆

t0

∫

X1

[Ut01Xu
]((x))h0(x)dxdt > 0.

We have

0 <

∫ t0+∆

t0

∫

X1

[Ut01Xu
](x)h0(x)dxdt ≤

∫ ∞

0

∫

X1

[Ut01Xu
](x)h0(x)dxdt

=

∫ ∞

0

∫

X

p(st(x))dµ0(x)dt = 0.

So by minimizing the quantity in (20) for a general

non-uniform probability density function p(x), we are

essentially trying to minimize the occupancy in the

unsafe set.

IV. MAIN RESULTS

The main results of this paper are presented in the

following two subsections and provide for a convex

formulation to the probabilistic safety verification and

control synthesis problems.

A. Probabilistic Safety Verification

In this section, we show that the probabilistic safety

navigation problem can be verified convexly. In par-

ticular, the stochastic safety navigation problem can be

written as convex optimization problem. The stochastic

safety navigation problem can be stated as follows.

Definition 5 (Stochastic Safety Navigation Problem):

The problem consists of navigating almost every (a.e.)

(w.r.t. Lebesgue measure) trajectories of the system

ẋ = F(x) (23)

starting from some initial set, X0, to some final set Xr

asymptotically, while ensuring that the probability of

collision with the obstacle set should be less than or

equal to γ i.e.,
∫ ∞

0

∫

X1

p(st(x))dµ0(x)dt ≤ γ. (24)



The main results of this section provides convex for-

mulation to the stochastic safety verification problem as

defined in Definition 5. Before that we make following

assumption on the system dynamics (23).

Assumption 2: We assume that the final destination

set is locally stable with local domain of attraction Nδ

for a fixed δ > 0.

Theorem 2: Under Assumption 2, the stochastic

safety navigation problem (Definition 5) can be verified

convexly if there exists a density function ρ(x) ∈
L1(X1) ∩ C1(X1,R≥0) and satisfies

∇ · (F(x)ρ(x)) = h0(x), a.e. x ∈ X1 (25)
∫

X1

p(x)ρ(x)dx ≤ γ (26)

Proof: Following the results of Theorem 1, since

ρ(x) satisfies (25) it follows that the Xr = {0} is a.e.

uniform stable w.r.t. measure dµ0(x) = h0(x)dx i.e.,

a.e. initial condition from set X0 supported on measure

µ0 will be attracted to the final set Xr. Furthermore,

the density function ρ(x) that satisfies (25) can be

expressed using the following integral formula

ρ(x) =

∫ ∞

0
[Pth0](x)dt (27)

We next show that (26) implies (24) i.e., the probability
of collision is less than or equal to γ. We have,
∫

∞

0

∫

X1

p(st(x))dµ0(x)dt =

∫

∞

0

∫

X1

[Utp](x)dµ0(x)dt

Now using duality between the Koopman and P-F

operator and the fact that dµ0

dx = h0, we obtain
∫ ∞

0

∫

X1

[Utp](x)dµ0(x)dt =

∫ ∞

0

∫

X1

p(x)[Pth0](x)dxdt

Exchanging the spatial and temporal integration and

using the integral formula for the ρ(x) in (27) we obtain
∫ ∞

0

∫

X1

p(x)[Pth0](x)dxdt =

∫

X1

p(x)ρ(x)dx

B. Convex Approach to Control Synthesis with Stochas-

tic Safety Constraints

In this section, we formulate control synthesis for

stochastic safety navigation problem as a convex op-

timization problem. The convex control synthesis is

possible under the assumption that control system is

affine in input. Consider a control affine dynamical

system of the form

ẋ = f(x) + g(x)u (28)

where u ∈ R is the control input. For the simplicity

of presentation we restrict the discussion to the case

of single input. It is straight forward to extend this

framework to multi-input case. The objective is to

design the control input so that almost all trajectories

of the system (28) starting from the initial set X0 to

the final set Xr minimizes the probability of collision

with the obstacle set to less than equal to γ (Eq. (24))

Following assumption is made on the control synthesis

problem for safety navigation.

Assumption 3: We assume that the control for

stochastic safety navigation is feedback in nature i.e.,

u = k(x) ∈ C1(X) and that the final destination set

Xr is locally stable with local domain of attraction Nδ

for a fixed δ > 0.

Following is the main results of this section.

Theorem 3: Under Assumption 3, the control syn-

thesis problem for the stochastic safety navigation with

norm constraints on the control input of the form,

|u| ≤ M , can be formulated as following convex

feasibility problem in terms of variable ρ ∈ L1(X1) ∩
C1(X1,R≥0) and ρ̄ ∈ C1(X1,R).

∇ · (fρ+ gρ̄) = h0, a.e. x ∈ X1 (29)
∫

X1

p(x)ρ(x)dx ≤ γ (30)

|ρ̄(x)| ≤Mρ(x) (31)

The control input is given by

u = k(x) =
ρ̄(x)

ρ(x)
(32)

Proof: The proof of this Theorem follows along

similar lines to the proof of Theorem 2 applied to

feedback control system ẋ = F(x) := f(x)+g(x)k(x).
This gives us

∇ · ((f + gk)ρ) = h0

The above equation is bilinear in the two unknowns

ρ and k and can be converted to linear equation in

terms of new unknown variables and ρ and ρ̄ defined

as ρ̄(x) := k(x)ρ(x). After the change of variables

from (ρ, k) → (ρ, ρ̄), we obtain (29). The derivation

of (30) follows along the same lines of corresponding

derivation in Theorem 2. The condition (31) ensures

that the formula for the control input in (32) is well

defined and that the constraints on the control input

i.e., |u| ≤M are satisfied.

V. COMPUTATIONAL FRAMEWORK

For the finite dimensional approximation of the infi-

nite dimensional convex feasibility problems (26) and



(31), we need to construct the approximation of the

generator corresponding to vector field f and g i.e.,

∇ · (fρ) and ∇ · (gρ̄). Following notations from (5)

and (17), let the approximations of the two generators

corresponding to vector fields f and g be denoted by

Pf ≈ M0, Pg ≈ M1 (33)

We use NSDMD algorithm outlined in Section II-B for

this approximation with Ψ(x) = (ψ1, . . . , ψN )⊤ as the

basis functions. Let h0(x), p(x), ρ(x), and ρ̄(x) be

expressed in terms of the basis function

h0(x) = Ψ⊤m, ρ(x) ≈ Ψ⊤v, ρ̄(x) ≈ Ψ⊤w

p(x) ≈ Ψ⊤u. (34)

Using (34), we can also write
∫

X1

p(x)ρ(x)dx ≈ u⊤

[
∫

X1

Ψ(x)Ψ⊤(x)dx

]

v (35)

= u⊤Dv (36)

where D :=
∫

X1

Ψ(x)Ψ⊤(x)dx.

Assumption 4: We assume that all the basis func-

tions are positive and are linearly independent.

Remark 4: In this paper, we use Gaussian RBF

to obtain all the simulation results i.e., ψk(x) =

exp−
‖x−ck‖2

2σ2 where ck is the center of the kth Gaussian

RBF.

Using Assumption 4, the finite dimensional approxima-

tion of the convex synthesis problem from Theorem 3

can be written as

−M0v −M1w = m (37)

u⊤Dv ≤ γ (38)

v ≥ 0, |w| ≤Mv (39)

where the inequalities are assumed to the element wise.

The feedback control input is then obtained using the

following formula

u = k(x) =
Ψ⊤(x)w

Ψ⊤(x)v
(40)

VI. SIMULATION RESULTS

All the simulation results in this paper are obtained

using Gaussian RBF. The value of γ is taken to be

0.1 for all the examples. The following rules of thumb

are abided in selecting centers and σ parameters for

the Gaussian RBF. The RBF centers are chosen to be

uniformly distributed in the state space at a distance

of d. The σ for the Gaussian RBF is chosen such

that d ≤ 3σ ≤ 1.5d. All the simulation results are

performed using MATLAB on a desktop computer

with 16GB RAM. The optimization problem is solved

using CVX. We present simulation results involving

two examples and in both the examples we design

local controller around a small neighbourhood of Xr

to stabilize the equilibrium point. Let us consider this

small neighbourhood to be XL which is defined as

follows:

XL = {x ∈ X : |x−Xr| ≤ ǫ, ǫ > 0}

Here, the value of ǫ = 0.002. We design an optimal

linear quadratic regulator (LQR) controller for XL from

the linearized dynamics of the model to guarantee the

convergence in XL.

Example 1. We consider the problem of navigating a

boat on a river [16]. The dynamics of the model is

given by:

ẋ1 = 1+0.125 cos(0.5x1)−0.125 sin(0.5x2); ẋ2 = u;

We define the sets to be:

• X , {x ∈ R
2 : 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10}

• X0 , {x ∈ X : 0 ≤ x1 ≤ 1, 5 ≤ x2 ≤ 7}
• Xu , {x ∈ X : (2 sin(x1) + 6− x2)(x2 − 2 sin(x1)−

4) ≤ 0 or x1 ≤ 0}
• Xr , [9.7, 3.8]T .

We have used 2500 radial basis functions as lifting

functions and ∆t = 0.01. Fig. 1 displays the open

and closed loop trajectories navigating the river dy-

namics. We can see from this plot that the controller

obtained using the finite-dimensional approximation

of the feasibility problem (37)-(39) is able to avoid

unsafe set successfully. Fig. 2 displays the color plots

of the density function ρ(x) which clearly displays

the differences in the density values between safe and

unsafe sets. In particular, the value of the density

function on the unsafe set is equal to zero.

Example 2. Consider the following controlled dynam-
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Fig. 1: Open and Closed loop trajectories navigating

the river model prescribed in Example 1.
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Fig. 2: Density function obtained from convex opti-

mization in Example 1.

ics of nonlinear system:

ẋ1 = −0.125 + 0.125 cos(0.5x1)− 0.125 sin(0.5x2)

ẋ2 = u

For this example, we choose

• X , {x ∈ R
2 : −8 ≤ x1 ≤ 8,−8 ≤ x2 ≤ 8}

• X0 , {x ∈ X : 5.3 ≤ x1 ≤ 6.7,−0.7 ≤ x2 ≤ 0.7}
• Xu1 , {x ∈ X : 2 ≤ x1 ≤ 4,−3 ≤ x2 ≤ 0}
• Xu2 , {x ∈ X : 2 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 3}
• Xu3 , {x ∈ X : −1 ≤ x1 ≤ 7,−3 ≤ x2 ≤ 3}
• Xr , [0, 0]T

Xu3 represents the outer deterministic obstacle set

where the value of p(x) = 1 everywhere. It confines

our feasible region to a rectangular block. Xu1 and Xu2

represents inner obstacle sets with probability measure

µp(Xu1) and µp(Xu2) respectively. They divides our

rectangular feasible set into two smaller regions as

shown in Fig. 3. We design the problem such that

trajectories starting from X0 finds it’s way to Xr by

passing through either Xu1 or Xu2 depending upon

their probability measure. ∆t = 0.01. The probability

measure of Xu1 and Xu2 are varied to show their

effect on the trajectories as can be seen in Fig. 4-

8. The values of density function ρ(x) obtained from

the convex optimization problem varies with respect

to the probability measure of unsafe sets which can

be observed in Fig. 5-9. It is observed that values of

ρ(x) in the obstacle sets Xu1 and Xu2 increases when

there is a decrease in the probability density function of

the obstacle set and vice-versa. This is to be expected

from the fact that ρ(x) is an occupancy measure and

obstacle set with high probability density function will

have fewer trajectories entering into them.

VII. CONCLUSIONS

We consider the problem of navigation with proba-

bilistic safety constraints. We provide convex formula-

tion to the verification and control synthesis for navi-

gation with probabilistic safety constraints leading to a

Fig. 3: Schematic diagram of unsafe sets in Example

2.

Fig. 4: State trajectories of Example 2 avoiding unsafe

sets Xu1 and Xu2 both with probability measure of 0.5.

infinite dimensional convex optimization problem. The

finite dimensional approximation of the optimization

problem relies on the data-driven approximation of the

linear P-F operator. Simulation examples are presented

to show the feasibility of the proposed framework.
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