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Abstract— The wind preview provided by a nacelle-based
lidar system allows the wind turbine controller to react to
the wind disturbance prior to its impact on the turbine. This
technology, commonly referred to as lidar-assisted wind turbine
control, has been shown to be beneficial in reducing wind
turbine structural loads. The wind preview quality defines how
the lidar estimated disturbance is correlated with the actual
one. In practice, the preview quality can vary following the
change in atmospheric conditions and lidar operating states.

When assessing the benefits of lidar-assisted control, previous
studies mainly focused on the freestream turbulence where the
turbine wake has not been included. In reality, wind turbines
sometimes operate within the wake caused by upstream situated
turbines, which happens more often in a narrowly spaced
wind farm. Based on existing literature, the wake turbulence
has three main phenomena compared with the freestream
turbulence, i.e. (1) the reduced wind speed region (wake deficit),
(2) the meandering (wake deficit moves in the lateral and
vertical directions), and (3) the smaller-scale added turbulence
caused by the interaction between rotor and the flow. The
extent to which these phenomena affect the quality of lidar
wind preview still needs to be investigated.

In this paper, we use the dynamic wake meandering model,
which covers the three wake characteristics mentioned above,
and analyze its impact on lidar wind preview qualities. The
most representative turbine layout where two turbines lie in
a row will be considered. Frequency-domain analysis will be
carried out to assess the measurement coherence of the lidar
and the results will be compared to the freestream case.

I. INTRODUCTION

Lidar-assisted control (LAC) utilizes the lidar upstream
wind preview measurement and allows the turbine to pre-act
to the incoming disturbance [1], [2]. However, lidar system
does not provide perfect measurement mainly due to the
limited measuring positions, the contamination by lateral and
vertical wind components, and the evolution of turbulence
[3], [4], [5]. The wind preview quality is defined to describe
how the lidar preview is correlated with the actual rotor
effective wind speed (REWS) experienced by the turbine [6].

Previous research mainly concentrated on studying the li-
dar wind preview for control in the freestream turbulence sit-
uation [7], [3], [8]. In this context, the turbulence is assumed
to be homogeneous and Gaussian which can be modelled
using the Mann uniform shear model [9] or the Kaimal
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Fig. 1. Sketch of the meandering wake deficit for a downstream turbine
and a lidar system. Vx denotes the mean longitudinal wind speed deficit in
the wake and Vhub is the freestream hub height mean wind speed.

spectra and exponential coherence model [10] (hereafter
refereed as to Mann model and Kaimal model respectively).
These two models are provided by IEC-61400:2019 [11] for
wind turbine design under freestream turbulence situation.

Three main characteristics present in the turbine wakes
[11], [12], i.e. (1) the reduced wind speed region (wake
deficit), (2) the meandering (wake deficit moves in the lateral
and vertical directions), and (3) the smaller-scale added tur-
bulence caused by the interaction between rotor and the flow.
Based on these phenomena, one can conceive possible impact
on lidar wind preview caused by the wake. For example, the
wake is measured by a lidar in an upstream yz plane, as
sketched in Figure 1. Then it propagates (in x-direction) to
the turbine with meandering so that the sectional overlap of
the wake at the rotor disk changes in time. When the wake
reaches the rotor plane, it might be partly overlapped with
the rotor; miss the rotor entirely; or become less important
due to wake recovering. These can cause additional errors
between the lidar estimated REWS and that by the rotor.

The lidar preview quality under wake conditions has not
been fully explored in literature. Thus, we contribute by
studying the impact of wake on lidar preview quality in the
frequency domain. The Mann uniform shear model [13] will
be combined with the Dynamic Wake Meandering model
(DWM), both suggested by IEC standard [11] to model
wake turbulence. We perform the analysis using different
turbulence parameters that represent various atmospheric
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TABLE I
SCAN CONFIGURATION FOR THE SELECTED LIDAR SYSTEM.

number of beams n 4
beam azimuth-angles φ [◦] 15.0, 15.0, -15.0, -15.0
beam elevation-angles β [◦] 12.5, -12.5, -12.5, 12.5
measurement distance 120 m
full scan time 1.0s
pulse width at half maximum 30 m

stabilities and consider several wind direction scenarios.
This paper is structured as follows: Section II describes

the selected turbine and lidar model as well as introduces
the method to simulate wake included wind fields. Also, the
calculation of lidar measurement and rotor effective wind
speed are discussed. In Section III, the simulation set-up is
discussed and the results are shown. Finally, we conclude the
paper and discuss perspective further works in Section IV.

II. SIMULATION ENVIRONMENT

In this section we present the simulation environment used
in this work. We first define the studied lidar system and wind
turbine. Then we describe the used freestream turbulence
model and the simulation of the wake included turbulence
field. The simulation of the lidar measurements and the
calculation of the lidar wind preview quality are described
in the end.

A. Lidar System and Wind Turbine Model

We consider the scan trajectory based on a typical com-
mercial lidar system, whose configurations are summarized
in Table I. As for the turbine model, the 5MW reference
wind turbine by NREL [14] is considered, which has a rotor
diameter of 126 m and a hub height of 90 m.

B. Freestream Turbulence Model

The Mann model [13] is chosen in this work. It is de-
rived based on the linearized Navier-Stokes (N-S) equations
assuming incompressible flow and it includes the spatial
coherence of lateral (v) and vertical (w) wind components.
Since the wake meandering that will be introduced later is
driven by the lateral and vertical wind components, we think
these physical considerations are important for simulating
the meandering of the wake. Moreover, there are existing
studies that relate Mann model [9] parameters to atmospheric
stabilities using measurement data [15]. This supports us to
perform the analysis under different atmospheric stabilities.

In Mann model [9], the fluctuation part of the turbulence
is described by the spectral tensor:

Φij(k)δ(k − k′) = 〈û∗i (k)ûj(k
′)〉, (1)

where 〈 〉 denotes ensemble average, ∗ denotes the complex
conjugate, δ() is the Dirac delta function, k= (k1, k2, k3)
(or k′) is the wavenumber vector. The k′ used here is
to distinguish the case: k 6=k′. ûi or ûi are the Fourier
coefficients after taking the three dimensional Fourier trans-
form of the velocity components ui(x, y, z). The indexes

TABLE II
THE MANN PARAMETERS OF DIFFERENT ATMOSPHERIC STABILITIES.

αε2/3 [m4/3s−2] Γ [-] L [m]

Unstable (u) 0.06 2.6 142
Neutral (n) 0.11 3.5 55
Stable (s) 0.09 2.9 26

i, j = 1, 2, 3 stand for u, v, and w components. The detailed
calculation of the tensor Φij can be found in [9]. Apart from
the wavenumber vector, there are three other parameters in
the model. They are the energy level constant αε2/3, the
length scale L describing the size of the eddies containing
the most energy [3], and the non-dimensional anisotropy Γ
describes the extent of shear distortion that causes anisotropic
turbulence. When Γ = 0, the turbulence is isotropic [13],
[16], which means all velocity components have identical
statistical properties. In practice, the parameter αε2/3 is
scaled to adjust the turbulence intensity.

In the result of this paper, we use three Mann parameter
sets based on the study by [15], which represent three atmo-
spheric stabilities, see Table II for detail. These parameters
are derived by fitting the measurement data from a 250m
tall mast tower at the Østerild wind turbine test station in
northern Denmark to the Mann model [13]. The parameters
related to the 103m height which is close to the hub height
of the studied reference turbine (90m) are used.

C. Wake Included Turbulence Modelling

In this section, we explain the three sub-modules of the
DWM model and show how they are combined to simulate
the wake included turbulence field.

1) Wake deficit: As recommended by [11], the wake
deficit is modelled using the thin layer approximation of
the N-S equations in their rotational symmetric form disre-
garding the pressure term [11], [17]. And the eddy-viscosity
formulation is used for turbulence closure [18]. The mean
wake velocities in longitudinal direction Vx and that in radial
direction Vr are governed by the momentum equation:

Vx
∂Vx
∂x

+ Vr
∂Vx
∂r

=
1

r

∂

∂r

(
rνT

∂Vx
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)
, (2)

and the continuity equation:

1

r

∂

∂r
(rVr) +

∂Vx
∂x

= 0. (3)

Both Vx and Vr are functions of radial (r) and longitudinal
(x) displacements from the wake center. The IEC standard
[11] suggests an expression for the eddy viscosity νT which
only depends on x. In this paper, we use the eddy viscosity
formulation implemented within FAST.Farm [18], which
depends on both r and x. Because several studies have been
performed to validate the FAST.Farm either using Large
Eddy Simulation or measurement data [19], [20]. In our
implementation, the wake deficit are calculated following: 1)



obtain steady-state axial induction factors and thrust coeffi-
cients of blade elements from aeroelastic tool OpenFAST1;
2) deliver freestream turbulence parameters and calculate
eddy viscosity; 3) solve equation (2) and (3) using the finite-
difference method discussed by [18].

2) Wake meandering: The wake meandering is modelled
by considering it acting as passive tracers [11]. With Taylor’s
hypothesis [21], the deficits transport downstream by the
mean ambient longitudinal wind field [17]. At a given
moment, the wake center coordinate (yc,zc) is assumed to
be driven by the large-scale lateral and vertical velocity
fluctuations vc and wc [22], [12], which can be formulated
as

ẏc(x) = vc(x) =
1

πR2
w

∫∫
D

v(x, y, z)dydz, (4)

żc(x) = wc(x) =
1

πR2
w

∫∫
D

w(x, y, z)dydz, (5)

where the integration area D is the wake cross-section area.
This spatial average of the fluctuations within the wake
plane results in the following auto-spectrum of the averaged
fluctuation:

SR,ii(k1) =

∫∫ ∞
−∞

Φii(k)
4J2

1 (κRw)

κ2R2
w

dk2dk3, (6)

with κ =
√
k22 + k23 , J1 the Bessel function of the first

kind [3], and the index numbers i,j standard for vc and wc

respectively. Because the auto-spectrum of single point is
simply Fii =

∫∞
−∞Φii(k)dk2dk3, it leads to the following

low pass filtering gain:

GRi(k1) =

(
SR,ii(k1)

Fii(k1)

) 1
2

. (7)

It is worth mention that the spatial filtering by Equation (7)
is only for the initial wake center movement behind the rotor.
For wake planes further downstream, the position of the
wake cross-section is continuously changing, therefore the
integration area D is time-dependent and the filtering gain
does not have a simple expression. As suggested by [22],
[11], a reference low-pass filter with a cut-off frequency of
Vhub/4Rw is further applied to vc and wc. Figure 2 shows
the gain of the spatial filtering under different atmospheric
stabilities and the gain of the low pass filter. It is clear
that the stable condition with smaller turbulence length scale
has stronger filtering effect. Note that the wavenumber is
converted to frequency by k1 = 2πf/Vhub with Taylor’s
frozen theory [21], [23].

3) Wake induced turbulence: The wake induced turbu-
lence is mainly originated from the mechanical interaction
between the turbine blade and the wind flow [11]. We follow
the recommended modelling procedure by the IEC standard
[11] where the wake induced turbulence meanders with the
deficit and it is independent from the freestream turbulence.
Also, the wake induced turbulence is approximated by scal-
ing an isotropic turbulence field whose length scale is smaller

1https://github.com/OpenFAST/openfast, last access: Sep. 2021, National
Renewable Energy Laboratory

Fig. 2. The spatial filtering gains with Mann parameters listed in Table II
and the reference low-pass filter gain (Vhub = 16 m/s, Rw =63 m).

-

-

Fig. 3. Side view of the wake characteristics and the wake included
turbulent wind field with a hub height mean wind speed of 16 m/s. As
for the wake induced turbulence, the points outside the wake area are not
plotted.

than or equal to the rotor diameter [11]. When used with
Mann model [9], the isotropic turbulence field is assumed to
has a length scale equals to 25% of the ambient turbulence
length scale [12], [17]. The empirical calling factor [11] is
calculated by

kwt(x, r) = 0.6
∣∣∣1− Vx + Vhub

Vhub

∣∣∣+
0.35

Vhub

∣∣∣∂Vx
∂r

∣∣∣. (8)

The implementation of the DWM model is shown in
Figure 3. The steady state wake deficit and the induced
wake scaling factor can be firstly calculated. But the wake
meandering needs to be calculated dynamically in the simu-
lation. Adopting the Taylor’s hypothesis [21], the freestream
turbulence propagates by the mean ambient wind speed. In
each time step, the wake deficit field Vx(x, y, z) and induced
turbulence field ûi,w(x, y, z) are calculated and added to



the freestream turbulence field ui(x, y, z). The freestream
turbulence is generated using Mann turbulence generator2,
made available by Technical University of Denmark.

D. Rotor effective wind and lidar preview quality

Similar to [24], [8], the REWS for control purpose is
approximated by the mean longitudinal wind speed over the
rotor area (denoted by D), i.e.

uR(t) =
1

πR2

∫∫
D

u(t, y, z)dydz. (9)

To calculate the lidar estimated REWS uL, the lidar line-
of-sight (LOS) measurement first needs to be defined. The
typical modelling approach in literature is adopted where the
LOS is approximated by the weighted sum of radial wind
speeds along the lidar beam [24], [8]:

vlos =

∞∫
−∞

(xnu(s) + ynv(s) + znw(s))fRW(s)ds, (10)

where s denotes the displacement distance from the focused
position, fRW(s) is the weighting function and [xn, yn, zn] =
[cosβ cosφ, cosβ sinφ, sinβ] is the unit vector reflecting
the projection from wind velocity components to the LOS
direction. The unit vector can be simply calculated after
knowing the lidar beam trajectory defined by the azimuth
angle φ and elevation angle β. For the pulsed lidar used in
this work, the weighting function is modelled by a Gaussian-
shape function, see [25] for more detail. Following [25], [6],
the lidar estimated REWS is calculated by

uL(t) =
1

xn

1

n

n∑
j=1

vlos,j(t), (11)

where n is the number of lidar focused positions.
With uR and uL, it is common to assess the frequency-

domain correlation by calculating the coherence γRL of these
two signals [25], [23]. However, in LAC application, another
indication of how well the lidar predict the REWS is by the
transfer function below [25], [26]:

|GRL(f)| = |SRL(f)|
SLL(f)

, (12)

where |SRL(f)| is the absolute value of the cross-spectrum
between uR and uL and SLL(f) is the auto-spectrum of uL.
They both could be estimated by the Fourier transform of
the target signals. The transfer function can be interpreted as
an optimal Wiener’s filter [26], [27], which ideally gives the
minimal variance of the turbine dynamic output when lidar-
assisted feedforward control is implemented. For a certain
frequency, the larger gain means that more information from
lidar measurement can be utilized as control input. Therefore,
we compare the lidar preview quality under wake conditions
by assessing the optimal filter gains in the rest of the paper.
In the case of freestream turbulence, the theoretical transfer
function gain has been derived in [23].

2https://www.hawc2.dk/Download/Pre-processing-tools/Mann-64bit-
turbulence-generator, last access: 20 Dec 2020

Fig. 4. Top view of the the considered turbine layout. For both 7D and
5D separations, three different aligning conditions correspond to different
wind directions are considered.

III. SIMULATION AND RESULTS

For the simulation set-up, we consider the layout that
two turbines align in a row with the typical 5D and 7D
(D is the rotor diameter) spacing. Three wind directions
are considered to simulate partial and full wake cases for
the downstream turbine. As shown by Figure 4, we define
three wind directions based on the 7D separation. The full
wake case corresponds to that the 7D downstream turbine is
aligned with the upstream turbine and the wind direction; the
half aligned means that half of the turbine rotor at 7D is in the
mean wake boundary; and the critical non-aligned stands for
that the turbine is just outside the wake boundary. For the 5D
case, the downstream turbine is moved towards the upstream
turbine by 2D along the line between the 7D position and
the upstream turbine. The Mann parameters listed in Table II
are used to simulate various atmospheric stabilities, as for the
αε2/3, it is adjusted to meet the target reference turbulence
intensity.

For each simulation configuration, we apply the Monte
Carlo method [28] using 12 different random seeds to
generate the turbulence fields. A wake included turbulence
field with the dimensions 8192×64×64 and the resolutions
4 m × 6.1 m × 6.1 m in x, y and z directions is simulated.
With Taylor’s frozen theory [21] applied, each field has a
total simulation time of 2048 s. For comparison, the same
turbulence field but without wake are used to calculate lidar-
and turbine- based REWS in the wake-free scenario. The
mean hub height wind speed of 16 m/s and the reference
turbulence intensity of 0.16 are considered. The simulated
time series are collected and detrended by the mean value.
Then the spectra are calculated using Welch’s method [29]
with hamming windows (size of 2048 data points).

The results of REWS time series from one simulation by
the “5D aligned” configuration in unstable atmosphere are
chosen as an example and shown in Figure 5. By comparing
(a) with (b), it can be seen that the wake deficit causes
lower mean values in (a) than that in (b). The mean uL
is slightly lower than the mean uR in (a) because of the
wake recovering. But the difference is relatively small. In
(c), the difference of RWESs in the wake-included and
in the freestream cases are compared. The fluctuation in
the difference is much smaller than the ambient turbulence



Fig. 5. Time series of the simulated REWSs.

fluctuation. Overall, the lidar preview shows good agreement
with the turbine-based REWS in both wake-included and
freestream scenarios.

The results of spectra estimations of uL are shown in
Figure 6. The agreements between the theoretical SLL(f)
and that by the simulated time series validate the simulation
results. Comparing the wake included SLL(f) with that of
freestream, there are mainly some additional variances (area
below the f ·S curve) in frequency range 0.01 Hz to 0.02 Hz
in the aligned layout. The auto-spectra of the additional
fluctuations (uL,wake − uL,free) introduced by the wakes are
also shown, which are much smaller than that caused by
the ambient turbulence. Overall, we find that adding the
DWM model does not have a significant impact on the
spectral proprieties of the lidar measurement. Also, the stable
turbulence with smaller length scale L shows less variance
of the lidar estimated REWS due to the stronger spatial
averaging effect than neutral and unstable conditions.

The results of the optimal filter gain are shown in Figure 7.
Here, only the “aligned” and the “critical unaligned” cases
are shown to keep the readability of the figure. Based on
the previous discussion on the spectra, as expected, the
filter gain is not influenced considerably by adding the
wake effect described by DWM model. By comparing the
transfer functions in different stabilities, the main difference
is that the larger length scale from the unstable case has a
higher cut-off frequency (the frequency where the gain cross
−3 dB), which means more frequency components could be
used for LAC. In the unstable case, we can see the transfer
function gain is slightly better than that of the theoretical
freestream case, which might be caused by the additional

coherent turbulence structure (see Figure 5 c) added by the
wake effect.

IV. CONCLUSIONS AND OUTLOOKS
In this work, we implement the Dynamic Wake Mean-

dering (DWM) model to simulate wake included turbulent
wind fields. The wake included wind field is generated by
combining the freestream Mann turbulence [16] and the wake
characteristics described by DWM model. The DWM model
is combined by the wake deficit, the wake meandering, and
the wake induced turbulence.

We implement the lidar simulation into the wake included
turbulent field and assess the lidar preview quality under
various conditions. We considered turbulence parameters rep-
resenting different atmospheric stabilities, different spacing
between downstream and upstream turbines, and different
wind directions corresponding to different wake exposure
scenarios.

Overall, the simulation result shows that the wake de-
scribed by DWM model has neglectable impact on the lidar
preview quality. The preview quality under different turbine
separations and directions in the wake conditions is similar
to that in the freestream, and the frequency results from
simulations show good agreement with the theoretical curves
derived from Mann model [13].

The DWM model is however not solving the turbulent flow
physically. In future work, higher fidelity wake solutions,
such as the Large Eddy Simulation (LES) based approach,
could be applied to verify the DWM model on lidar preview
quality estimation. In addition, the temporal delay effect
caused by the wake, that is not addressed in this work, can
be further studied. Finally, field investigations are necessary
to further validate the results.
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