
Sampling-Based Nonlinear MPC of Neural Network Dynamics with
Application to Autonomous Vehicle Motion Planning

Iman Askari1, Babak Badnava1, Thomas Woodruff2, Shen Zeng3 and Huazhen Fang1

Abstract— Control of machine learning models has emerged
as an important paradigm for a broad range of robotics
applications. In this paper, we present a sampling-based non-
linear model predictive control (NMPC) approach for control
of neural network dynamics. We show its design in two
parts: 1) formulating conventional optimization-based NMPC
as a Bayesian state estimation problem, and 2) using parti-
cle filtering/smoothing to achieve the estimation. Through a
principled sampling-based implementation, this approach can
potentially make effective searches in the control action space
for optimal control and also facilitate computation toward
overcoming the challenges caused by neural network dynamics.
We apply the proposed NMPC approach to motion planning for
autonomous vehicles. The specific problem considers nonlinear
unknown vehicle dynamics modeled as neural networks as well
as dynamic on-road driving scenarios. The approach shows
significant effectiveness in successful motion planning in case
studies.

I. INTRODUCTION

Machine learning has risen as an important way for mod-
eling and control of complex dynamic systems to accelerate
challenging robotics applications [1]–[3]. This emerging field
has witnessed advances, especially based on two frameworks.
The first framework exploits reinforcement learning to train
robots such that they learn optimal control policies from
experiences to accomplish certain goals [4]. Despite successes
in tackling various tough problems, this framework in general
demands hefty amounts of training data and offers difficult
generalization to tasks different from specified goals [4]. By
contrast, the second framework seeks to integrate machine
learning-based modeling with optimal control [1]. Specifically,
it extracts data-driven models for robotic systems and then
synthesizes optimal control using such explicit models. The
corresponding robot control methods would arguably present
higher data efficiency and generalizability. Associated with
this, a still open question is how to enable control design that
well fits with machine learning models, which continually
calls for the development of constructive methods.

In this study, we consider the problem of controlling
neural network models for dynamic systems and investigate
nonlinear model predictive control (NMPC) for them. Neural

1I. Askari, B. Badnava and H. Fang are with the Department of Mechanical
Engineering, University of Kansas, Lawrence, KS 66045, USA (e-mail:
askari, babak.badnava, fang@ku.edu).

2T. Woodruff is with the Department of Electrical Engineering and
Computer Science, University of Kansas, Lawrence, KS 66045, USA (e-mail:
tjwoodruff@ku.edu).

3S. Zeng is with the Department of Electrical and System Engi-
neering, Washington University, St. Louis, MO 63130, USA (e-mail:
s.zeng@wustl.edu) and was supported by the NSF grant CMMI-
1933976.

networks have gained increasing use in modeling robots with
complicated dynamics. However, the application of NMPC
to them is non-trivial. Conventional NMPC entails online
constrained optimization, but numerical optimization of neural
network dynamics can be extremely burdensome due to a mix
of nonlinearity, nonconvexity, and heavy computation. This
is particularly true when a neural network has many hidden
layers and nodes. In addition, some robotics applications
involve cost functions that have zero gradients, precluding
the use of gradient-based optimization.

To address the challenge, we propose to leverage a
new NMPC approach, which was developed in our pre-
vious study [5] and named constraint-aware particle fil-
tering/smoothing NMPC (CAP-NMPC), to control neural
network dynamics. Departing from the optimization-based
view, the CAP-NMPC interprets NMPC through the lens
of Bayesian estimation and designs a constrained particle
filtering/smoothing method to achieve it. This approach, at its
core, uses sequential Monte Carlo sampling to estimate the
optimal control actions from a reference signal that is to be
followed by the neural network model over a receding horizon.
The sampling-based implementation is arguably advantageous
in several ways for control of neural network dynamics. It can
make sufficient search for the best control actions across a
large control space when using adequate numbers of particles.
The sampling-based computation also obviates the need for
iteratively computing gradients and is relatively easy and
efficient to achieve.

We further consider the problem of motion planning for
autonomous vehicles. We construct a neural network model to
capture the vehicle dynamics and then use the CAP-NMPC
to perform motion planning in dynamic driving scenarios
(e.g., lane changing and moving obstacles). The simulation
results demonstrate the effectiveness of the design.

II. RELATED WORK

Neural networks have proven useful for data-driven mod-
eling of many systems that resist analytical modeling or
suffer significant modeling uncertainty. A common approach
is using feedforward neural networks to approximate the state
dynamics functions. While simple network structures can be
enough for some systems [6]–[9], the recent development of
deep neural networks has allowed to capture more complex
dynamics [10], [11]. Further, recurrent neural networks can
effectively learn closed-loop or residual dynamics [12], [13].

Based on the prediction by a neural network model, NMPC
can be readily designed to predictively optimize a system’s

ar
X

iv
:2

20
5.

04
50

6v
1

 [
cs

.R
O

]
 9

 M
ay

 2
02

2

behavior, as is pursued in [6]–[13]. Yet, numerical optimiza-
tion in this setting is recognized as a thorny issue [9], [10],
as gradient-based methods often find themselves inadequate
and computationally expensive in the face of nonconvex
optimization of neural network dynamics. Gradient-free
NMPC is thus desired, and the sampling-based approach holds
significant promise. A simple random-sampling shooting
method is used in [11] to treat NMPC of a deep neural
network model, which generates control action sequences
randomly and chooses the sequence that leads to the highest
expected cumulative reward. The study in [9] formulates
information-theoretic NMPC for neural network models and
then synthesizes an algorithm based on iteratively weighting
sampled sequences of control actions. A direct estimation
approach to motion planning for autonomous vehicles is
presented in [14], where the planning requirements are
modeled as measurements and the trajectory of the vehicle
is inferred using a particle filter. The CAP-NMPC approach
differs from [9], [11], [14] on three aspects. First, it is
developed from the perspective of Bayesian estimation and
builds on particle filtering/smoothing to solve the NMPC
problem, which is different that the direct filtering approach
in [14]. This feature also allows for diverse realizations of
the CAP-NMPC since the literature includes a rich set of
particle filtering/smoothing techniques. Second, rather than
randomly creating all the control action samples at once and
then evaluating their competence (e.g., cumulative rewards or
weights), this approach generates samples sequentially based
on the neural network model and then weights and resamples
them. This principled manner has the potential to search the
control space more effectively. Third, by design, the CAP-
NMPC approach takes generic state and input constraints into
account, as needed for robotic systems subject to operating
constraints.

A critical function of autonomous driving, motion planning
has attracted enormous interest in the past decade. State of the
art has three main approaches: input space discretization with
collision checking, randomized planning, and NMPC [15]–
[17]. Among them, NMPC can optimize vehicle motion using
sophisticated vehicle models under practical constraints, thus
capable of planning and executing safety-critical, aggressive
(near-limit), or emergency maneuvers in complex environmen-
tal conditions [17]. NMPC-based motion planning has gained
a growing body of work recently, e.g., [9], [18]–[23], just
to highlight a few. However, almost all studies, except [9],
consider physics-based vehicle models to our knowledge,
even though modeling errors or biases are inevitable in the
real world. Neural network vehicle models have demonstrated
substantial achievements recently [24]. This paper will study
motion planning based on them, using the CAP-NMPC
approach as the enabling tool.

III. THE CAP-NMPC APPROACH

In this section, we provide an overview of the CAP-NMPC
approach. A more detailed description is available in [5].

A. NMPC through the Lens of Bayesian Estimation

Consider a nonlinear dynamic system of the form:

xk+1 = f(xk, uk), (1)

where xk ∈ Rnx is the system state, and uk ∈ Rnu is the
control input. The nonlinear mapping f : Rnx × Rnu →
Rnx characterizes the state transition. Here, it represents a
feedforward neural network model learned from data made
on the actual system, or a hybrid model combining physics
with neural networks. The system is subject to the following
inequality constraints:

gj(xk, uk) ≤ 0, ∀j = 1, . . . ,m, (2)

where m is the total number of constraints. We consider an
NMPC problem such that xk tracks a reference signal rk,
which is stated as follows:

min
uk:k+H

k+H∑
t=k

u>t Qut + (xt − rt)>R(xt − rt), (3a)

s.t. xt+1 = f(xt, ut), (3b)
gj(xt, ut) ≤ 0 ∀j = 1, . . . ,m, (3c)
t = k, . . . , k +H,

where H is the length of the upcoming horizon, uk:k+H =
{uk, uk+1, . . . , uk+H}, and Q and R are weighting matrices.
The above problem is solved through time in a receding-
horizon manner by computing the optimal control input
sequence u∗k:k+H . At every time, the first element, u∗k will
be applied to control the system, and the rest discarded. The
same optimization and control procedure will repeat itself
recursively at the future time instants.

While the NMPC problem in (3) is usually solved through
numerical optimization in the literature, it can be interpreted
as a Bayesian estimation problem and thus addressed. The
following theorem shows this connection [5], [25].

Theorem 1: For the horizon t = k, . . . , k + H , consider
the virtual system 

xt+1 = f(xt, ut),

ut+1 = wt,

rt = xt + vt,

(4)

where wt ∼ N
(
0, Q−1

)
, vt ∼ N

(
0, R−1

)
, and the reference

rt serves as virtual measurements. The maximum likelihood
estimation of xt and ut via

max
xk:k+H ,uk:k+H

log p(xk:k+H , uk:k+H | rk:k+H), (5)

where xk:k+H = {xk, xk+1, . . . , xk+H} (similarly for
uk:k+H and rk:k+H), is equivalent to the NMPC problem
in (3) without the inequality constraints in (3c).

Theorem 1 indicates that the original NMPC problem can
be converted into the problem of estimating the optimal
control actions along with states given the specified reference.
This viewpoint then ushers a new way of treating NMPC
through estimation methods.

Before proceeding further, we explain how to incorporate

the inequality constraints into a Bayesian estimation proce-
dure, since they are an integral part of the NMPC formulation.
Here, we adopt the barrier function method to create virtual
measurements about the constraint satisfaction:

zt = φ (g(xt, ut)) + ηt, (6)

where z is the virtual measurement variable, g is the collection
of gj for j = 1, . . . ,m, η is an additive small noise, and φ
is a barrier function. Here, φ is chosen to be the softplus
function:

φ(s) =
1

α
ln (1 + exp(βs)) , (7)

which is parametrized by two tuning factors α and β.
Note that φ is fully continuous and through appropriate
parameterization, outputs almost zero at a point within the
constraint set and large values at points outside the set.
Hence, φ can be used to quantify the constraint satisfaction
or violation, and we let the virtual measurement zt be 0.
Further, we can include zt into (4) to allow estimation with
an awareness of constraints.

Now, consider (4) along with zt and rewrite it compactly
in an augmented form:{

x̄t+1 = f̄(x̄t) + w̄t,

r̄t = h̄(x̄t) + v̄t,
(8)

for t = k, . . . , k + H , where x̄t =
[
x>t u>t

]>
, w̄t =[

0> w>t
]>

, v̄t =
[
v>t η>t

]>
, f̄ stems from f , and h̄ results

from rt and zt. Based on the above, to address the original
NMPC problem in (3), we only need to perform state
estimation for the above augmented system via

max
x̄k:k+H

log p(x̄k:k+H | r̄k:k+H). (9)

This can be achieved by particle filtering/smoothing, which
is known as an effective means of state estimation for even
highly nonlinear systems.

B. Development of the CAP-NMPC Approach

The state estimation problem in (9) involves both filtering
and smoothing. We first look at the forward filtering by
considering p(x̄k:t | r̄k:t) for k ≤ t ≤ k + H . Because it
is practically impossible to obtain an analytical expression
of p(x̄k:t | r̄k:t) for nonlinear systems, we approximate it
by using a sample-based empirical distribution. A common
and useful approach is to do importance sampling. That is,
one draws samples from an alternative known distribution
q(x̄k:t | r̄k:t), which is called importance or proposal dis-
tribution, and then evaluate the weights of the samples in
relation to p(x̄k:t | r̄k:t). Suppose that N samples, x̄ik:t for
i = 1, . . . , N , are drawn from q(x̄k:t | r̄k:t). Their importance
weights are given by

W i
t =

p(x̄k:t | r̄k:t)

q(x̄k:t | r̄k:t)
, (10)

which are then normalized to be between 0 and 1. As such,
p(x̄k:t | r̄k:t) can be approximated as

p(x̄k:t | r̄k:t) ≈
N∑
i=1

W i
kδ
(
x̄k:t − x̄ik:t

)
.

Note that (10) also implies a recurrence relation in the weight
update:

W i
t =

p(x̄k:t | r̄k:t)

q(x̄k:t | r̄k:t)
=
p(r̄t | x̄it)p(x̄it | x̄it−1)

q(x̄it | x̄it−1, r̄k:t)
W i

t−1.

One has different ways to implement the above procedure,
with the key lying in choosing the importance distribution
q. A straightforward choice is to let q(x̄t | x̄t−1, r̄k:t) =
p(x̄t | x̄t−1). Given this choice, we can draw samples x̄it ∼
p(x̄t | x̄it−1) at time t and compute the associated normalized
weights via

W i
t =

p(r̄t | x̄it)∑N
j=1 p(r̄t | x̄

j
t)
. (11)

This implementation is called the bootstrap particle filter.
For a particle filtering run, a majority of the particles may
have zero or almost zero weights after a few time steps. This
is known as the issue of particle degeneracy, which lowers
the overall quality of the particles and reduces the estimation
performance. To resolve this issue, resampling can be used
to replace low-weight particles by those with high weights
[26].

The backward smoothing follows the forward filtering
as we only require p(x̄k | r̄k:k+H), which can lead to a
more accurate estimation of x̄k. There are different particle
smoothers, and the reweighting particle smoother will suffice
here. It reweights the samples in a recursive backward manner
via

W i
t|k+H =

N∑
j=1

W i
t+1|k+H

W i
t p(x̄

j
t+1 | x̄it)∑N

l=1W
l
tp(x̄

j
t+1 | x̄lt)

, (12)

where W i
k+H|k+H = W i

k+H . The resultant procedure is
called reweighted particle smoother. After the smoothing,
the empirical distribution for p(x̄k | r̄k:k+H) is given by

p(x̄k | r̄k:k+H) ≈
N∑
i=1

W i
k|k+Hδ(x̄k − x̄

i
k).

Finally, the best estimate of x̄k from r̄k:k+H is

ˆ̄x∗k = E (x̄k | r̄k:k+H) =

N∑
i=1

W i
k|k+H x̄

i
k, (13)

from which the optimal control input u∗k can be read.
Summarizing the above, the CAP-NMPC approach can be

outlined as in Algorithm 1. It presents a fully sampling-based
implementation of NMPC, which is promising for control
of neural network dynamics. It should also be noted that
this approach can well admit other realizations of particle
filtering/smoothing, depending on the needs for sophistication
and accuracy of estimation.

Algorithm 1 CAP-NMPC: NMPC via Constraint-Aware
Particle Filtering/Smoothing

1: Set up NMPC by specifying the dynamic system (1)
2: Recast NMPC as particle filtering/smoothing by setting

up the virtual system (8)
3: for k = 1, . . . , T do

Forward filtering
4: for t = k, . . . , k +H do
5: if t = k then
6: Draw samples x̄ik ∼ p(x̄k), i = 1, . . . , N
7: else
8: Draw samples x̄it ∼ p(x̄t | x̄it−1), i =

1, . . . , N
9: Evaluate sample weights via (11)

10: Do resampling based on the weights
11: end if
12: end for

Backward smoothing
13: for t = k +H, . . . , k do
14: if t = k +H then
15: Assign W i

k+H|k+H = W i
k+H , i = 1, . . . , N

16: else
17: Reweight the particles via (12)
18: end if
19: end for
20: Compute the optimal estimation of x̄k via (12)
21: Export u∗k from x̄∗k, and apply it to the system (1)
22: end for

IV. MOTION PLANNING USING NEURAL NETWORK
DYNAMICS via CAP-NMPC

In this section, we present the autonomous vehicle motion
planning problem.

A. Motion Planning Problem Formulation

We consider an autonomous vehicle whose goal is to arrive
at the desired goal state xg from an initial state x0 while
considering its own dynamics (1) and constraints imposed by
the surrounding [18]. The objective of planning is to find an
optimal trajectory without violating the constraints. To this
end, an NMPC problem can be formulated as

min
uk:k+H

k+H∑
t=k

u>t Qut + (xt − xg)>R(xt − xg), (14a)

s.t. xt+1 = f(xt, ut), (14b)
gj(xt, ut) ≤ 0 ∀j = 1, . . . ,m, (14c)
t = k, . . . , k +H,

which follows (3) by assigning the goal state to be the
reference. The model in (14b) captures the vehicle dynamics,
and (14c) encompasses all the constraints due to vehicle
operation or planning scenarios.

A mission of motion planning is to make the autonomous
vehicle perform as well as or even better, than human
drivers in a wide array of conditions or situations, and a

key is using capable models. Despite the utility, physics-
based vehicle models have practical limitations, which may
contain errors or biases, or suit only certain specific conditions.
Meanwhile, the increasing abundance of data generated by
autonomous vehicles makes it possible to construct precise,
broadly applicable data-driven models. Among them, neural
networks have shown tremendous merits for model-based
control of vehicles [24]. Therefore, we will leverage a neural
network model for the considered motion planning problem,
with more details offered in IV-B. Further, a sampling-
based implementation of NMPC better suits control of
neural networks than numerical optimization, as argued in
Sections I-II. Recent studies also suggest sampling can be
more competitive than numerical optimization in dealing with
large-scale problems [27]. We hence will use the CAP-NMPC
approach to address the motion planning problem (14) with
neural network dynamics.

B. The Neural Network Model

A feedforward neural network is utilized to represent the
vehicle dynamics. We describe the neural-network-based
parameterization of the vehicle system and then explain the
data collection and training process.

1) Vehicle Dynamics Parameterization: There are different
approaches to parameterize the vehicle dynamics using neural
networks. A simple approach is to feed the state xk and
control uk to a neural network and make the network predict
the next state of the system xk+1. However, learning such
a function could be difficult due to the small sampling
time ∆t. This leads to xk and xk+1 being very similar
in making, causing the network to effectively learn an
identity transformation [11]. Hence, we instead focus on
parameterizing the state transition function, as it shows the
incremental changes in the state. The parametrization is then
given by

xk+1 = xk + ∆tf̂(xk, uk; θ),

where f̂ represents the neural network to approximate the
vehicle dynamics, and θ collects the weights of the network.

2) Data collection and pre-processing: We generate and
collect the training data from the considered vehicles model.
This is attained by sampling a set of states from a uni-
form distribution xk ∼ Uni(Xk) and applying a random
control, which is also sampled from a uniform distribution
uk ∼ Uni(Uk). Here, X and U are the respective feasible
state and control constraint sets defined by the inequality
constraints (3c). Then, xk and uk are applied to the vehicle
model, and the next state xk+1 of the system is recorded. This
constructs the required transition {xk, uk, xk+1} for training.
The input to the neural network is the state and control pair
(xk, uk), and the corresponding output is incremental state
change ∆xk = xk+1 − xk. The input and output are also
normalized to ensure an almost equal contribution of each
element of the state and control to the loss function. The
obtained training dataset is D containing a million data points.

3) Neural Network Structure and Training: We use a
dense neural network with four hidden layers of size

0 10 20 30 40 50 60 70

0

5

10

15

1 3

2

Obstacles
Ego Car CAP-NMPC
Goal Point

Fig. 1: Planned trajectory for Scenario 1 using the CAP-NMPC
approach.

0 10 20 30 40 50 60

0

5

0 10 20 30 40 50 60

-4

-2

0

2

4

0 10 20 30 40 50 60

-20

0

20

Fig. 2: Velocity, acceleration and steering profiles for Scenario 1.

200, 300, 300, 100, respectively, with the rectified linear
function as the activation function. We then train the neural
network by minimizing the mean squared error

L(θ;D) =
1

M

M∑
i=1

∥∥∥∆x
(i)
k − f̂(x

(i)
k , u

(i)
k ; θ)

∥∥∥2

, (15)

where M is the number of training samples in D. The training
is done using Adam optimizer [28]. We also use a different test
dataset Dtest to evaluate the prediction accuracy of the trained
neural network over data points not included in the training
set. Finally, we point out that such a dense network is used
in order to better validate the CAP-NMPC approach, even
though a less dense one could also sufficiently approximate
the vehicle dynamics.

V. NUMERICAL SIMULATION

Based on Section IV, we now illustrate the effectiveness
of the CAP-NMPC approach for motion planning.

A. Constraints

The planning vehicle, or ego car, has a state xk including
its 2D position (xpk, y

p
k), linear velocity νk, and heading angle

ψk, as in the considered single-track vehicle model [29]. Its
control input uk includes the acceleration ak and steering
angle δk. Three constraints are considered in the simulation
study: road boundaries, obstacle collision avoidance, and the
limits on the control actions.

0 10 20 30 40 50 60

0

10

20

30

40

50
Distance to Car 1

Distance to Car 2

Distance to Car 3

Collison Reference

Fig. 3: Minimum relative distances between the ego car and static
obstacles for Scenario 1.

1) Road Boundary Constraints: The ego car is constrained
to stay within the road boundaries. The maximum orthogonal
distance dB from the road boundary is

dB(xk) = max
j

{
‖xk −Bj‖2

}
,

where Bj denotes the orthogonal point on the j-th boundary
of the road from the ego car. We require dB(xk) ≤ L, where
L is the width of the road, such that the ego car lies inside
the road boundaries.

2) Obstacle Avoidance Constraint: The ego car can
encounter many other vehicles in its path and should keep a
safe distance from them. The distance between the ego car
and the closest obstacles is expressed as

dO(xk) = min
l
‖xk −Ol‖2 ,

where Ol is the l-th obstacle. To ensure safety, we enforce
dO(xk) ≥ 0.

3) Control Constraints: The maneuverability of the car
is limited in real world. Here, we represent these limits by
specifying the control bounds:

u ≤ uk ≤ u,

where u is the lower bound, and u is the upper bound.

B. Case Studies

We consider two scenarios to examine the performance of
the CAP-NMPC approach for motion planning. In Scenario 1,
the ego car is to travel on a straight road with static obstacles.
Scenario 2 involves three moving vehicles on a curved road
and requires the ego car to overtake them. The prediction
horizon length in the scenarios is H = 10. The number of
particles used in the CAP-NMPC is N = 300. All the cars’
lengths and widths are 4 m and 2 m, respectively. The road
width is 10 m, and the sampling period ∆t = 0.2 s.

Scenario 1: Straight road with static obstacles. We place
three stationary obstacles across the road. The ego car’s
trajectory is shown in Fig. 1, where the depth of the color

0 10 20 30 40 50 60 70
-15

-10

-5

0

5

10

15
Moving Vehicles
Ego Car CAP-NMPC
Goal Point

2

3

1

Fig. 4: Planned trajectory for Scenario 2 using the CAP-NMPC
approach.

0 10 20 30 40 50 60

4

5

6

7

0 10 20 30 40 50 60

-4

-2

0

2

4

0 10 20 30 40 50 60

-20

0

20

Fig. 5: Velocity, acceleration and steering profiles for Scenario 2.

from light to dark encodes the temporal information from
present to future. The solid black line represents the road
boundaries. We can observe that the ego vehicle is able to
smoothly maneuver, bypassing the obstacles and keeping a
safe distance at all times. Fig. 2 depicts the vehicles velocity
and control profiles. It is evident that the CAP-NMPC allows
the ego car to plan proficient maneuvers from zero velocity
until reaching the goal state while satisfying the specified
constraints and reference velocity (pink dotted line in Fig. 2).
It can be seen that the generated path with CAP-NMPC is
indeed feasible for the vehicle to execute. In addition, in
Fig. 3, we depict the minimum relative distance between the
ego car and the obstacles, which is kept above zero to ensure
collision avoidance.

Scenario 2: Curved road with other moving vehicles. In this
scenario, we consider a curved road with moving obstacles.
The initial speed of all vehicles is 5 m/s and the trajectories
of the obstacle vehicles are obtained by assigning a goal
position for each obstacle vehicle by CAP-NMPC algorithm.
The obstacle vehicles are set in motion only when the ego car
approaches them in order to ensure interaction with the ego
car. This scenario is significantly more challenging given the
dynamic environment, making collision avoidance a difficult
task. For instance, observe from Figs. 4-6 the instant where

0 10 20 30 40 50 60

0

10

20

30

40

50
Distance to Car 1

Distance to Car 2

Distance to Car 3

Collison Reference

Fig. 6: Minimum relative distances between the ego car and other
moving vehicles in Scenario 2.

the ego car is at x = 20 m. At this instant, the ego car has
two other cars adjacent to it, one in the left lane and the
other straight ahead. In addition, the road boundary is on the
right of the ego car. The ego car has to carefully maneuver
without leaving the road and colliding with the adjacent cars.
To this end, the CAP-NMPC could successfully predict the
upcoming situation and increase its velocity to smoothly pass
between the two vehicles at a safe distance, as shown in Fig. 6.
Eventually, the ego car formulates a trajectory allowing it
to overtake the other vehicles without collision to reach the
specified goal state.

With this, we demonstrated the effectiveness of using a
sample-based NMPC framework to solve the motion planning
problem of a vehicle while considering neural network
dynamics through the use of our proposed CAP-NMPC
algorithm for realistic driving scenarios.

VI. CONCLUSION

A growing convergence of machine learning and advanced
control is driving the frontiers of robotics and stimulates new
research problems. In this paper, we investigated the problem
of NMPC for neural network dynamics. The motivation lies
in that, even though NMPC has become an important method
for robotics applications, its popular implementation based on
numerical optimization can meet only limited success when
given neural network models. In a departure, we proposed
to use a sampling-based NMPC approach, which built upon
an Bayesian estimation perspective of NMPC and leveraged
particle filtering/smoothing to estimate the best control actions.
We then considered the motion planning problem for an
autonomous vehicle with neural network dynamics and
deployed the proposed approach to solve it under different
driving conditions. The results demonstrated the potency
of CAP-NMPC to handle constraints and compute feasible
trajectories effectively. Our future work will pursue integrating
the CAP-NMPC approach with other existing, very successful
sampling-based motion planning techniques such as rapidly-
exploring random trees or probabilistic roadmap methods,

toward further improving the computational efficiency and
feasibility in planning. The proposed approach can find
prospective use in a wide variety of other robot control
problems.

REFERENCES

[1] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive Processing, vol. 12, no. 4, pp. 319–340, 2011.

[2] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, per-
spectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260,
2015.

[3] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: a review
of recent research,” Advanced Robotics, vol. 31, no. 16, pp. 821–835,
2017.

[4] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[5] I. Askari, S. Zeng, and H. Fang, “Nonlinear model predictive con-
trol based on constraint-aware particle filtering/smoothing,” in 2021
American Control Conference (ACC), 2021, pp. 3532–3537.

[6] A. Draeger, S. Engell, and H. Ranke, “Model predictive control using
neural networks,” IEEE Control Systems Magazine, vol. 15, no. 5, pp.
61–66, 1995.

[7] S. Piché, J. Keeler, G. Martin, G. Boe, D. Johnson, and M. Gerules,
“Neural network based model predictive control,” in Proceedings of
the 12th International Conference on Neural Information Processing
Systems, 1999, p. 1029–1035.

[8] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic MPC for model-based
reinforcement learning,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2017, pp. 1714–1721.

[9] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applications
to autonomous driving,” IEEE Transactions on Robotics, vol. 34, no. 6,
pp. 1603–1622, 2018.

[10] A. Broad, I. Abraham, T. Murphey, and B. Argall, “Structured
neural network dynamics for model-based control,” ArXiv, vol.
abs/1808.01184, 2018.

[11] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2018, pp. 7559–7566.

[12] G. Garimella and M. Sheckells, “Nonlinear model predictive control of
an aerial manipulator using a recurrent neural network model,” 2018.

[13] V. Rankovic, J. Radulovic, N. Grujović, and D. Divac, “Neural network
model predictive control of nonlinear systems using genetic algorithms,”
International Journal of Computers, Communications and Control,
vol. 7, pp. 540–549, 2012.

[14] K. Berntorp, T. Hoang, and S. Di Cairano, “Motion planning of
autonomous road vehicles by particle filtering,” IEEE Transactions on
Intelligent Vehicles, vol. 4, no. 2, pp. 197–210, 2019.

[15] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 1, no. 1, pp. 187–210, 2018.

[16] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–1145,
2016.

[17] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55,
2016.

[18] J. Chen, W. Zhan, and M. Tomizuka, “Autonomous driving motion
planning with constrained iterative LQR,” IEEE Transactions on
Intelligent Vehicles, vol. 4, no. 2, pp. 244–254, 2019.

[19] M. Brunner, U. Rosolia, J. Gonzales, and F. Borrelli, “Repetitive
learning model predictive control: An autonomous racing example,” in
Proceedings of the IEEE 56th Annual Conference on Decision and
Control, 2017, pp. 2545–2550.

[20] M. Nolte, M. Rose, T. Stolte, and M. Maurer, “Model predictive control
based trajectory generation for autonomous vehicles — an architectural
approach,” in Proceedings of the IEEE Intelligent Vehicles Symposium,
2017, pp. 798–805.

[21] V. Cardoso, J. Oliveira, T. Teixeira, C. Badue, F. Mutz, T. Oliveira-
Santos, L. Veronese, and A. F. De Souza, “A model-predictive motion
planner for the iara autonomous car,” in Proceedings of the IEEE
International Conference on Robotics and Automation, 2017, pp. 225–
230.

[22] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path planning for
autonomous vehicles using model predictive control,” in Proceedings
of the IEEE Intelligent Vehicles Symposium (IV), 2017, pp. 174–179.

[23] Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat, “Predictive control
of autonomous ground vehicles with obstacle avoidance on slippery
roads,” in Proceedings of the ASME Dynamic Systems and Control
Conference, 2010, pp. 265–272.

[24] N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and
J. C. Gerdes, “Neural network vehicle models for high-performance
automated driving,” Science Robotics, vol. 4, no. 28, 2019.

[25] D. Stahl and J. Hauth, “PF-MPC: Particle filter-model predictive
control,” Systems & Control Letters, vol. 60, no. 8, pp. 632–643,
2011.

[26] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University
Press, 2013.

[27] Y.-A. Ma, Y. Chen, C. Jin, N. Flammarion, and M. I. Jordan, “Sampling
can be faster than optimization,” Proceedings of the National Academy
of Sciences, vol. 116, no. 42, pp. 20 881–20 885, 2019.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the International Conference on Learning
Representations, 2015.

[29] R. Rajamani, Vehicle Dynamics and Control. Springer US, 2012.

	I Introduction
	II Related Work
	III The CAP-NMPC Approach
	III-A NMPC through the Lens of Bayesian Estimation
	III-B Development of the CAP-NMPC Approach

	IV Motion Planning Using Neural Network Dynamics via CAP-NMPC
	IV-A Motion Planning Problem Formulation
	IV-B The Neural Network Model
	IV-B.1 Vehicle Dynamics Parameterization
	IV-B.2 Data collection and pre-processing
	IV-B.3 Neural Network Structure and Training

	V Numerical Simulation
	V-A Constraints
	V-A.1 Road Boundary Constraints
	V-A.2 Obstacle Avoidance Constraint
	V-A.3 Control Constraints

	V-B Case Studies

	VI Conclusion
	References

