
Data-Driven Predictive Control for Connected and Autonomous
Vehicles in Mixed Traffic

Jiawei Wang1, Yang Zheng2, Qing Xu1 and Keqiang Li1

Abstract— Cooperative control of Connected and Au-
tonomous Vehicles (CAVs) promises great benefits for mixed
traffic. Most existing research focuses on model-based control
strategies, assuming that car-following dynamics of human-
driven vehicles are explicitly known. In this paper, instead of re-
lying on a parametric car-following model, we introduce a data-
driven predictive control strategy to achieve safe and optimal
control for CAVs in mixed traffic. We first present a linearized
dynamical model for mixed traffic systems, and investigate
its controllability and observability. Based on these control-
theoretic properties, we then propose a novel DeeP-LCC (Data-
EnablEd Predictive Leading Cruise Control) strategy for CAVs
based on measurable driving data to smooth mixed traffic. Our
method is implemented in a receding horizon manner, in which
input/output constraints are incorporated to achieve collision-
free guarantees. Nonlinear traffic simulations reveal its saving
of up to 24.96% fuel consumption during a braking scenario
of Extra-Urban Driving Cycle while ensuring safety.

I. INTRODUCTION

Connected and autonomous vehicles (CAVs) have pro-
vided new opportunities for smoothing traffic flow [1]. One
typical technology is cooperative adaptive cruise control that
regulates a series of CAVs to achieve higher traffic efficiency
and better fuel economy [2], [3]. Given the gradual deploy-
ment of CAVs, there will be a transition phase of mixed
traffic flow, where human-driven vehicles (HDVs) also exist.
Recently, it has been shown theoretically and experimentally
that incorporating HDVs’ behavior into CAVs’ controller
design promises improved mixed traffic performance [4]–[7].

The mixed traffic flow is essentially a complex human-in-
the-loop cyber-physical system. Most existing research ex-
ploits microscopic car-following models to describe HDVs’
behavior and designs model-based CAV control strate-
gies [7]–[9]. In practice, however, human car-following dy-
namics are complex and nonlinear, which are non-trivial to
identify accurately. Indeed, model-free or data-driven meth-
ods, bypassing model identifications, have recently received
significant attention [10], [11]. For example, reinforcement
learning [12] and adaptive dynamic programming [13] have
been recently utilized for mixed traffic control, which employ
large-scale driving data of HDVs to train control strategies
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of CAVs. However, these methods typically bring a heavy
computation burden and have difficulties in including safety
constraints in practical deployment.

Recent advancements in data-driven predictive control
have provided effective techniques towards safe learn-
ing [14]. One promising strategy is the recent Data-EnablEd
Predictive Control (DeePC) method [15], which is able to
achieve safe and optimal control for unknown systems using
input/output measurements. Instead of identifying a paramet-
ric system model, DeePC relies on Willems’ fundamental
lemma [16] to directly predict future trajectories. DeePC also
allows one to incorporate input/output constraints to ensure
safety. Moreover, DeePC has shown its equivalence with
sequential system identification and Model Predictive Con-
trol (MPC) for deterministic linear time-invariant (LTI) sys-
tems [15], and has demonstrated better control performance
for nonlinear and non-deterministic systems [17], [18]. To
our best knowledge, data-driven predictive control methods
such as DeePC have not been utilized in mixed traffic control,
and the results above are not directly applicable due to
distinct dynamical properties of mixed traffic systems.

In this paper, we aim to design safe and optimal control
strategies for CAVs to smooth mixed traffic flow that require
no prior knowledge of HDVs’ car-following dynamics. In
particular, motivated by DeePC [15], we introduce a Data-
EnablEd Predictive Leading Cruise Control (DeeP-LCC)
strategy. Our main contributions include: 1) We establish
a linearized state-space model for a general mixed traffic
system with multiple CAVs and HDVs under the Leading
Cruise Control (LCC) framework [19]. We define measurable
driving data as system output, highlighting the fact that
HDVs’ equilibrium spacing is practically unknown. This
issue has been neglected in many results on mixed traffic that
require state-feedback control [8], [9], [13]. We show that the
linearized mixed traffic system is not completely controllable
unless the first vehicle is a CAV, but is observable under
a mild condition. These control-theoretic results serve as
the foundation for our reformulation of DeePC for mixed
traffic. 2) We propose a DeeP-LCC method, in which the
CAVs utilize measurable driving data for optimal and safe
controller design without identifying an explicit parametric
car-following model. The standard DeePC requires the under-
lying system to be controllable [15], [16], and thus cannot
be directly applied to mixed traffic. To address this issue,
we introduce an external input signal to record the data of
the head vehicle. Together with CAVs’ control input, this
contributes to full controllability. Spacing constraints are also
incorporated on the driving behavior for safety guarantees.
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Fig. 1. Schematic of mixed traffic flow. The head vehicle, at the very
beginning, is indexed as 0, behind which there exist n vehicles consisting
of m CAVs and n−m HDVs with unknown driving dynamics.

The rest of this paper is organized as follows. Sec-
tion II introduces the mixed traffic modeling, and Section III
presents the controllability and observability results. We then
present DeeP-LCC in Section IV and traffic simulations in
Section V. This paper is concluded in Section VI.

II. THEORETICAL MODELING FRAMEWORK

In this section, we first introduce the parametric modeling
of HDVs’ car-following behavior, and then present the lin-
earized dynamics of a general mixed traffic system under the
LCC framework; see [19] for a detailed motivation of LCC.

As shown in Fig. 1, we consider a general mixed traffic
system with n + 1 individual vehicles, among which there
exist one head vehicle, indexed as 0, and m CAVs and n−m
HDVs. Define Ω = {1, 2, . . . , n} as the set of all the vehicle
indices, and S = {i1, i2, . . . , im} ⊆ Ω as the set of the
CAV indices, where i1 < i2 < . . . < im also represent
the spatial locations of the CAVs in mixed traffic flow. The
position, velocity and acceleration of the i-th vehicle at time
t is denoted as pi(t), vi(t) and ai(t), respectively.

A. Car-Following Dynamics of HDVs

There exist many well-established continuous-time models
for car-following dynamics, including the optimal velocity
model (OVM), the intelligent driver model (IDM) and their
variants [20]. Most of these models can be written in the
following nonlinear form

v̇i(t) = F (si(t), ṡi(t), vi(t)) , i ∈ Ω\S, (1)

where si(t) = pi−1(t) − pi(t) denotes the car-following
spacing of vehicle i, and ṡi(t) = vi−1(t)− vi(t) denotes the
relative velocity. The nonlinear function F (·) represents that
the acceleration of an HDV depends on the relative distance,
relative velocity and its own velocity.

In an equilibrium traffic state, each vehicle moves with
the same equilibrium velocity v∗ and the corresponding
equilibrium spacing s∗. According to (1), we have

F (s∗, 0, v∗) = 0. (2)

Upon assuming that the mixed traffic flow is around an
equilibrium state (s∗, v∗), we define the error state between
actual and equilibrium point as s̃i(t) = si(t) − s∗, ṽi(t) =
vi(t) − v∗, i ∈ Ω, where s̃i, ṽi represent the spacing error
and velocity error of vehicle i, respectively. Then a linearized
dynamics model for each HDV can be derived by using (2)
and applying the first-order Taylor expansion to (1){

˙̃si(t) = ṽi−1(t)− ṽi(t),
˙̃vi(t) = α1s̃i(t)− α2ṽi(t) + α3ṽi−1(t),

i /∈ S, (3)

where α1 = ∂F
∂s , α2 = ∂F

∂ṡ −
∂F
∂v , α3 = ∂F

∂ṡ with the partial
derivatives evaluated at the equilibrium state (s∗, v∗). To
reflect the real stable driving behavior of human drivers, we
have α1 > 0, α2 > α3 > 0. More linearization details can
be found in [4], [8].

B. State-Space Model of Mixed Traffic Systems

Similar to [4], [8], [13], we use the acceleration of each
CAV as the control input, i.e., v̇i(t) = ui(t), i ∈ S. A
second-order model is used to describe the linear longitudinal
dynamics of each CAV{

˙̃si(t) = ṽi−1(t)− ṽi(t),
˙̃vi(t) = ui(t),

i ∈ S. (4)

To derive a linearized model of the mixed traffic system
shown in Fig. 1, we lump the error states of all the vehicles
as the mixed traffic system state (x(t) ∈ R2n)

x(t) =
[
s̃1(t), ṽ1(t), s̃2(t), ṽ2(t), . . . , s̃n(t), ṽn(t)

]T
,

and lump the acceleration signal of all the CAVs as the
collective control input u(t) =

[
ui1(t), ui2(t), . . . , uim(t)

]T
∈ Rm. Then, based on the linearized HDVs’ car-following
model (3) and the CAV’s dynamics (4), the linearized state-
space model for the mixed traffic system is obtained as

ẋ(t) = Ax(t) +Bu(t) +Hε(t), (5)

where ε(t) = ṽ0(t) = v0(t)−v∗, i.e., the velocity error of the
head vehicle, is regarded as an external input to the system.
The system matrices in (5) are given by (see [19] for details)

A =


A1,1

A2,2 A2,1

. . . . . .
An−1,2 An−1,1

An,2 An,1

 ∈ R2n×2n,

B =
[
e2i1

2n , e
2i2
2n , . . . , e

2im
2n

]
∈ R2n×m,

H =
[
hT1 , h

T
2 , . . . , h

T
n

]T ∈ R2n×1,

where erp denotes a p × 1 unit vector, with the r-th entry
being one and the others being zeros, and

Ai,1 =

{
P1, i /∈ S;

S1, i ∈ S;
Ai,2 =

{
P2, i /∈ S;

S2, i ∈ S;

h1 =

[
1
α3

]
, hj =

[
0
0

]
, j ∈ {2, 3, . . . , n},

with

P1 =

[
0 −1
α1 −α2

]
, P2 =

[
0 1
0 α3

]
, S1 =

[
0 −1
0 0

]
, S2 =

[
0 1
0 0

]
.

Measurable driving data: Note that the state in (5) cannot
be directly measured. In practice, the equilibrium velocity
v∗ can be obtained from the steady-state velocity of the
head vehicle. However, the equilibrium spacing s∗ for the
HDVs is non-trivial to accurately estimate, since the car-
following behavior of each human driver is unknown. It is
thus impractical to observe the information of the spacing



error signal of the HDVs, i.e., s̃i (i /∈ S). For the CAVs,
by contrast, their equilibrium spacing can be designed [4],
and thus their spacing error signal can be directly measured.
Accordingly, we introduce an output signal y(t) as follows

y(t) =
[
ṽ1(t), ṽ2(t), . . . , ṽn(t), s̃i1(t), s̃i2(t), . . . , s̃im(t)

]T
,

where y(t) ∈ Rn+m consists of the velocity errors of both
the HDVs and the CAVs, i.e., ṽi (i ∈ Ω), and the spacing
errors of all the CAVs, i.e., s̃i (i ∈ S). The output in (5) is
given by

y(t) = Cx(t), (6)

where C =
[
e2

2n, e
4
2n, . . . , e

2n
2n, e

2i1−1
2n , e2i2−1

2n , . . . , e2im−1
2n

]T
∈ R(n+m)×2n is the output matrix.

III. CONTROLLABILITY AND OBSERVABILITY
OF MIXED TRAFFIC SYSTEMS

Controllability and observability serve as foundations in
dynamical systems [21]. For mixed traffic systems, existing
research has revealed the controllability for the scenario of
one single CAV and multiple HDVs, i.e., |S| = 1 [8], [19].
These results have been unified in the recent LCC framework
with one single CAV [19].

For general mixed traffic systems with multiple HDVs and
CAVs, given by (5) and (6), we have the following results.

Theorem 1 (Controllability): Consider the general mixed
traffic system given by (5) and (6), where there exist m (m ≥
1) CAVs with indices S = {i1, i2, . . . , im}, i1 < i2 < . . . <
im. The following statements hold.

1) When 1 ∈ S, i.e., i1 = 1, the mixed traffic system is
controllable if the following condition holds

α1 − α2α3 + α2
3 6= 0. (7)

2) When 1 /∈ S, the mixed traffic system is not completely
controllable but is stabilizable, if (7) holds. The subsys-
tem consisting of the states s̃1, ṽ1, . . . , s̃i1−1, ṽi1−1 is
not controllable but is stable, while the subsystem con-
sisting of the states s̃i1 , ṽi1 , . . . , s̃n, ṽn is controllable.

The proof idea is based on controllability invariance under
state feedback with respect to the result in [19, Theorem 2];
the technical proof is presented in an extended version [22].
Theorem 1 indicates that the general mixed traffic system is
not completely controllable unless the vehicle immediately
behind the head vehicle is a CAV. This is expected, since the
motion of the HDVs between the head vehicle and the first
CAV cannot be influenced by the CAVs’ control.

Theorem 2 (Observability): The general mixed traffic sys-
tem, given by (5) and (6), is observable when (7) holds.

The observability result can be proved by adapting [19,
Theorem 4]. The slight asymmetry between Theorems 1
and 2 is due to the fact that the control input in (6) includes
only the acceleration signal of all the CAVs, while the system
output consists of the velocity error signal of all the vehicles
and the spacing error signal of the CAVs. Theorem 2 reveals
the observability of the full state x(t) in mixed traffic under a
mild condition. This observability result facilitates the design
of our DeeP-LCC controller.

Still, the controllability of a dynamical system is a desired
property, which guarantees the data-driven behavior repre-
sentation in the next section. Note that the velocity error
signal of the head vehicle ε(t) = v0(t) − v∗ is an external
input. This signal is not controlled, but can be measured in
practice. Define û(t) = col (ε(t), u(t)) as a combined input
signal and B̂ =

[
H,B

]
as the corresponding input matrix.

Then, a reformulated model for the mixed traffic system is{
ẋ(t) = Ax(t) + B̂û(t),

y(t) = Cx(t).
(8)

For this system model, we have the following result.
Corollary 1: Consider the mixed traffic system given

by (8), where there exist m (m ≥ 1) CAVs. Then, the system
(A, B̂, C) is controllable and observable if (7) holds.

IV. DEEP-LCC FOR MIXED TRAFFIC FLOW

In this section, we first introduce a non-parametric data-
centric representation of the mixed traffic system behav-
ior based on Willems’ fundamental lemma [16], and then
present the Data-EnablEd Predicted Leading Cruise Control
(DeeP-LCC) strategy for mixed traffic control.

A. Non-Parametric Representation of System Behavior

The system model in (5) and (6) is continuous. It can be
straightforwardly transformed into the discrete time domain{

x(k + 1) = Adx(k) +Bdu(k) +Hdε(k),

y(k) = Cdx(k),
(9)

where Ad = eA∆t ∈ R2n×2n, Bd =
∫∆t

0
eAtBdt ∈

R2n×m, Hd =
∫∆t

0
eAtHdt ∈ R2n×1, Cd = C ∈

R(n+m)×2n, and ∆t > 0 is the sampling interval.
Model-based control strategies typically follow the se-

quential system identification and control procedure: learning
the parametric model (i.e., Ad, Bd, Hd, Cd in (9)) in advance
and then performing model-based controller design. By con-
trast, the recently proposed DeePC method [15] is a non-
parametric method that bypasses the system identification
process and directly designs the control input compatible
with historical system data. In particular, DeePC directly uses
past data to predict the system “behavior” based on Willems’
fundamental lemma [16]. The following notion of persistent
excitation is needed.

Definition 1: The signal ω = col(ω1, ω2, . . . , ωT ) of
length T is persistently exciting of order l (l ≤ T ) if the
following Hankel matrix is of full row rank

Hl(ω) :=


ω1 ω2 · · · ωT−l+1

ω2 ω3 · · · ωT−l+2

...
...

. . .
...

ωl ωl+1 · · · ωT

 . (10)

Data collection: The standard DeePC requires the system to
be completely controllable. Thus, we rely on the reformu-
lated system model (9) with two input signals u, ε combined
together to design our DeeP-LCC method for mixed traffic.
We begin by collecting a sequence trajectory data of length



T from the system (9) with sampling interval ∆t. The
collected data includes: 1) the combined input sequence
ûd = col(ûd(1), . . . , ûd(T )) ∈ R(m+1)T , consisting of
CAVs’ acceleration sequence ud = col(ud(1), . . . , ud(T )) ∈
RmT and the velocity error sequence of the head vehicle
εd = col(εd(1), . . . , εd(T )) ∈ RT ; 2) the output sequence of
mixed traffic yd = col(yd(1), . . . , yd(T )) ∈ R(n+m)T .

These data samples could be generated offline, or collected
online from the trajectory data of those involved vehicles.
Then, we partition the pre-collected data into two parts,
corresponding to “past data” of length Tini ∈ N and “future
data” of length N ∈ N. Precisely, define[

Up

Uf

]
:= HTini+N (ud),

[
Ep

Ef

]
:= HTini+N (εd),[

Yp

Yf

]
:= HTini+N (yd),

(11)

where Up and Uf consist of the first Tini block rows and the
last N block rows of HTini+N (ud), respectively (similarly
for Ep, Ef and Yp, Yf ).
System behavior representation: motivated by Willems’
fundamental lemma [16] and the DeePC formulation [15],
we have the following result: given time t, we define uini =
col(u(t− Tini), u(t− Tini + 1), . . . , u(t− 1)) as the control
input sequence within a past time horizon of length Tini,
and u = col(u(t), u(t+ 1), . . . , u(t+N − 1)) as the control
input sequence within a predictive time horizon of length N
(similarly for εini, ε and yini, y).

Proposition 1: Suppose that (7) holds, and the combined
input sequence ûd is persistently exciting of order Tini+N+
2n. Then, any trajectory of the mixed traffic system (9) of
length Tini +N , denoted as col(uini, εini, yini, u, ε, y), can be
constructed via 

Up

Ep

Yp

Uf

Ef

Yf

 g =


uini

εini

yini

u
ε
y

 , (12)

where g ∈ RT−Tini−N+1. If Tini ≥ 2n, y is uniquely
determined from (12), ∀(uini, εini, yini, u, ε).

This proposition is adapted from Willems’ fundamental
lemma [16] and the DeePC method [15] for the mixed traffic
system (9). It reveals that we can use past trajectories to
predict the future trajectory of the mixed traffic system with-
out identifying an explicit parametric model. Specifically,
given a past trajectory (uini, εini, yini) and a future input
sequence (u, ε), the formulation (12) allows one to predict
the future output sequence y directly from pre-collected
data (ud, εd, yd). Therefore, we can bypass a parametric
system model and directly use non-parametric data-centric
representation for the behaviors of the mixed traffic system.

Note that the velocity error of the head vehicle ε(t) is
under human control. It is always oscillating around zero
in practice considering the real behavior of human drivers,
i.e., the drivers always attempt to maintain the equilibrium

velocity while also suffering from small perturbations. Ac-
cordingly, given a trajectory with length T ≥ (m+1)(Tini +
N + 2n) − 1, and persistently exciting acceleration input
signal u(t) of CAVs (e.g., white noise with zero mean),
the persistent excitation requirement in Proposition 1 for the
combined input û(t) is naturally satisfied.

Remark 1: Willems’ fundamental lemma [16] reveals that
the subspace consisting of all valid trajectories is identical to
the range space of the data Hankel matrix of the same order
generated by sufficiently rich inputs. DeePC has recently
applied this fundamental lemma to predictive control [15].
However, DeePC requires the underlying system to be con-
trollable. For mixed traffic control, we introduce the external
input signal ε, i.e., the velocity error of the head vehicle, to
make the reformulated system controllable, and rely on (12)
for representation of the mixed traffic system behavior. In
addition, for an observable system, one can estimate the
system state from past data whose length is not smaller
than the state dimension. Given the observability of the
mixed traffic system, the underlying initial state for the future
trajectory is implicitly fixed from (12) when Tini ≥ 2n,
which guarantees the uniqueness property in Proposition 1;
see [15] for more discussions on DeePC.

B. Design of Cost Function and Constraints in DeeP-LCC

Here, we show how to utilize the non-parametric behavior
representation (12) to design the control input of the CAVs
in mixed traffic flow, motivated by the standard DeePC [15].
Precisely, we aim to design the future behavior (u, ε, y) for
the mixed traffic system through a receding horizon manner
based on pre-collected data (ud, εd, yd) and the most recent
past data (uini, εini, yini) which are updated online.

The past external input sequence εini can be collected in
the control process, but the future external input sequence
ε cannot be designed (it is controlled by a human driver).
Although the future human behavior might be predicted
using ahead traffic conditions, it is still non-trivial to achieve
accurate prediction. Considering that the driver always at-
tempts to maintain the equilibrium velocity, one natural
approach is to assume that the future velocity error of the
head vehicle is zero, i.e.,

ε = 0N , (13)

where 0N denotes an N × 1 vector of all zeros.
Similar to the LCC framework [19], we consider the

performance of the entire mixed traffic system for CAVs’
controller design. Precisely, we consider a quadratic-form
cost function J(y, u), which penalizes the output deviation
from the equilibrium state and the energy of control input
from time t, defined as follows

J(y, u) =

t+N−1∑
k=t

(
‖y(k)‖2Q + ‖u(k)‖2R

)
, (14)

where the coefficient matrices Q,R are set as Q =
diag(Qv, Qs) with Qv = diag(wv, . . . , wv) ∈ Rn×n, Qs =
diag(ws, . . . , ws) ∈ Rm×m and R = diag(wu, . . . , wu) ∈



Algorithm 1 DeeP-LCC

Input: Pre-collected traffic data (ud, εd, yd), initial time t0,
terminal time tf ;

1: Construct data Hankel matrices Up, Uf , Ep, Ef , Yp, Yf ;
2: Initialize past traffic data (uini, εini, yini) before the ini-

tial time t0;
3: while t0 ≤ t ≤ tf do
4: Solve (18) for optimal predicted input u∗ =

col(u∗(t), u∗(t+ 1), . . . , u∗(t+N − 1));
5: Apply the input u(t)← u∗(t) to the CAVs;
6: t← t+1 and update past traffic data (uini, εini, yini);
7: end while

Rm×m, where wv, ws, wu represent the penalty for the
velocity errors of all the vehicles, spacing errors of all the
CAVs, and control inputs of the CAVs, respectively.

We further incorporate several constraints for safety guar-
antees. In particular, a minimal spacing constraint for CAVs
is required to avoid rear-end collisions. Accordingly, we im-
pose a lower bound s̃min on the spacing error: s̃i ≥ s̃min, i ∈
S. In addition, we note that existing CAV controllers tend to
leave an extremely large spacing from the preceding vehicle
in the control procedure (see, e.g., [5] and the discussions
in [9, Section V-D]), which in practice might cause vehicles
from adjacent lanes to cut in. To address this problem,
we also include an upper bound: s̃i ≤ s̃max, i ∈ S. The
imposed bounds on the spacing errors are then converted to
the following compact form on the system output y

s̃min ≤ I(n+m)N ⊗
[
0m×n Im

]
y ≤ s̃max. (15)

In addition, the control input of each CAV is constrained as

amin ≤ u ≤ amax, (16)

where amin and amax denote the minimum and the maximum
acceleration, respectively.

C. Formulation of DeeP-LCC

Motivated by DeePC [15], we are now ready to present the
following optimization problem to obtain the optimal control
input of the CAVs at each time step

min
g,u,y

J(y, u)

subject to (12), (13), (15), (16).
(17)

One significant distinction of (17) from the standard DeePC
is the introduction of the future velocity error sequence ε of
the head vehicle, i.e., the external input of the mixed traffic
system. Note that ε is not a decision variable in (17), unlike
u and y. Instead, it is fixed as constant, as shown in (13).

For implementation, the optimal control problem (17) is
solved in a receding horizon manner, similarly to standard
MPC. Unlike MPC, by contrast, the optimal control prob-
lem (17) does not rely on an explicit parametric system
model, but utilizes the data-centric representation (12) to
predict future behaviors. However, the formulation (12) is
only valid for deterministic LTI mixed traffic systems. In

practice, the car-following behavior of HDVs is nonlinear
(see Section II-A), and also has uncertainties, leading to a
nonlinear and non-deterministic system. Moreover, practical
traffic data is always noise-corrupted. Hence, the equality
constraint (12) becomes inconsistent for practical traffic flow.

Similar to the regulation for standard DeePC [15], we
introduce a slack variable σy ∈ R(n+m)Tini for the system
past output to ensure the feasibility of the equality constraint,
yielding the following optimization problem

min
g,u,y,σy

J(y, u) + λg ‖g‖22 + λy ‖σy‖22

subject to


Up

Ep

Yp

Uf

Ef

Yf

 g =


uini

εini

yini

u
ε
y

+


0
0
σy
0
0
0

 ,
(13), (15), (16),

(18)

which is suitable for nonlinear and non-deterministic mixed
traffic flow. This is our final DeeP-LCC formulation at
each time step. In (18), the slack variable σy is penalized
with a weighted two-norm penalty function, and the weight
coefficient λy > 0 can be chosen sufficiently large such
that σy 6= 0 only if the equality constraint is infeasible.
In addition, a two-norm penalty on g with a weight coef-
ficient λg > 0 is also incorporated to avoid overfitting in
case of noise-corrupted data samples. As discussed in [17],
[23], such regulation on g coincides with distributional two-
norm robustness. The receding horizon implementation of
DeeP-LCC is listed in Algorithm 1.

Remark 2: In our DeeP-LCC for mixed traffic, we intro-
duce the external input signal and utilize (13) to straight-
forwardly predict its future value. Besides (13), another
potential approach to address the unknown future external
input is to assume a bounded future velocity error of the
head vehicle. This idea is similar to robust DeePC against
unknown external disturbances; see, e.g., [23], [24]. It is
an interesting topic for future research to design robust
DeeP-LCC for mixed traffic when the head vehicle is
oscillating around a particular equilibrium velocity.

V. TRAFFIC SIMULATIONS

We now present nonlinear and non-deterministic traffic
simulations to validate the performance of DeeP-LCC. Our
simulation setup is motivated from the standard Extra-Urban
Driving Cycle (EUDC) [25]. The nonlinear OVM model
in [9] is used for HDVs (1), and a noise signal following the
uniform distribution of U[−0.1, 0.1] is added to the OVM
model1.

A. Experimental Setup

We consider eight vehicles with two CAVs, i.e., n = 8,
m = 2 in Fig. 1. The two CAVs are located at the third
and the sixth vehicles respectively, i.e., S = {3, 6}. In

1Our code is available at https://github.com/soc-ucsd/DeeP-LCC.

https://github.com/soc-ucsd/DeeP-LCC
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Fig. 2. Velocity profiles in Experiment A. The black profile represents the
head vehicle, and the gray profile represents the HDVs. The red profile and
the blue profile represent the first and the second CAV, respectively. (a) All
the vehicles are HDVs. (b) The CAVs utilize DeeP-LCC.

DeeP-LCC, we use the following parameters. 1) In offline
data collection: the length for the pre-collected data is T =
2000 with ∆t = 0.05 s. We collect these data around 15 m/s,
and there exists a uniformly distributed signal of U[−1, 1] on
both ud and εd. This naturally satisfies the persistent exci-
tation requirement in Proposition 1. 2) In online predictive
control: the time horizons for the future and past trajectories
are set to N = 50, Tini = 20, respectively. For constraints,
we have s̃max = 20, s̃min = −15, amax = 2, amin = −5.
In the cost function (14), the weight coefficients are set to
wv = 1, ws = 0.5, wu = 0.1, and the regularized parameters
in (18) are set to λg = 100, λy = 10000.

For the HDVs’ OVM model, we assume a heterogeneous
parameter setup around the nominal value. We also consider
the standard output-feedback MPC for comparison in our
simulations, assuming that the explicit parametric linearized
model is known. The corresponding parameter setup remains
the same as that in DeeP-LCC. Note that the traffic flow
could have different equilibrium states in different time peri-
ods. We use the average velocity of the head vehicle among
the past horizon of Tini as the estimated equilibrium velocity,
and the corresponding equilibrium spacing is manually set;
see the extended version [22] for more details.

B. Numerical Results

Experiment A: We first design a comprehensive simulation
scenario to validate the capability of DeeP-LCC in improv-
ing traffic performance. Specifically, motivated by EUDC
driving cycle, we design a velocity trajectory for the head
vehicle (see the bleck profile in Fig. 2). For performance
evaluation, we calculate the fuel consumption using the
numerical model in [26] for the vehicles indexed from 3
to 8, given that the first two HDVs would not be influenced.

The simulation results are shown in Fig. 2. It can be
clearly observed that compared to the case where all the

TABLE I
FUEL CONSUMPTION IN EXPERIMENT A

All HDVs MPC DeeP-LCC
Phase 1 172.59 158.79 (↓7.99%) 159.17 (↓7.78%)
Phase 2 379.13 374.35 (↓1.26%) 374.60 (↓1.19%)
Phase 3 817.16 812.91 (↓0.52%) 812.71 (↓0.54%)
Phase 4 399.86 377.66 (↓5.55%) 377.58 (↓5.57%)

Total Simulation 1977.16 1928.19 (↓2.48%) 1929.09 (↓2.43%)
1 All the values have been rounded and the unit is mL in this table.

vehicles are HDVs, DeeP-LCC apparently mitigates velocity
perturbations and smooths traffic flow with only two CAVs
existing in mixed traffic. The results of the fuel consumption
is presented in Table I, with the whole simulation separated
into four phases (as clarified in Fig. 2). Both MPC and
DeeP-LCC reduce the fuel consumption throughout the four
phases, and particularly, the two controllers contribute to a
greater improvement on traffic performance in the braking
phases (Phases 1 and 4) than the accelerating phases (Phases
2 and 3). In particular, DeeP-LCC saved 7.78% and 5.57%
fuel consumption during Phases 1 and 4, respectively.

Note that the MPC controller utilizes the nominal model
to design the control input, while the DeeP-LCC controller
relies on the trajectory data to directly predict the future
system behavior. In practice, MPC might be inapplicable,
since the nominal model for individual HDVs is non-trivial
to identify. By contrast, DeeP-LCC achieves similar per-
formance compared to MPC using only trajectory data,
without explicitly identifying a parametric model. Hence,
DeeP-LCC has demonstrated great potential to improve
traffic performance in practical mixed traffic flow.
Experiment B: To further validate the safety performance
of DeeP-LCC, we design a particular braking scenario
motivated by EUDC, where the head vehicle takes a sudden
emergency brake with maximum deceleration capability,
maintains the low velocity for a while, and finally accelerates
to the original normal velocity. This is a typical emergency
case in real traffic flow, which requires the CAVs’ control to
have strict safety guarantees from rear-end collision.

The results are shown in Fig. 3. As can be clearly
observed, when all the vehicles are HDVs, they have a large
velocity fluctuation as a response to the brake perturbation
of the head vehicle. By contrast, when two vehicles utilize
DeeP-LCC, they have a quite distinct response pattern from
the HDVs. Precisely, the CAVs decelerate immediately when
the head vehicle starts to brake, thus leaving a relatively large
safe distance from the preceding vehicle (see the time period
before 10 s). Then, the CAVs accelerate slowly when the
head vehicle begins to return to the original velocity (see the
time period in 9− 12 s), while in the case of all the HDVs,
they would take a delayed rapid acceleration (see the time
period in 12− 20 s), which could lead to driving discomfort
and collision risk. In addition, 24.96% fuel consumption
reduction has been observed after introducing DeeP-LCC
compared with the case of all HDVs. Our strategy allows the
CAVs to eliminate velocity overshoot, improve fuel economy,
and constrain the spacing among the safe range, contributing
to smoother traffic flow with safety guarantees.
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Fig. 3. Simulation results in Experiment B. (a)(c)(e) show the velocity,
spacing, and acceleration profiles, respectively when all the vehicles are
HDVs, while (b)(d)(f) show the corresponding profiles where the two CAVs
utilize DeeP-LCC. In (c)-(f), the profiles of the other HDVs are hided. The
color of each profile has the same meaning as that in Fig. 2.

VI. CONCLUSIONS

In this paper, we have proposed DeeP-LCC for CAV
control in mixed traffic. Our dynamical modeling and con-
trollability/observability analysis guarantee its rationality. In
particular, DeeP-LCC relies directly on the HDVs’ driving
data rather than a parametric HDV model to design the
control input of the CAVs, and it is applicable to nonlinear
and non-deterministic traffic flow. Traffic simulations have
shown its significant improvement in traffic efficiency and
fuel economy, with safety guarantees. Some interesting fu-
ture directions include incorporating delayed trajectory data
caused from communication delay, exploring the scalability
of DeeP-LCC for large-scale mixed traffic, and addressing
the problem of time-varying traffic equilibrium.
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