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Abstract— Case isolation, that is, detection and isolation of
infected individuals in order to prevent spread, is a strategy to
curb infectious disease epidemics. Here, we study the efficiency
of a case isolation strategy subject to time delays in terms of
its ability to stabilize the epidemic spread in heterogeneous
contact networks. For an SIR epidemic model, we characterize
the stability boundary analytically and show how it depends on
the time delay between infection and isolation as well as the
heterogeneity of the inter-individual contact network, quantified
by the variance in contact rates. We show that network
heterogeneity accounts for a restricting correction factor to
previously derived stability results for homogeneous SIR models
(with uniform contact rates), which are therefore too optimistic
on the relevant time scales. We illustrate the results and the
underlying mechanisms through insightful numerical examples.

I. INTRODUCTION

A. Background

Early in an epidemic of a previously unknown infectious
disease, transmitted through an unknown pathogen, existing
pharmaceutical treatments may not be applicable or efficient.
This was for example the case with COVID-19, caused by the
pathogen SARS-CoV-2. In early 2020, countries across the
world experienced exponential increases in detected SARS-
CoV cases, hospitalizations, and ICU admittance due to
COVID-19, and ultimately related deaths. While statistics are
still debated one year later [1], it stood clear early on that
pharmaceutical treatment and clinical care would not alone
suffice to curb the epidemic outbreak.

The exponential increase of cases early in the epidemic
prompts the implementation of schemes to reduce the number
of probable transmission events. Such schemes are often
referred to as non-pharmaceutical interventions (NPIs for
short), and can be partitioned into two categories:
• Recommendations or legislation aimed at decreasing

inter-individual contact rates;
• Schemes for case isolation through testing, and possibly

contact tracing.
The former includes, for example, discouraging unneces-

sary in-person interaction, banning large gatherings, closing
schools, or imposing societal lockdowns. The effectiveness
of such interventions is still poorly understood. In particular,
it can be practically challenging or impossible to estimate the
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effect of individual NPIs, particularly in the early transient
phase of an epidemic, as demonstrated in [2], [3].

In light of the above, case isolation schemes have gained
attention. In contrast to NPIs aimed at reducing contact
rates in general, case isolation schemes target contacts in-
volving infectious individuals. If successfully implemented,
they could be the key to an open society where lockdowns
are replaced by regular testing. Under such schemes, a
positive test result leads to case isolation. The effectiveness
of the scheme can be increased by complementing systematic
testing with contact tracing.

It is intuitively evident that a case isolation scheme needs
to identify and isolate positive cases in a timely manner in
order to be effective. In [4], a comprehensive analysis was
done, from a control-theoretic standpoint, of the performance
and stability of case isolation schemes. We refer to references
therein for relevant works in the epidemiology literature.
There, as in our current work, one central question is that
of time delays: how long can delays between infection and
isolation be if we are to prevent epidemic outbreaks?

In this paper we investigate how the structure of social
networks affect the effectiveness of case isolation schemes.
This is done by deriving an explicit stability condition, which
relates effectiveness to network heterogeneity. We use a
simple epidemiological model; an SIR model for the early
phases of an epidemic. This modeling choice is motivated by
its sufficiency for the purpose of our analysis, and the lack
of data to support high-complexity modeling.

B. Preliminaries

We consider a closed population. This is an optimistic
approximation, since there will be no imported cases within
the model. The population is partitioned into susceptibles,
infectious and removed (recovered and permanently immune
or deceased) proportions. Here, we will not distinguish
between being infected and being infectious. However, the
results we are about to present can easily be extended to
cater for this distinction.

If the proportion of infectious goes to zero, the strategy
has been successful. The question we consider is how large
the infectious proportion can grow, relative to the susceptible,
in order for a case isolation strategy to remain effective.

To answer this, we consider the setting early in an epi-
demic, where the proportion of susceptibles is much larger
than the infectious and removed, respectively. This allows us
to disregard herd immunity effects. Another way to put it is
that in an interaction between two individuals where one is
infectious, the other is susceptible (with probability one).

Furthermore, we realistically assume the considered time
window for our model to be short compared to the typical
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duration of immunity. This means that we neglect any flow
from the removed to the susceptible sub-population. As with
distinguishing between infected and infectious individuals,
introducing such reflux dynamics into the model we propose
is straightforward, should the considered disease differ in this
aspect from SARS-CoV-2.

We will focus on criteria for stabilization of the early
epidemic trajectory. We will refer to a case isolation scheme
as stabilizing if it eventually empties the infectious sub-
population. In the linearized model, this is done without
decreasing the pool of susceptibles (in other words without
the help of the herd immunity effect [5]), and in this sense,
the stability criteria we derive are conservative.

Note that this stability condition does not specify perfor-
mance in the sense that it may allow for a large infectious
sub-population in the transient during which the infectious
sub-population grows (due to the time delay before isolation)
and empties. As such, this stability condition constitutes
a bare minimum. Any practically feasible strategy would
need to fulfill it with some performance margin, as further
elaborated in [4].

Finally, we need to formalize our case isolation scheme.
Here we will utilize a simple yet versatile model that
quantifies the proportion of those infected on a given day
that is subsequently isolated by the scheme Tdelay days later.
This can be readily reparameterized into, for example, the
frequency with which individuals are tested, compliance to
the scheme, logistic delays and specificity of the employed
test for infection.

II. CASE ISOLATION IN HETEROGENEOUS POPULATIONS

Assuming that the population is large, so that quantization
effects become negligible, the trajectory of the epidemiolog-
ical state subject to case isolation can be modeled as in [4]:

d

dt



S
I
R


 =



−1
1
0


βS(I−Q)+




0
−1
1


 γI, S+ I+R = 1.

(1)
This model, which we will term homogeneous because of the
uniform contact rates across the entire population, is a slight
variant of the traditional SIR model of [6]. Here, as usual,
S, I and R denote the proportions of the population that
are susceptible, infectious, and removed and, as throughout,
we have dropped the time-dependence in the variables to
simplify notation when possible. The transitions between
the states are governed by two rates that model the effect
of disease spread and recovery, with mixing and recovery
parameters β and γ, respectively. Note in particular that the
mixing rate has been adjusted to account for the effect of
isolating infectious individuals. More specifically,

Q(t) = αe−γTdelayI(t− Tdelay) (2)

denotes the proportion of the population that is both in-
fectious and isolated, subject to a time delay Tdelay after
infection. The rate that describes the spread of the disease
has been modified so that the spread is only driven by
interactions between the remaining infectious population and
the susceptible population (the βS(I −Q) term).

This captures to a first approximation the two most impor-
tant features of a case isolation scheme, namely, how quickly
infectious individuals are identified and isolated (Tdelay), and
what proportion of cases are found (α). However, the homo-
geneously interacting population is clearly a simplification.
In reality, the interactions that may lead to infection are much
more complex and hard to model. For example, you interact
more frequently with people at your workplace than with
people from a remote country. There is also a time-varying
aspect. For instance, if your workplace issues a work-from-
home guideline to reduce disease transmission, your rate of
interaction with your coworkers will typically drop.

Numerous works have been dedicated to modeling the
associated contact network dynamics, with [7], [8] and
survey [9] constituting representative examples. The validity
of such network models is hard to verify, and the time-
varying aspects further increase the uncertainty surrounding
their accuracy. We therefore delimit ourselves to a simple but
important question: how does the introduction of interaction
heterogeneity alter the requirements on our case isolation
scheme (2), expressed in terms of the isolation proportion
parameter α and associated time delay Tdelay?

A. Heterogeneous population model

To account for contact rate heterogeneity, early models of
infectious diseases (particularly STDs) [10], [11] incorpo-
rated a distribution of contact rates Nk/N defined as the
proportion of the population of size N , who on average
have k contacts per time unit (and in all other regards
are homogeneous). It is assumed that a contact between a
susceptible and infectious individual transmits an infection at
a rate ρ. Using the formulation of [12], the disease dynamics
for each partition k = 0, 1, . . . , n becomes

d

dt

[
Xk

Yk

]
=

[
−kλ 0
kλ −γ

] [
Xk

Yk

]
, (3)

where Xk and Yk denote, respectively, the number of sus-
ceptible and infectious individuals in each partition. This
generalizes the standard SIR model for the homogeneous
through the variable

λ = ρ

∑n
k=1 kYk∑n
k=1 kNk

, (4)

which is the rate at which infection is acquired from any one
randomly chosen contact per time unit—now more likely to
come from the partition with higher contact rates.

Remark 1 (Retrieving the homogeneous SIR model):
When all individuals have k contacts per time unit, the
rate of acquiring an infection from a randomly chosen
contact in (4) simplifies to λ = ρY/N = ρI . The disease
dynamics (3) recover the traditional SIR model of [6] with
mixing parameter β = ρk when divided by N . That is,

d

dt

[
S
I

]
=

[
−βI 0
βI −γ

] [
S
I

]
, R = 1− I − S, (5)

where S = X/N , I = Y/N (this is equivalent to (1) with
Q ≡ 0).



B. Case isolation in a heterogeneous population
In arguably the simplest generalization of the case isola-

tion scheme (2) to the heterogeneous population model (3),
the number of individuals that are both isolated and infec-
tious individuals in partition k is equal to some common
proportion 0 ≤ α ≤ 1 of the infectious individuals Yk, Tdelay
days in the past. This corresponds to a uniform identification
and isolation scheme, independent of an individuals’ number
of contacts. Furthermore, it is assumed the partition size Nk
is constant: isolated cases do not leave partition k, but are
simply excluded from transmitting the disease. The number
of infectious individuals in partition k then satisfies

Yk(t)−Qk(t), Qk(t) = αe−γTdelayYk(t− Tdelay), (6)

and the rate at which an infection is acquired from any one
randomly chosen contact becomes

ξ(t) = ρ
∑

i

i(Yi(t)−Qi(t))/
∑

k

kNk. (7)

As a consequence of (7), the disease dynamics in each par-
tition are described by the n delayed differential equations:

d

dt




Y1
Y2
...
Yn


=

ρ∑
k

Nk




X1 · 1
X2 · 2

...
Xn · n







1
2
...
n




>


Y1 −Q1

Y2 −Q2

...
Yn −Qn


−γIn




Y1
Y2
...
Yn


. (8)

About the all-susceptible equilibrium (Xk = Nk for all k),
the dynamics of the total number of infectious individuals
in the heterogeneous population, Y =

∑
k Yk, reads as

d

dt
Y =

∑

k

kNkξ − γY, (9)

which can be written as a delayed differential equation in
terms of λ. In turn, by differentiating (4) one obtains

d

dt
λ =

ρ∑
k kNk

∑

i

(
i2Niξ

)
− λγY. (10)

All dynamics are described in terms of the number of
individuals. By dividing by N , the population level disease
dynamics with delayed case isolation are described by:

d

dt

[
I
λ

]
=

[
−γ µ

0 ρ
(
σ2

µ + µ
)
− γ

]

︸ ︷︷ ︸
A0

[
I
λ

]

+

[
0 −µαe−γTdelay

0 −ρ
(
σ2

µ + µ
)
αe−γTdelay

]

︸ ︷︷ ︸
A1

[
I(t− Tdelay)
λ(t− Tdelay)

]
, (11)

where µ and σ represent the mean and standard deviation of
the number of contacts per time unit. For a given delay Tdelay,
the system (11) is asymptotically stable if and only if all of
the roots of

det



s+ γ −µ(1− αe−(γ+s)Tdelay)

0 s− ρ
(
σ2

µ + µ
)
(1− αe−(γ+s)Tdelay) + γ




︸ ︷︷ ︸
M=sI2−A0−A1e

−sTdelay

= 0,

(12)

are in the open left-half complex plane [13]. Because M is
upper triangular, the roots of the characteristic equation (12)
are −γ and those of

f(s) = s−ρ
(
σ2

µ
+ µ

)
(1− αexp(−(γ + s)Tdelay))+γ = 0.

(13)
Here, f(s) is equivalent to the characteristic equation of the
homogeneous case (1) with a scaled mixing parameter β
linearized about (S, I,R,Q) = (1, 0, 0, 0). This, together
with our derivation above, leads to the following lemma.

Lemma 1: About the all-susceptible equilibrium Sk =
Nk for all k = 1, . . . , n, the heterogeneous SIR model
with delayed case isolation (6)–(8), and its population level
disease dynamics (11), are asymptotically stable if and
only if the linearization of the homogeneous model (1)–(2)
about (S, I,R,Q) = (1, 0, 0, 0) is asymptotically stable with
mixing parameter β = ρµ(c2v + 1).

We will provide an explicit stability condition shortly, after
reiterating the corresponding condition for the homogeneous
case.

C. Comparing the homogeneous and heterogeneous popula-
tion models

In the absence of case isolation, the equivalence of the
stability condition between the heterogeneous and homoge-
neous SIR model, early in the epidemic, was first established
in [10]. We now know the stability equivalence is also valid
under the case isolation scheme with uniform identification
and isolation of infectious individuals1.

To compare the stability conditions of the heterogeneous
and homogeneous model in terms of epidemiological vari-
ables, we briefly discuss the most common epidemiological
measure (and source of confusion) for the spread of the
disease: the reproduction number.

The reproduction number R describes the expected num-
ber of secondary infections caused by one primary infection.
It holds that

R ∝
(

infection
contact

)

︸ ︷︷ ︸
ρ

·
(

contact
time

)

︸ ︷︷ ︸
c

·
(

time
infection

)

︸ ︷︷ ︸
d

,

where
• ρ ∈ [0, 1]: transmission rate given contact between a

susceptible and infectious individual;
• c ∈ R+: average contact rate between susceptible and

infectious individuals;
• d ∈ R+: average duration of infectiousness.

For the homogeneous population model (1) we have that
β = ρc and d = 1/γ. It is also evident from (II-C) that
the reproduction number reveals how much an epidemic
grows, and not how fast. In order to quantify the latter,
the serial interval between infections is needed in addition.

1Having a common α in each partition is not necessary for the equiv-
alence relation between the stability condition of the heterogeneous and
homogeneous model to hold. For example, when α scales proportional to the
number of contacts k in the partition (αk = αk/n), the stability condition
of the all susceptible equilibrium is equivalent to that of a common α that
is scaled by 〈k3〉/(nσ2µ2), where 〈k3〉 is the third raw moment of the
contact distribution.
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Fig. 1: Illustration of the stability boundary for the model (1)–(2).
The model is stable if and only if (R0, γTdelay) lies below the
corresponding α curve. That is, at least a proportion α of persons
becoming infectious on a particular day need to be isolated Tdelay
days later, given a natural recovery rate is γ days−1.

Yet, the reproduction number is more commonly used than
the corresponding growth rate r = β − γ among infectious
disease epidemiologists, which is why we have chosen to use
the former in our parametrization of fundamental limitations.

The basic reproduction number R0 is the reproduction in
absence of a considered intervention. There is a common
misconception that for a particular pathogenR0 is a universal
constant (that can be looked up in the literature). Instead
it depends on, among other time-varying parameters, the
virulence of the pathogen and the societal structure under
consideration. For instance, a particular virus would typically
result in different R0’s in two countries, or in a city versus
a village.

If an intervention is enacted, it is instead common to
talk about the resulting effective reproduction number Re
(sometimes referred to as the time-varying reproduction
number Rt), and it really only makes sense to consider R0

in relation to a particular intervention: R = R0 in absence
of the intervention; R = Re if the intervention is enacted.

It was shown in [4] that for the case isolation scheme (2)
applied to the model (1) the relation between R0 and Re is
given by

Re = R0

(
1− αe−γTdelay

)
, R0 =

β

γ
,

which is less than 1 if and only if [4, Theorem 2]

γTdelay < ln

(
α

1−R−10

)
. (14)

The specific trade-off between parameters and delay implied
by (14) is shown in Fig. 1. This figure can be used to
quickly assess the amount of delay that can be tolerated
before instability, and hence exponential growth, occurs.

For example, with α = 0.8, R0 = 3 and γ = 0.1,
parameters chosen to be representative for SARS-CoV-2, the
stability condition becomes

Tdelayγ < 0.18, =⇒ Tdelay < 1.8 days. (15)

Clearly, short isolation times are essential when dealing with
an infectious disease! We also see the importance of identify-
ing a significant proportion of cases. When α < 2/3 (that is,

the scheme detects and isolates less than two thirds of the
cases) exponential growth will occur even with Tdelay = 0.
We can use the equivalence relation in Lemma 1 to obtain the
stability condition for the heterogeneous population model.

Proposition 2: Consider the population level disease dy-
namics with delayed case isolation linearized around the
disease-free equilibrium, which is given for the heteroge-
neous model (11). The system dynamics are stable if and
only if

Tdelay <
1

γ
ln

(
αβh

βh− γ

)
, h = (c2v + 1), (16)

where cv = σ/µ is the the coefficient of variation, or relative
standard deviation.

Proof: The result follows from [4, Theorem 2] to-
gether with the stability equivalence relation established in
Lemma 1.

The stability condition in Proposition 2 implies that con-
tact heterogeneity (cv > 0) would increase the upper bound
on Tdelay if and only if the reproduction number of the
corresponding homogeneous system (β = ρµ), in absence
of control (2), fulfils R0 < 1/h. Since in the heterogeneous
model cv > 0 ⇔ h > 1, this requirement implies that
heterogeneity would allow for a longer Tdelay only if the
uncontrolled system is already stable in the sense that
R0 < 1. However, and of larger practical importance, the
upper bound on the admissible Tdelay will decrease when the
heterogeneity (cv) is increased whenever R0 > 1.

In the latter case, one may ask how large the coefficient
of variation can be to allow for a positive delay and a stable
equilibrium (I,R,Q) = (0, 0, 0) of the linearized model with
the scaled parameter β.

Corollary 3: For a basic reproduction number R0 > 1 of
the corresponding homogeneously interacting population and
α ∈ [0, 1), a positive delay is allowed in the heterogeneous
population if and only if the coefficient of variance of the
number of contacts satisfies

c2v <
1

R0(1− α)
− 1. (17)

Fig. 2 illustrates the effect of the coefficient of variance of the
number of contacts on the upper bound of the delay (16), and
the maximum allowed coefficient of variance cv for several α
that are isolated according to (6).

III. NUMERICAL SIMULATIONS

In this section, we study the role of network heterogeneity
in the SIR model numerically in order to illustrate the
stability condition (16).

A. Neighbors of infectious individuals

The phenomenon of the effective mixing parameter β
increasing with increased heterogeneity (quantified by the
coefficient of variation cv) is also the answer to the question
“Why your friends have more friends than you do”, explained
with mathematical insight in [14]. The intuition is that indi-
viduals with many contacts are more likely to get infected,
and therefore the infectious proportion of the population
will comprise individuals who have more social contacts
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Fig. 2: Illustration of the stability boundary for the model (11)
with R0 = 3 and γ = 0.1. The model is stable if and only if
(cv, Tdelay) lies below the corresponding α curve. When α = 0.8,
the condition (17) reveals that the maximum coefficient of variation
for which a positive isolation delay Tdelay > 0 is allowed evaluates
as cv ≈ 0.82 (where the α = 0.8 intersects the horizontal axis).
The vertical lines at cv = 0.37 and cv = 0.67 represent bounds
on cv for human infectious disease transmission networks from [8].

(higher degree) than those in the susceptible proportion of
the population.

As with friendships, the contacts considered here are
mutual, translating into an undirected network graph. Thus,
the early spread of the disease is proportional to the mean
number of contacts of a randomly chosen contact of an
infectious individual (node), given by µh in (16) and il-
lustrated in Fig. 3. Treating the network as homogeneous
(cv = 0⇔ h = 1) can therefore lead to an under-estimation
of the reproduction number by disregarding the growth of
the infectious sub-population, which is fueled by highly
connected individuals, who are both more likely to acquire
and spread the disease.

In Fig. 3 we have illustrated this effect through simulations
of the early stage of 300 epidemics on different undirected
random graphs representing a population. The nodes of
each graph represent individuals; the edges contacts. For
the example in Fig. 3, we chose to generate three different
random graphs based on: 1) the configuration model, 2)
Barabási-Albert and 3) Watts-Strogatz; for details on these
random network models, see [15]. These random graphs were
chosen to represent three fundamentally different networks.
Each graph was generated with 106 nodes and an average
degree µ = 4.

The epidemics were each seeded by randomly assigning
10 infectious individuals on day one. This corresponds to
I = 10−5 � S = 1− I . The transmission probability, being
the per-day probability that an edge between one infectious
and one susceptible node leads to disease transmission, was
set to ρ = 0.2. The recovery rate from (1) was set to γ =
0.1. Assuming independent interactions, the probability for
a susceptible to become infectious the next day, given that
it has m infectious contacts, is thus 1− (1− ρ)m.

In Fig. 3 (a)–(c), the results from the 300 epidemics
simulations are shown. In particular, we see the average
number of contacts of the infectious population throughout
the early stages of the epidemic. From this figure we can

clearly identify how the infectious individuals have a higher
degree of contacts than the general population of the network.
Furthermore, we can see that the average number of contacts
of the infectious population early on tends towards a value
equal to or smaller than the effective number of contacts
µ + σ2/µ. The same scaling defines the effective mixing
parameter βh in the stability condition for a heterogeneous
population (16).

To test if the effective number of contacts µ + σ2/µ
actually gives an upper bound for the average number of
contacts of the infectious population, it is also relevant to
simulate the epidemic starting with average degree equal
to µ + σ2/µ. This can be done by choosing the initially
infectious with a probability proportional to the degree of
each node. The result of this simulation is shown in Fig. 3
(d)–(e). Here, we note that the average degree either remains
constant or decreases for the three graphs. This indicates
that the scaling factor h = σ2/µ2 + 1 is conservative and
represents the infectious population early on in an epidemic.

IV. DISCUSSION

In Sec. II we generalized the case isolation scheme (2)
of the homogeneous case isolation scheme to heterogeneous
contact rate model and characterized how the stability bound-
ary is moved if R0 of a homogeneous population is used
in (14), when in fact the population is heterogeneous in
the sense that the coefficient of variation of the contact
network cv is positive, while the mean degree remains
unchanged.

Introducing heterogeneity in this way corresponds to
multiplication of the mixing parameter β in (1) with the
scaling factor h = c2v + 1. Since β is directly proportional
to R0, the heterogeneity can be interpreted as increasing the
reproduction number by the corresponding factor. Note that
the same shifting applies for a population partitioned based
on heterogeneity of the infectiousness parameter ρ. This
makes it possible to apply the same modeling to account for a
variability in infectiousness across variants of the considered
pathogen. Whether to multiply by the factor h before using
R0 in the analysis comes down to how R0 was estimated
from data. If it was estimated taking the heterogeneity into
account it should not be adjusted, otherwise it should.

In the heterogeneous model (3) proposed in [12], the
interaction between individuals with many and few contacts
respectively are stochastic, and therefore do not correspond
to a fixed (time-invariant) contact graph. For the case of a
fixed contact graph, the stability bound (16) obtained for (3)
would be conservative because of the assumption that the
disease can spread to any contact of an infectious individual.
In particular, an infectious individual cannot reinfect its own
infector. Therefore, when considering epidemics on configu-
rator model graphs, the shift of the epidemic threshold needs
to be corrected by −1, resulting in h = σ2/µ + µ − 1, as
further discussed in [16]–[18].

Relatedly, clustering of the contact network result in the
bound (16) becoming conservative. When many neighbors
in the network are shared, (e.g. as in small-world networks)
local clustering coefficients in the contact network are high
and voids the assumption that all neighbors of an infectious
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Fig. 3: 300 simulations were run for each scenario and then the average degree of the infectious population was calculated for each day.
The simulation started with 10 infectious individuals. The dark line represent the average among all simulations. The effective number of
contacts µ+ σ2/µ and mean of degree distribution µ are marked in each sub-figure.

node are susceptible. To analytically quantify how local and
global clustering effects affect the stability bound of the
case isolation scheme, along the lines of [19], requires more
complex network models. It falls outside the scope of this
contribution, but is a worthwhile direction for future work.

V. CONCLUSION

Although obtaining detailed graph models of (the time-
varying) human contact graphs relevant for infectious disease
transmissions is generally not tractable, control theoretic
analyses can provide qualitative, and to some extent quan-
titative criteria for the feasibility of strategies aimed at
halting disease spread. This has been illustrated here by
expressing stability conditions for case isolation schemes in
homogeneous and heterogeneous populations, as functions
of fundamental epidemiological parameters.
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