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Abstract 
This paper studies the feedback stabilization problem of the motion of a 

tank that contains an incompressible, Newtonian, viscous liquid. The 

control input is the force applied on the tank and the overall system 

consists of two nonlinear Partial Differential Equations and two Ordinary 

Differential Equations. Moreover, a spill-free condition is required to 

hold. By applying the Control Lyapunov Functional methodology, a set 

of initial conditions (state space) is determined for which spill-free 

motion of the liquid is possible by applying an appropriate control input. 

Semi-global stabilization of the liquid and the tank by means of a simple 

feedback law is achieved, in the sense that for every closed subset of the 

state space, it is possible to find appropriate controller gains, so that 

every solution of the closed-loop system initiated from the given closed 

subset satisfies specific stability estimates. The closed-loop system 

exhibits an exponential convergence rate to the desired equilibrium point. 

The proposed stabilizing feedback law does not require measurement of 

the liquid level and velocity profiles inside the tank and simply requires 

measurements of: (i) the tank position error and tank velocity, (ii) the 

total momentum of the liquid, and (iii) the liquid levels at the tank walls. 

The obtained results allow an algorithmic solution of the problem of the 

spill-free movement and slosh-free settlement of a liquid in a vessel of 

limited height (such as water in a glass) by a robot to a pre-specified 

position, no matter how full the vessel is.      
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1. Introduction 
 

One of the most important mathematical models that describes the free-surface flow of a thin layer 

of an incompressible, Newtonian liquid is the Saint-Venant system or shallow water model. The 

model has been used in many applications (river flows, tidal waves, oceans) and since its first 

derivation from first principles by Adhémar Jean Claude Barré de Saint-Venant in 1871 (see [1]), 

the model has been extended to take into account many types of forces acting on the body of the 

liquid other than gravity (e.g., viscous stresses, surface tension, friction forces; see 

[5,6,15,20,23,30]).  

   Feedback stabilization problems involving various variations of the Saint-Venant model have 

attracted the attention of many researchers during the last decades (see 

[2,3,4,7,8,9,10,11,12,21,24,25]). All works study the inviscid Saint-Venant model (i.e., the model 

that ignores viscous stresses and surface tension and takes into account gravity and friction forces), 
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which provides a system of first-order hyperbolic Partial Differential Equations (PDEs). Many 

papers study stabilization problems for the linearization of this system around an equilibrium point, 

employing either the backstepping methodology (see [11,12]) or the Control Lyapunov Functional 

(CLF) methodology (providing local stabilization results for the original nonlinear system in many 

cases; see [2,3,4,8,9,10,21]).  

   The present work studies the problem of stabilization of the motion of a tank that contains an 

incompressible, Newtonian liquid. The problem is not new and has also been studied in [24] and we 

consider stabilization of both the state of the liquid (liquid level and velocity) and the state of the 

tank (tank position and velocity) by manipulating the acceleration of the tank. However, in contrast 

with [24], we do not consider the inviscid Saint-Venant model but the viscous Saint-Venant model 

(i.e., the model that ignores friction forces and surface tension and takes instead into account gravity 

forces and viscous stresses). From a mathematical point of view this makes a huge difference: the 

resulting nonlinear model consists of two Ordinary Differential Equations (ODEs) and two PDEs 

which are no longer first-order hyperbolic PDEs but a system of one hyperbolic first-order PDE and 

one parabolic PDE. From a physical point of view the replacement of the inviscid Saint-Venant 

model with friction by the viscous, frictionless Saint-Venant model is completely justified: viscous 

stresses are negligible compared to friction forces when the liquid velocity is relatively large (e.g. 

rivers) but in tanks where the liquid velocity is small, viscous stresses become dominant. The 

viscosity term is nonlinear and is similar to the viscosity term appearing in compressible fluid flow 

models (see [18,22,26,27]). In addition, we assume that the tank walls have a specific height and we 

require that the movement be spill-free and slosh-free (in the sense that the liquid is transferred 

without residual end point sloshing; see [13,32] for the description of the slosh-free motion 

problem). In other words, we require that the liquid level in the tank does not exceed the height of 

the tank walls. To our knowledge this is the first paper that studies the spill-free movement 

problem: all other works (see [24,25]) do not take into account the limited height of the tank walls.    

   We exploit the similarity with compressible fluid models in order to apply the CLF methodology 

for the viscous Saint-Venant system. The CLF methodology was first used for global stabilization 

of nonlinear parabolic PDEs in [19] and was subsequently studied in [16,17,18] (but see also [8] for 

the presentation of the CLF methodology in finite-dimensional and infinite-dimensional systems). 

Recently, it was used in [18] for the stabilization of a nonlinear Navier-Stokes model of 

compressible fluid. As in [18], the CLF plays also the role of a barrier function and guarantees a 

positive lower bound for the liquid level. However, here the CLF also plays the role of a barrier 

function for the additional requirement of spill-free movement by providing an upper bound for the 

liquid level. The CLF is constructed by combining the mechanical energy of the system and the use 

of a specific transformation that has been used in the literature of compressible fluids (see 

[18,22,26,27]). It is important to note here that the nonlinearity of the control problem hinders the 

application of standard feedback design methodologies like backstepping (see [28,29,31]).  

   The CLF allows the determination of a specific set X  of initial conditions for which spill-free 

movement of the tank is possible (by applying an appropriate input): this is the state space of our 

problem. We achieve semi-global stabilization of the liquid and the tank by means of a simple 

feedback law. The term “semi-global” here refers to the state space X : for every closed subset of 

the state space X  we are in a position to find appropriate controller gains, so that every classical 

solution of the closed-loop system initiated from the given closed subset satisfies specific stability 

estimates. More specifically, an exponential convergence rate is achieved for the closed-loop 

system. The stabilizing feedback laws do not require measurement of the liquid level and velocity 

spatial profiles in the tank and simply require measurements of: (i) the tank position error and tank 

velocity, (ii) the total momentum of the liquid, and (iii) the liquid levels at the tank walls 

(boundary). To our knowledge, this is the first paper in the literature that achieves stabilization of 

the nonlinear viscous Saint-Venant system. In other words, 
 

1) the nonlinear viscous Saint-Venant model is studied (instead of its linearization), 

2) a simple feedback law (with minimum measurement requirements) is obtained that 

guarantees exponential convergence to the desired equilibrium point, 
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3) a spill-free movement of the liquid in the tank is guaranteed. 
     

   The structure of the paper is as follows. Section 2 is devoted to the presentation of the control 

problem. Section 3 contains the statements of the main result of the paper (Theorem 1). Moreover, 

in Section 3 we also provide insights for the proof of the main result: we explain the construction of 

the CLF, the selection of the state space and we provide some auxiliary results that are used in the 

proof. Section 4 provides an algorithmic solution of the problem of the spill-free movement and 

slosh-free settlement of water in a glass, by a robot, to a pre-specified glass position. We show that 

no matter how full the glass is, the robot can transfer the glass without spilling out water and 

without residual end point sloshing. The proofs of all results are provided in Section 5. Finally, 

Section 6 gives the concluding remarks of the present work.  

 

Notation. Throughout this paper, we adopt the following notation.   
 

  [0, )    denotes the set of non-negative real numbers.  
 

  Let 
nS   be an open set and let 

nA  be a set that satisfies ( )S A cl S  . By 0( ; )C A  , 

we denote the class of continuous functions on A , which take values in 
m . By ( ; )kC A  , 

where 1k   is an integer, we denote the class of functions on 
nA , which takes values in 

m  and has continuous derivatives of order k . In other words, the functions of class 

( ; )kC A   are the functions which have continuous derivatives of order k  in int( )S A  that can 

be continued continuously to all points in S A  .  When   then we write 0( )C A  or 

( )kC A . When I   is an interval and 1( )G C I  is a function of a single variable, ( )G h  

denotes the derivative with respect to h I .  
 

  Let  I   be an interval, let a b  be given constants and let : [ , ]u I a b   be a given 

function. We use the notation [ ]u t  to denote the profile at certain t I , i.e., ( [ ])( ) ( , )u t x u t x  

for all [ , ]x a b . When ( , )u t x  is (twice) differentiable with respect to [ , ]x a b , we use the 

notation ( , )xu t x  ( ( , )xxu t x ) for the (second) derivative of u  with respect to [ , ]x a b , i.e., 

( , ) ( , )x

u
u t x t x

x





 (
2

2
( , ) ( , )xx

u
u t x t x

x





). When ( , )u t x  is differentiable with respect to t , we 

use the notation ( , )tu t x  for the derivative of u  with respect to t , i.e., ( , ) ( , )t

u
u t x t x

t





. 

 

  Given a set 
nU  , U  denotes the characteristic function of U , i.e. the function defined by 

( ) : 1U x   for all x U  and ( ) : 0U x   for all x U . The sign function sgn :  is the 

function defined by the relations sgn( ) 1x   for 0x  , sgn(0) 0  and sgn( ) 1x    for 0x  . 
 

  Let a b  be given constants. For [1, )p  , ( , )pL a b  is the set of equivalence classes of 

Lebesgue measurable functions : ( , )u a b   with 

1/

: ( )

p
b

p

p
a

u u x dx
 

   
 
 
 . ( , )L a b  is the 

set of equivalence classes of Lebesgue measurable functions : ( , )u a b   with 

 
( , )

: sup ( )
x a b

u ess u x




   . For an integer 1k  , ( , )kH a b  denotes the Sobolev space of 

functions in 2 ( , )L a b  with all its weak derivatives up to order 1k   in 2 ( , )L a b . 
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2. Description of the Problem  
 

We consider a one-dimensional model for the motion of a tank. The tank contains a viscous, 

Newtonian, incompressible liquid. The tank is subject to a force that can be manipulated. We 

assume that the liquid pressure is hydrostatic and consequently, the liquid is modeled by the one-

dimensional (1-D) viscous Saint-Venant equations, whereas the tank obeys Newton’s second law.  

   The control objective is to drive asymptotically the tank to a specified position without liquid 

spilling out and having both the tank and the liquid within the tank at rest. Figure 1 shows a picture 

of the problem. 

 

 
Figure 1: The control problem. 

    

Let the position of the left side of the tank at time 0t   be ( )a t  and let the length of the tank be 

0L   (a constant). The equations describing the motion of the liquid within the tank are 

 

( ) 0t zH HV  , for 0t  ,  ( ), ( )z a t a t L                                        (1) 

 

 2 21
( )

2
t z z

z

HV HV gH HV
 

   
 

, for 0t  ,  ( ), ( )z a t a t L                   (2) 

 

where ( , ) 0H t z  , ( , )V t z   are the liquid level and the liquid velocity, respectively, at time 0t   

and position  ( ), ( )z a t a t L  , while , 0g    (constants) are the acceleration of gravity and the 

kinematic viscosity of the liquid, respectively. 

 

The liquid velocities at the walls of the tank coincide with the tank velocity, i.e., we have: 

 

( , ( )) ( , ( ) ) ( )V t a t V t a t L w t   , for 0t                                                 (3) 

 

where ( ) ( )w t a t  is the velocity of the tank at time 0t  . Moreover, applying Newton’s second 

law for the tank we get 
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( ) ( )a t f t  , for 0t                                                               (4) 

 

where ( )f t , the control input to the problem, is the force exerted on the tank at time 0t   divided 

by the total mass of the tank. The conditions for avoiding the liquid spilling out of the tank are: 

 

max

max

( , ( ))

( , ( ) )

H t a t H

H t a t L H



 
                                                                 (5) 

 

where max 0H   is the height of the tank walls. The variable ( )f t   is the control input. 

Applying the transformation 

( , ) ( , ( ) ) ( )

( , ) ( , ( ) )

( ) ( )

v t x V t a t x w t

h t x H t a t x

t a t a 

  

 

 

                                                  (6) 

 

where a  is the specified position (a constant) where we want to have the left side of the tank, 

we obtain the model 

,w w f    , for 0t                                                        (7) 

 

( ) 0t xh hv  , for 0t  ,  0,x L                                                (8) 

 

 2 21
( )

2
t x x

x

hv hv gh hv hf
 

    
 

, for 0t  ,  0,x L                             (9) 

 

( ,0) ( , ) 0v t v t L  , for 0t                                                     (10) 

 

where the control input f  appears additively in the second equation of (7) and multiplicatively in 

(9). Moreover, the conditions (5) for avoiding the liquid spilling out of the tank become: 

 

  maxmax ( ,0), ( , )h t h t L H , for 0t  --- Condition for no spilling out                   (11) 

 

   We consider classical solutions for the PDE-ODE system (7)-(10), i.e., we consider functions 

   1 2 (0, )C C     ,    0 1 (0, )w C C    ,    0 1[0, ) [0, ] (0, ) [0, ]v C L C L      , 

   1 2[0, ) [0, ];(0, ) (0, ) (0, )h C L C L       ,  with  2[ ] (0, )v t C L  for each 0t   that satisfy 

equations (7)-(10) for a given input  0f C   . 

   Using (8) and (10), we can prove that for every solution of (7)-(10) it holds that 

0

( , ) 0

L
d

h t x dx
d t

 
 

 
  for all 0t  . Therefore, the total mass of the liquid 0m   is constant. 

Therefore, without loss of generality, we assume that every solution of (7)-(10) satisfies the 

equation 

0

( , )

L

h t x dx m                                                                  (12) 

 

   The open-loop system (7)-(10), (12), i.e., system (7)-(10), (12) with ( ) 0f t  , allows a continuum 

of equilibrium points, namely the points 
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( )h x h , ( ) 0v x  , for  0,x L                                               (13) 

 

  , 0w                                                                      (14) 

 

where /h m L  .  We assume that the equilibrium points satisfy the condition for no spilling out 

(11), i.e., 
maxh H  . 

   Our objective is to design a feedback law of the form 

 

 ( ) [ ], [ ], ( ), ( )f t F h t v t t w t , for 0t  ,                                  (15) 

 

which achieves stabilization of the equilibrium point with 0  . Moreover, we additionally require 

that the “spill-free condition” (11) holds for every 0t  .  

   The existence of a continuum of equilibrium points for the open-loop system given by (13), (14) 

means that the desired equilibrium point is not asymptotically stable for the open-loop system. 

Moreover, experience shows that there are smooth initial conditions 

   2 1( (0), (0), [0], [0]) [0, ];(0, ) [0, ]w h v C L C L     with ( [0])(0) ( [0])( ) 0v v L   for 

which it is not possible to avoid liquid spilling out of the tank-no matter what the applied input f  

is. Thus, the described control problem is far from trivial.  

 

 

 

3. Construction of the Feedback Law 
 

 

3.1. The Control Lyapunov Functional (CLF) 
 

Let , 0k q   be position error and velocity gains (to be selected). Define the set 

  
2

2 0 [0, ]S C L  : 

 

 

0 1

0

0

2

[0, ];(0, ) (0, )

[0, ]

( , , , )
( )

( , ) , (0) ( ) 0

L

h C L H L

v C L

w h v S
h x dx m

w v v L





   





  



   


                                     (16)  

 

We define the following functionals for all ( , , , )w h v S  : 

 

 
2

22( , , , ) : ( , ) ( , )
2 2

qk q
V w h v W h v E h v w k                                  (17) 

 

 
2

2

0 0

1 1
( , ) : ( ) ( ) ( )

2 2

L L

E h v h x v x dx g h x h dx                                         (18) 

 

   
221

0 0

1 1
( , ) : ( ) ( ) ( ) ( ) ( )

2 2

L L

xW h v h x h x v x h x dx g h x h dx                             (19) 

 

where /h m L  . We notice that: 
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 the functional E  is the mechanical energy of the liquid within the tank. Indeed, notice that E  is 

the sum of the potential energy (  
2

0

1
( )

2

L

g h x h dx ) and the kinetic energy ( 2

0

1
( ) ( )

2

L

h x v x dx ) of 

the liquid, 

 

 the functional W  is a kind of mechanical energy of the liquid within the tank and has been used 

extensively in the literature of isentropic, compressible liquid flow (see [18,22,26,27]).  

 

We intend to use the functional ( , , , )V w h v  defined by (17) as a CLF for the system. However, the 

functional ( , , , )V w h v  can also be used for the derivation of useful bounds for the function h . This 

is guaranteed by the following lemma.  
 

Lemma 1: Define the increasing 1C  function  
4

: 0, ,
3

G h h  
    

 
 by means of the 

formula  

 
2 4

( ) : sgn 2
3 3

G h h h h h h h h h    
    

 
                                      (20) 

 

Let  1 4
: , 0,

3
G h h   

    
 

 be the inverse function of G and define 

1
:c

g
                                                                        (21) 

 

 Then for every ( , , , )w h v S   with 
4

( , , , )
3

V w h v h gh    , the following inequality holds: 

 

   1 1( , , , ) ( ) ( , , , )G cV w h v h x G cV w h v     , for all [0, ]x L                       (22) 

 

 

3.2. The state space 
 

In order to be able to satisfy the condition for no spilling out (11) we need to restrict the state space. 

This becomes clear from the fact that the set S  contains states that violate the condition for no 

spilling out (11). Define 

 

 : ( , , , ) : ( , , , )X w h v S V w h v R                                              (23) 

where  

  max max

2
: 2 min 3 ,0

3

g
R h h H H h

                                      (24) 

 

Notice that definitions (23), (24), the fact that 
maxh H  and Lemma 1 imply that for all 

( , , , )w h v X   it holds that 

 

   1 1

max0 ( , , , ) ( ) ( , , , )G cV w h v h x G cV w h v H       , for all [0, ]x L           (25) 

 

Therefore, the condition for no spilling out (11) is automatically satisfied when ( , , , )w h v X  . 

However, it should be noticed that requiring the state to be in X  in order to satisfy the condition for 

no spilling out (11) is a conservative approach: we actually require that the liquid level ( )h x  is 
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below the height of the walls maxH  everywhere in the tank (i.e., for all [0, ]x L ; recall (25)) and 

not simply at the walls (i.e., at 0x   and 1x  ) as the condition for no spilling out (11) requires.  
 

The state space of system (7)-(10), (12) is considered to be the set X . More specifically, we 

consider as state space the set    2 1 20, 0,X H L L L    endowed with the norm of the 

underlying normed linear space    2 1 20, 0,H L L L   , i.e.,  

 

 
1/2

2 2 22 2

2 2 2
( , , , )

X
w h v w h h v                                           (26) 

 

 

3.3. Main result 
 

Now we are in a position to state the first main result of the present work.  
 

Theorem 1: For every [0, )r R , where 0R   is the constant defined by (24), and for every 

, , 0q k   with 

 

 

1

1

G cr
k q

b G cr









 
                                                                (27) 

 

where 0c   is defined by (21), :
g

g L








, 

2
max

2

4
:

mL H
b 


 , there exist constants , 0M    

with the following property:  
 

(P) Every classical solution of the PDE-ODE system (7)-(10), (12) and 
 

   
0

( ) 2 ( , ) ( , ) ( , ) ( ,0) ( ) ( )

L

f t h t x v t x dx h t L h t q w t k t  
 

      
 
 
 , for 0t          (28) 

 

with ( (0), (0), [0], [0])V w h v r  , satisfies ( ( ), ( ), [ ], [ ])t w t h t v t X   and the following estimate for 

all 0t  : 
 

 [0, ] [0, ]( ( ), ( ), [ ] , [ ]) exp ( (0), (0), [0] , [0])L LX X
t w t h t h v t M t w h h v                (29) 

 

 

   Theorem 1 guarantees semi-global exponential stabilization of the state in the norm of 

   2 1 20, 0,H L L L    by means of the nonlinear feedback law (28). Here the term “semi-global” 

refers to the set X  for which spill-free transfer can be guaranteed: the constant r R  can be 

arbitrarily close to R . It should be noticed that the feedback law (28) does not require the 

measurement of the whole liquid level and liquid velocity profile and requires the measurement of 

only four quantities: 

 

 the tank position ( )t  and the tank velocity ( )w t , 

 the total liquid momentum 

0

( , ) ( , )

L

h t x v t x dx , and 

 the liquid level difference at the tank walls ( , ) ( ,0)h t L h t . 
 

The proof of Theorem 1 shows that as r R  we have 0k  , 0   and M  . This is 

expected because as r R  we may have initial conditions satisfying ( (0), (0), [0], [0])V w h v r   
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for which the liquid in the container is agitated. Therefore, in such cases the movement of the 

container may cause additional agitation of the liquid which can make the liquid spill-out 

unavoidable.   

 

 

3.4. Auxiliary results 
 

For the proof of Theorem 1, we need some auxiliary lemmas. The first auxiliary lemma provides 

formulas for the time derivatives of the energy functionals defined by (18), (19).   

 

Lemma 2: For every classical solution of the PDE-ODE system (7)-(10), (12) the following 

equations hold for all 0t  : 
 

  2

0 0

[ ], [ ] ( , ) ( , ) ( ) ( , ) ( , )

L L

x

d
E h t v t h t x v t x dx f t h t x v t x dx

d t
                                 (30) 

 

   2

0 0

[ ], [ ] ( , ) ( ) ( , ) ( , ) ( , )

L L

x x

d
W h t v t g h t x dx f t h t x v t x h t x dx

d t
                         (31) 

 

where ,E W  are the functionals defined by (18), (19), respectively. 

 
 

The two next auxiliary lemmas provide useful inequalities for the CLF V  defined by (17).  

 

Lemma 3: Let , 0q k   be given. Then there exists a non-decreasing function :[0, ) (0, )R   , 

where 0R   is defined by (24), such that for every ( , , , )w h v X   with 1(0, )v H L , the following 

inequality holds: 

 

 
22 2 2

0 0

( , , , ) ( ( , , , )) ( ) ( ) ( )

L L

x xV w h v V w h v h x dx h x v x dx w k   
 

      
 
 
                   (32) 

 

Lemma 4: Let , 0q k   be given. Then there exist non-decreasing functions :[0, ) (0, )iG R   , 

1,2i  , where 0R   is defined by (24), such that for every ( , , , )w h v X  , the following inequality 

holds: 

 

 
 

2

[0, ] 1

2

( , , , )
( , , , ) ( , , , ) ( , , , )

( , , , )
L X

V w h v
w h h v V w h v G V w h v

G V w h v


   



                      (33) 

 

where 
X

  is defined by (26).  

 

 

Inequality (32) provides an estimate of the dissipation rate of the Lyapunov functional for the 

closed-loop system (7)-(10), (12) with (28). On the other hand, inequalities (33) provide estimates 

of the Lyapunov functional in terms of the norm of the state space.  
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4. Can a Robot Move a Glass of Water Without Spilling Out Water? 
 

We next consider the problem of the movement of a glass of water by means of a robotic arm, from 

near-rest to near-rest in finite (but not prespecified) time. The glass of water starting from an almost 

at rest state (both the glass and the water in the glass), is formulated as 

 

[0, ](0, (0), [0] , [0])L X
w h h v                                                   (34) 

 

where 0   is a small number (tolerance) and 
X

  is the norm defined by (26). The robotic arm 

should move the glass to a pre-specified position without spilling out water of the glass and having 

the water in the glass almost still at the final time, i.e., at the final time 0T   we must have  

 

[0, ]( ( ), ( ), [ ] , [ ])L X
T w T h T h v T                                              (35) 

 

In other words, we require the spill-free and slosh-free motion of the glass. The initial condition is 

 (0), (0), [0], [0]w h v S  , where (0) 0   (recall the definition of S  (16)). The problem can be 

solved by using Theorem 1 when the tolerance 0   is sufficiently small. More specifically, we 

require that 0   is small so that 

 

 
1

2 2 max3
max , ,

2

H
h L g R  


 
  

 
 and 

 maxmin ,h H h

L


 
                   (36) 

 

where   max max

2
: 2 min 3 ,0

3

g
R h h H H h

      .  

 

If inequalities (36) hold then we can follow the following algorithm: 

 

Step 1: Pick numbers (0, )r R , , 0q   with  
1

2 max3
max , ,

2

H
q h L g 


 

  
 

 and 

 
1

2 2 max3
max , ,

2

H
h L g r  


 
  

 
 (this is possible due to (36)). 

 

Step 2: Select 0k   so that (27) holds and so that  

 

 
1

2 2 max3
max , , ,

22

3 (0)

H
r h L g q

k
q

  




 

  
 

                                     (37) 

 

Inequality (37) guarantees the inequality ( (0), (0), [0], [0])V w h v r  . Indeed, this fact is a direct 

consequence of (34), (36), (37) and the following proposition.  

 

Proposition 1: Let , 0q k   be given. Then for every ( , , , )w h v S   satisfying the inequality 

[0, ](0, , , )L X
w h h v    for some 0   with 

 maxmin ,h H h

L


 
 , the following inequality 

holds: 
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21 2

2 2max
[0, ]

3 3
( , , , ) max , , , (0, , , )

2 2
L X

H qk
V w h v h L g q w h h v    


  

    
 

       (38) 

 

where 
X

  is defined by (26).  

 

 

Let , 0M    be the constants involved in (29) and correspond to the selected parameters (0, )r R , 

, 0q   and 0k  . 

 

Step 3: Set 
(0)1

ln
M M

T
 

 

  
  

 
 and apply the feedback law (28) for (0, ]t T . Inequality (29) 

implies that estimate (35) holds.  

 

 

The application of the above algorithm can guarantee that the robotic arm will move the glass to the 

pre-specified position without spilling out water of the glass and without residual end point 

sloshing no matter how small the difference max 0H h   is. Of course, the (minimization of the) 

final time 0T   depends on the (appropriate) selection of the parameters (0, )r R , , 0q   and 

0k  .  

 
 
 

5. Proofs 
 

We start by providing the proof of Lemma 1. 
 

Proof of Lemma 1: The fact that the function  
4

: 0, ,
3

G h h  
    

 
 defined by (20) is a 

1C  increasing function follows from the fact that the equation ( )

h

h

r h
G h dr

r


   holds for all 

0h  .  
 

Let ( , , , )w h v S   with 
4

( , , , )
3

V w h v h gh     be given. Using the inequality 

2 2 2 2 21
( )

2
x xhv h h h v     and definition (19), we obtain the following estimate: 

 

 
2 2

1 2 2

0 0 0

1 1
( , ) ( ) ( ) ( ) ( ) ( )

4 2 2

L L L

xW h v h x h x dx h x v x dx g h x h dx
                          (39) 

 

Using definitions (17), (18) and estimate (39), we obtain: 
 

 
2 2

1 2

0 0

( ) ( ) ( ) ( , ) ( , ) ( , , , )
4

L L

xh x h x dx g h x h dx W h v E h v V w h v


                       (40) 

 

Let arbitrary , [0, ]x y L  be given. Using the Cauchy-Schwarz inequality and the fact that 

( )
h h

G h
h


   for all 0h   (a consequence of definition (20)), we get: 
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max( , )

min( , )

1/2 1/2
max( , ) max( , )

21 2

min( , ) min( , )

1/2

21 2

0 0

( ( )) ( ( )) ( ( )) ( ) ( ( )) ( )

( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( ( ))

x yx

s s

y x y

x y x y

s

x y x y

L L

s

G h x G h y G h s h s ds G h s h s ds

h s h s ds h s G h s ds

h s h s ds h s G h s ds





   

   
   
   
   

 
  

 
 

 

 

 

1/2

1/2 1/2
2

1 2

0 0

( ) ( ) ( )

L L

sh s h s ds h s h ds 

 
 
 
 

   
    
   
   
 

                 (41) 

 

Since 
2

2 2max :
4

V
ab a gb V

g





  
   

  
 for all 0V  , we obtain from (40), (41) and definition 

(21): 
 

( ( )) ( ( )) ( , , , )G h x G h y cV w h v  , for all , [0, ]x y L                                 (42) 

 

Since 

0

( )

L

h x dx m  (recall definition (16)) and since /h m L  , it follows from continuity of h  and 

the mean value theorem that there exists [0, ]x L  such that ( )h x h  . Moreover, since 

( ) 0G h   (a consequence of definition (20)), we get from (42) (with y x ): 
 

( , , , ) ( ( )) ( , , , )cV w h v G h x cV w h v    , for all [0, ]x L                            (43) 
 

Inequality (22) is a direct consequence of (43), the fact that the inverse function of G  is increasing 

and the fact that  
4

, , ,
3

cV w h v h h   . The proof is complete.   

 

We continue with the proof of Lemma 2.  
 

Proof of Lemma 2: Using (18) we obtain for all 0t  : 
 

 

2

0

0 0

1
( [ ], [ ]) ( , ) ( , )

2

( , ) ( , ) ( , ) ( , ) ( , )

L

t

L L

t t

d
E h t v t h t x v t x dx

d t

h t x v t x v t x dx g h t x h h t x dx



  



 

                               (44) 

Using (8), (9) we obtain: 
 

 1

t x x x x
v vv gh h hv f     , for 0t  ,  0,x L                               (45) 

 

Combining (8), (44) and (45) we get for all 0t  : 
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2

0 0

2

0 0

0 0

1
( [ ], [ ]) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

2

( ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

L L

xx x

L L

x

L L

x x

d
E h t v t h t x v t x v t x dx v t x h t x v t x dx

d t

f t h t x v t x dx h t x v t x v t x dx

g h t x v t x h t x dx g h t x h h t x v t x dx





  

 

  

 

 

 

       (46) 

 

Integrating by parts and using (10), we get for all 0t  : 
 

 

  

 

2

0 0

0 0

2 2

0 0

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , )

L L

x xx

L L

xx

L L

xx

v t x h t x v t x dx h t x v t x dx

h t x h h t x v t x dx h t x v t x h t x dx

h t x v t x v t x dx h t x v t x v t x dx



 

  

 

 

 

 

                            (47) 

 

Equation (30) is a direct consequence of (46) and (47).  
 

Next define for all 0t   and [0, ]x L : 
 

( , ) ( , ) ( , ) ( , )xt x h t x v t x h t x                                                   (48) 

 

Using (8), (9) and definition (48) we conclude that the following equation holds for all 0t   and 

(0, )x L : 

21
( , ) ( , ) ( ) ( , ) ( , ) ( , )

2
t

x

t x h t x f t t x v t x gh t x 
 

   
 

                               (49) 

 

Using (19) and definition (48), we obtain for all 0t  : 
 

 

2 2

0

1

0 0

1
( [ ], [ ]) ( , ) ( , ) ( , )

2

( , ) ( , ) ( , ) ( ) ( , )

L

t

L L

t t

d
W h t v t h t x h t x t x dx

d t

h t x t x t x dx g h x h h t x dx



 



 

 

  



 

                              (50) 

 

Combining (B12) and (8), (49), we get for all 0t  : 
 

 

  

2 2

0

1 2

0 0

0

1
( [ ], [ ]) ( , ) ( , ) ( , ) ( , )

2

1
( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

2

( ) ( , ) ( , )

L

x

L L

x

L

x

d
W h t v t h t x t x h t x v t x dx

d t

f t t x dx h t x t x t x v t x gh t x dx

g h x h h t x v t x dx



  









 
   

 

 



 



               (51) 

 

Integrating by parts and using (10), we get for all 0t  : 
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 2 2

0

2 2 1

0 0

( , ) ( , ) ( , ) ( , )

2 ( , ) ( , ) ( , ) ( , ) 2 ( , ) ( , ) ( , ) ( , )

L

x

L L

x x

h t x t x h t x v t x dx

h t x h t x t x v t x dx h t x t x t x v t x dx



  



  



 

        (52) 

 

Combining (51), (52) and (47), we obtain for all 0t  : 
  

 

2 2

0

1

0 0

1 2

0

0

( [ ], [ ]) ( , ) ( , ) ( , ) ( , )

2 ( , ) ( , ) ( , ) ( , ) ( ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

L

x

L L

x

L

x

L

x

d
W h t v t h t x h t x t x v t x dx

d t

h t x t x t x v t x dx f t t x dx

h t x t x v t x dx

g h t x v t x t x h t x dx



  













 



 



 





                               (53) 

 

Equation (53) in conjunction with definition (48) gives for all 0t  : 
 

 

 

2 1

0

2

0 0

( [ ], [ ]) ( , ) ( , ) ( , )

( ) ( , ) ( , ) ( , ) ( , )

L

x

L L

x x

d
W h t v t t x h t x v t x dx

d t

f t h t x v t x h t x dx g h t x dx



 

 

  



 

                                 (54) 

 

Equation (31) is a direct consequence of (54) and (10). The proof is complete.   

 
 

Next, we provide the proofs of Lemma 3 and Lemma 4.  
 

Proof of Lemma 3: Let arbitrary ( , , , )w h v X   with 1(0, )v H L  be given. Since 

0

( )

L

h x dx m  

(recall definitions (16), (23)) and since /h m L  , it follows from continuity of h  and the mean 

value theorem that there exists [0, ]x L  such that ( )h x h  . Using the Cauchy-Schwarz 

inequality, we get for all [0, ]x L : 
 

1/2max( , )
2

0 0min( , )

( ) ( ) ( ) ( ) ( ) ( )

x xx L L

s s s s

x x x

h x h h s ds h x h h s ds h s ds L h s ds



 

 
 

        
 
 

        (55) 

 

Therefore, using (55), we obtain: 
 

 
2

2 2

0 0

( ) ( )

L L

xh x h dx L h x dx                                                  (56) 

 

Using the inequality 
2 2 2 2 2( ( ) ( ) ( )) 2 ( ) ( ) 2 ( )x xh x v x h x h x v x h x     and (25), we obtain: 
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1 2 2 2 1 2

0 0 0

2
2 2

1

0 0

( )( ( ) ( ) ( )) 2 ( ) ( ) 2 ( ) ( )

2
2 ( ) ( ) ( )

( , , , )

L L L

x x

L L

x

h x h x v x h x dx h x v x dx h x h x dx

h x v x dx h x dx
G cV w h v

 





 



  

 


  

 

       (57) 

 

where G  is defined by (20). Since (0) ( ) 0v v L   (recall definitions (16), (23)), by virtue of 

Wirtinger’s inequality we have: 
 

2
2 2

2

0 0

( ) ( )

L L

x

L
v x dx v x dx


                                                         (58) 

 

Combining (58) and (25) we get: 
 

 

 
 

 

2 1 2

0 0

2 12
1 2 2

2 2 1

0 0

( ) ( ) ( , , , ) ( )

( , , , )
( , , , ) ( ) ( ) ( )

( , , , )

L L

L L

x x

h x v x dx G cV w h v v x dx

L G cV w h vL
G cV w h v v x dx h x v x dx

G cV w h v






  










 


 

 

        (59) 

 

Using (17), (18), (19) and (56), (57), (59), we obtain: 
 

   

 

 

 

 

2
1 2

0 0

2
22 2

0

2
2 2 2

1

0 0

2
22

2 2

0 0

1
, , , ( )( ( ) ( ) ( )) ( )

2

1
( ) ( )

2 2 2

3
( ) ( ) ( )

2 ( , , , )

2 2

( , , , ) ( ) ( ) ( )

L L

x

L

L L

x

L L

x x

V w h v h x h x v x h x dx g h x h dx

qk q
h x v x dx w k

h x v x dx gL h x dx
G cV w h v

qk q
w k

V w h v h x v x dx h x dx

 

 





 



 



   

   

 
   

  

  

   

 



 

   
22 w k 

 
  

 
 

                 (60) 

where  

 
 

   

2 1 2 2
2

2 1 1

3
: max , , ,

2 22

L G cs qk q
s gL

G cs G cs







 

 
   

   

, for [0, )s R                    (61) 

The proof is complete.   

 

 

Proof of Lemma 4: Let arbitrary ( , , , )w h v X   be given. Using definitions (17), (18), (19), the 

inequalities 
2 2 2 2 2( ( ) ( ) ( )) 2 ( ) ( ) 2 ( )x xh x v x h x h x v x h x    ,  

2 2 2 22 2w k w k     and (25), we 

obtain: 
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2
1 2

0 0

2
22 2

0

22
2 2 1 2 2 2

0 0 0

2
2 2

max 1

0 0

1
, , , ( )( ( ) ( ) ( )) ( )

2

1
( ) ( )

2 2 2

3 3
( ) ( ) ( ) ( ) ( )

2 2

3
( ) ( )

2 ( , , , )

L L

x

L

L L L

x

L L

x

V w h v h x h x v x h x dx g h x h dx

qk q
h x v x dx w k

qk
h x v x dx h x h x dx g h x h dx qw

H v x dx h x dx g h
G cV w h v

 

 

 





 

 



   

   

     

  


 



  

   
2

0

2
2 2

( )

3

2

L

x h dx

qk
qw



 



             (62) 

 

Inequality (62) implies the left inequality (33) with  
 

2 2

2 max 1

3 3
: max , , , ,

2 2

qk
G s H q g

G cs




 
  

  

 

for [0, )s R .  

   Using definitions (17), (18), (19), the inequalities 2 1 23
( ) ( ) ( ) ( ) ( ) ( )

4 3
x xv x h x h x v x h x h x





   , 

2 23 1

4 3

k
w w

k
     and (25), we obtain: 

   

 

 

  

2
1 2

0 0

2
22 2

0

2 22
2 1 2 2 2

0 0 0

2
1 2 2

max0 0

1
, , , ( )( ( ) ( ) ( )) ( )

2

1
( ) ( )

2 2 2

1
( ) ( ) ( ) ( ) ( )

4 6 4 6

1
, , , ( ) ( )

4 6

L L

x

L

L L L

x

L L

x

V w h v h x h x v x h x dx g h x h dx

qk q
h x v x dx w k

qk q
h x v x dx h x h x dx g h x h dx w

G cV w h v v x dx h x dx g h
H

 

 







 

 



   

   

     

   

 



  

   
2

0

2
2 2

( )

4 6

L

x h dx

qk q
w



 



            (63) 

 

Inequality (63) implies the right inequality (33) with 

 
  

max
1 1 2 2

max max max max

12
:

min 3 ,2 ,3 ,2 ,12

H
G s

H G cs H qk H q H g



 for [0, )s R . The proof is 

complete.   

 

 

We next give the proof of Theorem 1.  

 

Proof of Theorem 1: Let [0, )r R  be given (arbitrary) and let constants , , 0q k   for which (27) 

holds (but otherwise arbitrary) be given.    

   Consider a classical solution of the PDE-ODE system (7)-(10), (12) with (28) that satisfies 

( (0), (0), [0], [0])V w h v r  . Then we obtain from Lemma 2 and (7), (17), (28) for all 0t  : 
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2 2 3 2

0 0

2

0

( ), ( ), [ ], [ ] ( , ) ( , ) ( , ) ( )

( ) ( ) ( ) 2 ( , ) ( , ) ( , ) ( ) ( )

L L

x x

L

x

d
V t w t h t v t g h t x dx h t x v t x dx qk t

d t

qk w t k t f t h t x v t x h t x dx q w t k t

   

  

   

 
      

 

 



          (64) 

 

Using (28) and (64), we obtain for all 0t  : 

 

 

 

   

2

0

22 3 2

0

2

0

( ), ( ), [ ], [ ] ( , )

( , ) ( , ) ( ) ( ) ( )

2 ( , ) ( , ) ( , ) ( ) ( )

L

x

L

x

L

x

d
V t w t h t v t g h t x dx

d t

h t x v t x dx qk t qk w t k t

h t x v t x h t x dx q w t k t

 

  

  

 

   

 
    

 







                          (65) 

Using the inequality  

   

   

0

2

2 1

0

2 ( ) ( ) 2 ( , ) ( , ) ( , )

( ) ( ) 2 ( , ) ( , ) ( , )

L

x

L

x

w t k t h t x v t x h t x dx

w t k t h t x v t x h t x dx

 

   

 
  

 

 
    

 





 

 

that holds for every 0  , we obtain from (65) the following estimate for all 0t  , (0, )q  : 

 

 

  

   

2 2

0 0

23 2

2

1

0

( ), ( ), [ ], [ ] ( , ) ( , ) ( , )

( ) ( ) ( ) ( )

1 2 ( , ) ( , ) ( , )

L L

x x

L

x

d
V t w t h t v t g h t x dx h t x v t x dx

d t

qk t q R k w t k t

q h t x v t x h t x dx

  

   

  

  

    

 
   

 

 



           (66) 

 

Using the inequality 

0 0

2 2

1 2

0 0

2 2 ( , ) ( , ) ( , )

4 ( , ) ( , ) ( , )

L L

x

L L

x

h t x v t x dx h t x dx

h t x v t x dx h t x dx



  

  
  
  
  

   
    

   
   

 

 

 

 

that holds for every 0  , we obtain from (66) the following estimate for all 0t  , (0, )q  , 

0  : 
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2 2

0 0

23 2

2

1

0

2

2 1 1

0

( ), ( ), [ ], [ ] ( , ) ( , ) ( , )

( ) ( ) ( ) ( )

4 1 1 ( , ) ( , )

1 1 ( , )

L L

x x

L

L

x

d
V t w t h t v t g h t x dx h t x v t x dx

d t

qk t q q k w t k t

q h t x v t x dx

q h t x dx

  

   

  

  



 

  

    

 
    

 

 
    

 

 





            (67) 

 

The Cauchy-Schwarz inequality in conjunction with (12) implies the following inequalities: 

 
2

2

0 0

2

2

0 0

( , ) ( , )

( , ) ( , ) ( , ) ( , )

L L

x x

L L

h t x dx L h t x dx

h t x v t x dx m h t x v t x dx

 
 

 
 

 
 

 
 

 

 

 

 

Thus, we obtain from (67) the following estimate for all 0t  , (0, )q  , 0  : 
 

     

  

  

1 1 2

0

22 3 2

0

1 2

0

( ), ( ), [ ], [ ] 1 1 ( , )

( , ) ( , ) ( ) ( ) ( ) ( )

4 1 1 ( , ) ( , )

L

x

L

x

L

d
V t w t h t v t g L q h t x dx

d t

h t x v t x dx qk t q q k w t k t

m q h t x v t x dx

    

    

  

 



    

     

  







         (68) 

 

Define for each 0t  : 

 

 max
0

( ) : max ( , )
x L

h t h t x
 

 ,  min
0

( ) : min ( , ) 0
x L

h t h t x
 

                                   (69) 

 

The fact that min ( ) 0h t   follows from the fact that  1 [0, ) [0, ];(0, )h C L     (which implies that 

for every 0t  , [ ]h t  is a continuous positive function on [0, ]L ). Definition (69) in conjunction with 

(68) implies the following estimate for all 0t  , (0, )q  , 0  : 
 

     

  

  

1 1 2

0

22 3 2

0

1 2

max

0

( ), ( ), [ ], [ ] 1 1 ( , )

( , ) ( , ) ( ) ( ) ( ) ( )

4 1 1 ( ) ( , )

L

x

L

x

L

d
V t w t h t v t g L q h t x dx

d t

h t x v t x dx qk t q q k w t k t

m q h t v t x dx

    

    

  

 



    

     

  







           (70)  

 

Since ( ,0) ( , ) 0v t v t L   (recall (10)), by virtue of Wirtinger’s inequality and definition (69), we 

have for 0t  : 
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2 2
2 2 2

2 2
min0 0 0

( , ) ( , ) ( , ) ( , )
( )

L L L

x x

L L
v t x dx v t x dx h t x v t x dx

h t 
                          (71) 

 

Combining (70) and (71), we obtain the following estimate for all 0t  , (0, )q  , 0  : 
 

     

  

  

1 1 2

0

2
1 2max

2

min 0

23 2

( ), ( ), [ ], [ ] 1 1 ( , )

( )
4 1 1 ( , ) ( , )

( )

( ) ( ) ( ) ( )

L

x

L

x

d
V t w t h t v t g L q h t x dx

d t

L h t
m q h t x v t x dx

h t

qk t q q k w t k t

    

   


   

 



    

 
    
 

    



       (72)  

 

Setting 
 

 

1

1

1

G cr
q q

b G cr
  








 

 
 (notice that since 

g

g L


 


 


 it is automatically 

guaranteed that (0, )q  ) and 

 

 

1

1( 1)

L
G cr

g L

L
b G cr

g L







 












  


 where 

 

 

1

1

1
: 1

2 2
2

L
G cr

g L

L
b G cr

g L

















  

 


  (notice that 0  ), it follows from (72) and the facts that 

g

g L








, 

2
max

2

4mL H
b 


  that the following estimate holds for all 0t  : 

   

 

 

 
 

 
 

2

0

1

2max max

1

max min 0

1
23 2 2

1

( ), ( ), [ ], [ ] 1 ( , )

( )
( , ) ( , )

( )

( ) 1 ( ) ( )

L

x

L

x

d
V t w t h t v t g h t x dx

d t

G cr H h t
h t x v t x dx

H G cr h t

G cr
qk t q w t k t

b G cr

  






   









  

 
    


   

 



                          (73) 

where  

  
 

1

1
:

k b G cr

q G cr








 



 and 

 1

: 1

( 1)

b

L
b G cr

g L





 





 

  


                   (74) 

 

Notice that (27) implies that (0,1)  . Inequality (73) in conjunction with the facts that (0,1)  , 

(0,1)   shows that the following implication holds: 
 

“If 0t   and 
 

max max

1

min

( )

( )

h t H

h t G cr 



 then  ( ), ( ), [ ], [ ] 0

d
V t w t h t v t

d t
  ”                (75)  

 

The fact that  1 [0, ) [0, ];(0, )h C L     implies that both mappings max ( )t h t , min ( ) 0t h t  , 

defined by (69) are continuous (see Proposition 2.9 on page 21 in [14]). Consequently, the mapping 

max

min

( )
1

( )

h t
t

h t
   is continuous with 

1
max

1
min

(0) ( )

(0) ( )

h G cr

h G cr







. The latter inequality is a consequence of 
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the fact that ( (0), (0), [0], [0])V w h v r   and (25). Since 
1

max( )G cr H   and 1   it follows that 

max max

1
min

(0)

(0) ( )

h H

h G cr 



. Therefore, by continuity there exists 0T   such that 

 
max max

1

min

( )

( )

h t H

h t G cr 



 

for all [0, )t T .  
 

   We next prove by contradiction that max max

1
min

( )

( ) ( )

h t H

h t G cr 



 for all 0t  . Assume the contrary, i.e. 

that there exists 0t   such that max max

1
min

( )

( ) ( )

h t H

h t G cr 



. Therefore, the set 

max max

1
min

( )
: 0:

( ) ( )

h t H
A t

h t G cr 

 
   

 
 is non-empty and bounded from below. Thus we can define 

inf( )t A  . By definition, it holds that 0t T    and max max

1
min

( )

( ) ( )

h t H

h t G cr 



 for all [0, )t t . By 

continuity of the mapping max

min

( )

( )

h t
t

h t
   we obtain that max max

1
min

( )

( ) ( )

h t H

h t G cr



 



. Moreover, since 

max max

1
min

( )

( ) ( )

h t H

h t G cr 



 for all [0, )t t , it follows from implication (75) that 

 ( ), ( ), [ ], [ ] 0
d

V t w t h t v t
d t

   for all (0, )t t . By continuity of the mapping 

 ( ), ( ), [ ], [ ]t V t w t h t v t , we obtain that    ( ), ( ), [ ], [ ] (0), (0), [0], [0]V t w t h t v t V w h v r       . 

On the other hand, the previous inequality and (25) imply that 
1

max max

1 1
min

( ) ( )

( ) ( ) ( )

h t HG cr

h t G cr G cr

 

  
 

 
 

which contradicts the equation max max

1
min

( )

( ) ( )

h t H

h t G cr



 



.  

 

   Since max max

1
min

( )

( ) ( )

h t H

h t G cr 



 for all 0t  , we conclude from implication (75) that 

 ( ), ( ), [ ], [ ] 0
d

V t w t h t v t
d t

   for all 0t  . By continuity of the mapping 

 ( ), ( ), [ ], [ ]t V t w t h t v t , we obtain that  

 

   ( ), ( ), [ ], [ ] (0), (0), [0], [0]V t w t h t v t V w h v r R     for all 0t   

 

Hence, ( ( ), ( ), [ ], [ ])t w t h t v t X   for all 0t   (recall definitions (16), (23)). Moreover, (25) implies 

that 
1

max

1
min

( ) ( )

( ) ( )

h t G cr

h t G cr







 for all 0t  . The previous inequality in conjunction with (73) gives for all 

0t  : 
 

   
22 2 2

0 0
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L L

x x

d
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      (76) 

where  
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               (77) 

 

 It follows from Lemma 3 and (76) that the following estimate holds for all 0t  : 
 

 
  

 ( ), ( ), [ ], [ ] ( ), ( ), [ ], [ ]
( ), ( ), [ ], [ ]

d
V t w t h t v t V t w t h t v t

d t V t w t h t v t


 


 


          (78)   

 

where :[0, ) (0, )R    is the non-decreasing function involved in (32). Since 

:[0, ) (0, )R    is non-decreasing and since  ( ), ( ), [ ], [ ]V t w t h t v t r   for all 0t  , we obtain 

from (78) the following estimate for all 0t  : 
 

 
 

 ( ), ( ), [ ], [ ] ( ), ( ), [ ], [ ]
d

V t w t h t v t V t w t h t v t
d t r


  


                            (79)   

 

By continuity of the mapping  ( ), ( ), [ ], [ ]t V t w t h t v t , the differential inequality (79) implies the 

following estimate for all 0t  : 
 

 
 

 ( ), ( ), [ ], [ ] exp (0), (0), [0], [0]
t

V t w t h t v t V w h v
r


 

 
    

                   (80)   

 

Estimate (80) in conjunction with Lemma 4 implies the following estimate for all 0t  : 
 

 

     

2
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2
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where :[0, ) (0, )iG R   , 1,2i  , are the non-decreasing functions involved in (33). Since 

:[0, ) (0, )iG R   , 1,2i  , are non-decreasing functions and since  ( ), ( ), [ ], [ ]V t w t h t v t r   for 

all 0t  , we obtain from (81) the following estimate for all 0t  : 

 

   
 

2 2

[0, ] 1 2 [0, ]( ( ), ( ), [ ] , [ ]) exp ( (0), (0), [0] , [0])L LX X

t
t w t h t h v t G r G r w h h v

r


    

 
      

  (82) 

 

Estimate (29) is a direct consequence of estimate (82). The proof is complete.   

 

We end this section by providing the proof of Proposition 1.  

 

Proof of Proposition 1: Let arbitrary ( , , , )w h v S   that satisfies (34) with 

 maxmin ,
0

h H h

L


 
   be given. Using definitions (17), (18), (19), the inequalities 

2 2 2 2 2( ( ) ( ) ( )) 2 ( ) ( ) 2 ( )x xh x v x h x h x v x h x    ,  
2 2 2 22 2w k w k     and (25), we obtain: 
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             (83) 

 

Since 

0

( )

L

h x dx m  (recall definition (16)) and since /h m L  , it follows from continuity of h  and 

the mean value theorem that there exists [0, ]x L  such that ( )h x h  . Using the Cauchy-

Schwarz inequality, we get (55) for all [0, ]x L . Consequently, we obtain for all [0, ]x L  from 

(55), (26), (34) and the fact that 
 maxmin ,

0
h H h

L


 
  :  

 

max2 2
0 ( )h L h h x h L h h L H                                      (84) 

 

Therefore, we obtain from (83) and (84): 
 

     
21 2

2 2 2 2 2max

0 0 0

3 3
, , , ( ) ( ) ( )

2 2

L L L

x

H qk
V w h v v x dx h L h x dx g h x h dx qw   


           

(85) 

 

Inequality (38) is a direct consequence of (85) and definition (26). The proof is complete.   

 

 

 

6. Concluding Remarks 
   

By applying the CLF methodology we have managed to achieve semi-global stabilization results for 

the viscous Saint-Venant liquid-tank system. As mentioned in the Introduction, to our knowledge, 

this is the first paper in the literature that achieves stabilization of the nonlinear viscous Saint-

Venant system. Moreover, this is the first paper that guarantees a spill-free condition for the 

movement of the tank. 

 

   The obtained results leave some open problems which will be the topic of future research:  

1) The results were applied to classical solutions. It is of interest to relax this to weak solutions. It is 

an open problem to show that the proposed feedback laws preserve their strong stabilizing role in 

the case of weak solutions. Moreover, it is an open problem to show existence/uniqueness of (weak) 

solutions for the closed-loop system. To this purpose, ideas utilized in [30] will be employed.  

2) The construction of CLFs which can allow the derivation of stability estimates in stronger spatial 

norms for the liquid level and velocity profiles. 

 

   Another more demanding problem that can be studied in the future is the spill-free, slosh-free and 

smash-free movement of a glass of water. This problem arises when we want to move the glass of 

water to a position which is close to a wall. In this case, we need to have control on the overshoot of 

the glass position error in order to avoid smashing the glass on the wall.  
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