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Abstract

For linear time-invariant systems with uncertain parameters be-
longing to a finite set, we present a purely deterministic approach to
multiple-model estimation and propose an algorithm based on the
minimax criterion using constrained quadratic programming. The
estimator tends to learn the dynamics of the system, and once the
uncertain parameters have been sufficiently estimated, the estimator
behaves like a standard Kalman filter.

1 INTRODUCTION

1.1 Problem Statement

In this article, we consider output prediction for linear systems of the form

xt+1 = Fxt +Gut + wt

yt = Hxt + vt, 0 ≤ t ≤ N − 1,
(1)

where xt ∈ R
n, ut ∈ R

p and yt ∈ R
m are the states and the measured input

and output at time-step t, respectively. wt ∈ R
n and vt ∈ R

m are unmeasured
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process disturbance and measurement noise. The model, (F,H,G) is fixed
but unknown, belonging to some finite set

{(F1, H1, G1), · · · , (FK , HK , GK)}.

consiting of of triplets of real-valued matrices. In particular, we are inter-
ested in strictly causal estimation of yN , such that the gain from disturbance
trajectories (wt, vt)

N−1
t=0 to pointwise estimation error (yN − HxN) in some

weigthed ℓ2-norm is bounded by a constant γN > 0. This means that given
positive definite matrices P0 ∈ R

n×n, R ∈ R
m×m and Q ∈ R

n×n and a nomi-
nal value of the initial state, x̂0,

|ŷN −HxN |
2

|x0 − x̂0|
2
P−1

0

+
∑N−1

t=0

(

|wt|
2
Q−1 + |vt|

2
R−1

) ≤ γ2
N , (2)

should hold for all disturbances and models compatible with the measurement
history (yt, ut)

N−1
t=0 . This approach is different from the Bayesian approach

to filtering where one takes the conditional expectation as the estimate ŷN .
The interest in worst-case gain is motivated by robust feedback-control from
estimates. In such settings instability or lack of performance due to model
errors is a larger concern than robustness to outliers.

1.2 Background

Simultaneous estimation of states and parameters in linear systems is a bi-
linear estimation problem. The Maximum-likelihood approach leads to esti-
mates which cannot be put in recursive form and must be obtained by itera-
tion Bar-Shalom [1972]. A recursive method can be obtained by parametriz-
ing the dynamical equations and the observer and learning the parameters
using the sequential prediction error approach. Alternatively, one can aug-
ment the state vector with the uncertain parameters and apply nonlinear fil-
tering methods such as the Extended Kalman filter Goodwin and Sin [1984].
Unfortunately, optimality guarantees for such methods are difficult to obtain.
One exception is when the system can be modeled as a finite set of linear
systems and the noise is Gaussian, then the Maximum-likelihood estimates
can be put on a recursive form Crassidis and Junkins [2011].

Solutions based on the multiple-model approach have been tremendously
successful in modeling and estimating complex engineering systems. In essence,



it consists of two parts: 1) design simpler models for a finite set of possible
operating regimes. 2) Run a filter for each model and cleverly combine the es-
timates. Multiple-model adaptive estimation has been around since the ’60s
Magill [1965], Lainiotis [1976] and has been an active research field since. The
estimation approach easily extends to systems where the active model can
switch (hybrid systems) by matching a Kalman filter with each possible tra-
jectory. In that case, the number of filters will grow exponentially, which has
sparked research into more efficient methods. Notable numerically tractable
and suboptimal algorithms for estimation in hybrid systems are the Gener-
alized Pseudo Bayesian Ackerson and Fu [1970], Chang and Athans [1978],
and the Interacting Multiple Model Blom and Bar-Shalom [1988]. The al-
gorithms have been coupled with extended and unscented Kalman filters to
deal with non-linear systems Akca and Önder Efe [2019], and Xiong et al.
[2015] studied robustness to identification error. In Ronghua et al. [2008],
the authors pointed out that methods based on Kalman filters are sensitive
to noise distributions and proposed an Interactive Multiple Model algorithm
based on particle filters to handle non-Gaussian noise at the expense of a
100 fold increase in computation. Recently, machine-learning approaches to
classification have been combined with the Interacting Multiple Model esti-
mator Li et al. [2021], Deng et al. [2020] and showed improved accuracy in
simulations.

The Bayesian approach to the Multiple-model estimation problem in-
volves assigning probability distributions to disturbances (wt, vt) and models
(F,G,H). The estimate is taken as the expected value of yN conditioned
on past measurements. If the disturbances are zero-mean and Gaussian,
then the conditional expectation can be computed as the weighted average
of Kalman filter estimates (one for each model), weighted by the conditional
probability that its model is active.

It is evident in practice that the estimator’s performance depends on
the quality of the model set. The models must be distinguishable using
measured signals, and the models should accurately describe the operating
regimes. Since the estimates can be susceptible to non-Gaussian noise, it
is surprising that deterministic approaches similar to those studied by the
control community in the ’80s and ’90s have gathered little attention. Re-
cent progress to minimax adaptive control of linear systems with uncertain
parameters belonging to a finite set Rantzer [2021] under the assumption of
perfect measurements has inspired this research into compatible estimation
techniques.



1.3 Contribution

In this paper, we formulate the multiple-model estimation problem as a deter-
ministic, two-player dynamic game. In particular, this formulation allows for
online computation of the worst-case gain from disturbances to estimation er-
ror and tractable synthesis of suboptimal estimators that minimize the worst-
case gain. Deterministic dynamic games have played a key role in solving
and understanding H∞ filtering Shen and Deng [1997], Basar and Bernhard
[1995]; our goal in this work has been to take a first step towards extending
the advantages of that framework to the multiple model setting.

1.4 Outline

The outline is as follows: First, we introduce notation in Section 2, then
we introduce minimax multiple-model filtering and the main results in Sec-
tion 3. In Section 4, we present a simplified form for time-invariant systems.
We illustrate the theory through a numerical example in Section 5. Sec-
tion 6 contains concluding remarks, and supporting lemmata are given in
the Appendix.

2 NOTATION

The set of n×m-dimensional matrices with real coefficients is denoted R
n×m.

The transpose of a matrix A is denoted A⊤. For a symmetric matrix A ∈
R

n×n, we write A ≻ (�)0 to say that A is positive (semi)definite. Given
x ∈ R

n and A ∈ R
n×n, |x|2A := x⊤Ax. For a vector xt ∈ R

n we denote the
sequence of such vectors up to time t by xt := (xk)

t
k=0.

3 MINIMAX MULTIPLE MODEL FILTER-

ING

In contrast to the Bayesian approach, our approach is fully deterministic; sim-
ilarly to Shen and Deng [1997], Basar and Bernhard [1995], we do not make
explicit assumptions on the distribution of the noise trajectories wt and vt.
We will instead construct a two-player dynamic game between a minimizing
player that chooses the estimate, and a maximizing player that chooses dy-
namics and disturbances. Recall that we are interested in characterizing an



estimator ŷN such that the gain from disturbances to the pointwise estima-
tion error is bounded by γN . I.e., (2) holds for all disturbances consistent
with (1) and the data (yN−1,uN−1). Since the disturbances are unknown,
we cannot evaluate (2) directly. However, define

JN(y
N−1,uN−1, ŷN) := sup

x0,wN−1,vN−1,(F,G,H)

{

|ŷN −HxN |
2

− γ2
N

(

|x0 − x̂0|
2
P−1

0

+
N−1
∑

t=0

(

|wt|
2
Q−1 + |vt|

2
R−1

)

)}

, (3)

where the maximization is performed subject to the constraints (1). Then
(2) holds if and only if

JN(y
N−1, uN−1, ŷN) ≤ 0.

In this setting, wt = xt+1 − Fxt − Gut and vt = yt − Hxt are uniquely
determined by the states, the measurements and the active model. Inserting
into (3), we get

JN(y
N−1,uN−1, ŷN) = sup

xN ,(F,G,H)

{

|ŷN −HxN |
2 − γ2

N |x0 − x̂0|
2
P−1

0

− γ2
N

N−1
∑

t=0

(

|xt+1 − Fxt −Gut|
2
Q−1 + |yt −Hxt|

2
R−1

)

}

. (4)

We will call an estimator ŷ⋆N a minimax estimator if

inf
ŷN

JN(y
N−1, uN−1, ŷN) = JN(y

N−1, uN−1, ŷ⋆N) =: J⋆
N(y

N−1, uN−1), (5)

holds, where ŷN are functions of past data yN−1 and uN−1. This constitutes a
two-player dynamic game and would be linear quadratic if not for the model
being chosen by the maximizing player. The intuition behind (5) makes
sense in the following way. The minimizing player is penalized for deviating
from the true (noiseless) output, and the maximizing player is penalized for
selecting a model which requires large disturbances w and v to be compatible
with the data. As N increases, the penalty for selecting a model different
from the truth grows too large, resulting in a learning mechanism. It turns



out that the cost associated with the disturbance trajectories required to
explain each model corresponds to the accumulated prediction errors from
a corresponding Kalman filter and that the minimax estimate is a weighted
interpolation between the Kalman filter estimates.

Theorem 1. Consider matrices F1, . . . , FK ∈ R
n×n, H1, . . . , HK ∈ R

m×n,
G1, . . . , GK ∈ R

n×p and positive definite Q,P0 ∈ R
n×n, R ∈ R

m×m. Define
Pt,i according to

P0,i = P0

Pt+1,i = Q + Fi(Pt,i − Pt,iH
⊤
i (R +HiPt,iH

⊤
i )

−1HiPt,i)F
⊤
i ,

and assume that HiPN,iH
⊤
i ≺ γ2

NI. Then the cost (4) is equivalent to

JN(y
N−1, uN−1, ŷN) = max

i

{

|ŷN −Hix̆N,i|
2
(I−γ−2

N
HiPN,iH

⊤
i
)−1 − γ2

NcN,i

}

. (6)

x̆N,i is the Kalman filter estimate of xN using the ith model, and cN,i are
generated according to

x̆0,i = x0

x̆t+1,i = Fix̆t,i +Kt,i(yt −Hix̆t,i) +Giut

Kt,i = FiPt,iH
⊤
i (R +HiPt,iH

⊤
i )

−1

c0,i = 0

ct+1,i = |Hix̆t,i − yt|
2
(R+HiPt,iH⊤

i
)−1 + ct,i.

Proof. We will perform the maximization over state-trajectories in (4) in two
steps. First over past trajectories (xN−1) and then over the future state xN

1.
The right-hand side of (4) becomes

sup
xN ,i

{

|ŷN −HixN |
2 − γ2

N inf
xN−1

{

|x0 − x̂0|
2
P−1

0

+
N−1
∑

t=0

(

|xt+1 − Fixt −Giut|
2
Q−1 + |yt −Hixt|

2
R−1

)

}

}

,

1max
x
N{. . .} = maxxN

{max
x
N−1{. . .}}.



where i = 1, . . .K is an index for the active model (Fi, Hi, Gi). Apply
Lemma 4 to get

JN(y
N−1, uN−1, ŷN) = sup

xN ,i

{

|ŷN −HixN |
2 − γ2

NVN,i((xN , y
N−1)

}

= sup
i,xN

{

|ŷN −HixN |
2 − γ2

N

(

|xN − x̆N |
2
P−1

N,i

+ cN,i

)}

.

For fix ŷN and i, the assumption HiPN,iH
⊤
i ≺ γ2

NI guarantees that we max-
imize a concave function of xN and we apply Lemma 5 with A = Hi, X =
I, Y = PN,i to conclude2,

JN(y
N−1, uN−1, ŷN) = max

i
|ŷN −Hix̆N,i|

2
(I−γ−2

N
HiPN,iH

⊤
i
)−1 − γ2

NcN,i.

Remark 1. Theorem 1 holds also for time-varying systems, if Fi and Hi

are replaced by Ft,i and Ht,i. Further, P0, Q and R can be time-varying and
differ between models.

Remark 2. Equation (6) is monotonically increasing in γN and the small-
est γ⋆

N such that JN(y
N−1, uN−1, ŷN) ≤ 0 can be found efficiently through

bisection.

The below Corollary follows from Theorem 1 and describes how to com-
pute the minimax estimator as a convex quadratic program.

Corollary 2. With assumptions as in Theorem 1, consider the convex pro-
gram

minimize
ŷN ,t

t

subject to: |ŷN −Hix̆N,i|
2
(I−γ−2

N
HiPN,iH⊤

i
)−1 − γ2

NcN,i ≤ t

∀i = 1 . . .K.

The minimizing argument ŷ⋆N satisfies (5).

Remark 3. If the model set is a singleton, then ŷ⋆N = Hx⋆
N = Hx̆N is the es-

timate generated by the Kalman filter, which is a well known result Basar and Bernhard
[1995].

2The maximizing argument is given by x⋆
N (ŷN , i) = (H⊤

i Hi − γ2

NP−1

N,i)
−1(H⊤

i ŷN −

P−1

N,iγ
2

N x̆N,i)



3.1 On cN,i and the relation to conditional probability.

It is known (see for instance Crassidis and Junkins [2011]) that if wt and
vt are uncorrelated Gaussian white noise with covariances Q and R, the
conditional probability that the measured output yN has been generated by
the model (Fi, Gi, Hi) and the input uN can be expressed as

p(i|yN ,uN) =
αNe

−|yN−Hix̆N,i|
2

R̃N,i

det(2πR̃N,i)1/2
p(i|yN−1,uN−1).

αN is some normalization constant independent of i, and

R̃N,i = R +HiPN,iH
⊤
i ,

with PN,i as in Theorem 1. Taking cN,i as in Theorem 1 we see that the
conditional probability is proportional to e−cN+1,i,

p(i|yN−1,uN−1) ∝ e−cN+1,i

N
∏

t=1

det(2πR̃t,i)
−1/2.

4 STATIONARY SOLUTION

For a set of time-invariant systems, we summarize a simple version of the
filter in the below theorem.

Theorem 3. Consider matrices F1, . . . , FK ∈ R
n×n, H1, . . . , HK ∈ R

m×n

and positive definite Q,P0 ∈ R
n×n, R ∈ R

m×m. Assume that the algebraic
Riccati equations

Pi = Q+ Fi(Pi − PiH
⊤
i (R +HiPiH

⊤
i )

−1HiPi)F
⊤
i ,

have solutions HiPiH
⊤
i ≺ γ2

NI. Then a minimax strategy ŷ⋆N for the game
defined by

min
ŷN

max
xN ,i

{

|ŷN −HixN |
2 − γ2

N |x0 − x̂0|
2
P−1

i

− γ2
N

N−1
∑

t=0

(

|xt+1 − Fixt −Giut|
2
Q−1 + |yt −Hixt|

2
R−1

)

}

,



and (1), is the minimizing argument of

min
ŷN

max
i

{

|ŷN −Hix̆N,i|
2
(I−γ−2

N
HiPiH⊤

i
)−1 − γ2

NcN,i

}

.

x̆N,i is the Kalman filter estimate of xN using the ith model, and cN,i are
generated according to

x̆0,i = x0

x̆t+1,i = Fix̆t,i +Ki(yt −Hix̆t,i) +Giut

Ki = FiPiH
⊤
i (R +HiPiH

⊤
i )

−1

c0,i = 0

ct+1,i = |Hix̆t,i − yt|
2
(R+HiPiH⊤

i
)−1 + ct,i.

Proof. This is a special case of Theorem 1, by replacing P0 with Pi.

5 EXAMPLE

In this example, we compare a minimax estimator synthesized using Corol-
lary 2, bisecting over γN , to find the estimator ŷ⋆N such that (2) is satisfied for
the smallest possible γN . We compare this to a Bayesian multiple-model es-
timator Crassidis and Junkins [2011] and calculate the corresponding bound
γN using Theorem 1 and bisection. Consider the uncertain linear system

xt+1 = Fxt + wt

yt = xt + vt
, F ∈ {−1, 1}.

The weights in (2) are chosen to be Q = R = P0 = 1. We generate data yN−1

by simulating the system with F = 1 and wt, vt as independent Gaussian
white noise with intensity 1. For N = 5 we find

P5,1 = P5,−1 = 1.62,

x̆5,1 = −2.34, x̆5,−1 = 1.50,

c5,1 = 3.56, c5,−1 = 8.11.

In Fig. 1, we illustrate (6) for N = 5 and the estimates. Note that
γ = 1.51 can be guaranteed for the minimax estimator, but not the Bayesian.
Fig. 2 contains a comparison between the smallest γN so that (2) can be
guaranteed for the minimax estimator and the Bayesian estimator when N =
1 . . . 20.



−2 −1.5 −1 −0.5 0 0.5

0
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Minimax, γ5 = 1.51

Bayesian

ŷ5

J
5

J+
5

J−
5

J5 = max{J+
5 , J

−
5 }

Figure 1: Illustration of the optimization problem (6) for N = 5, together
with the minimax solution and the one given by a Bayesian multiple model
estimator for γN = 1.51. The minimax estimate has a guaranteed worst-case
gain bound from disturbances to observer error lower than 1.51, whereas
the Bayesian estimator does not. Here J+

5 = |ŷ5 − x̆5,1|
2
(I−γ−2

5
P5,1)−1

− c5,1

corresponds to F = 1, whereas J−
5 (defined similarly) corresponds to F = −1.

J5 = J5(y
5, 0, ŷ5) is then equivalent to (6).

0 5 10 15 20

1.2

1.4

1.6

1.8

2

N

γ
⋆ N

Minimax
Bayesian
√

maxi{Pi,N}

Figure 2: The smallest γN such that JN(y
N−1, 0, ŷN) ≤ 0 for the minimax es-

timator (blue) compared to the Bayesian multiple-model adaptive estimator
(green) for one realization.



6 CONCLUSIONS

We stated the minimax criterion for output prediction, where the dynamics
belong to a finite set of linear systems and proposed a minimax estimation
strategy. The strategy can be implemented as a convex program, and the
resulting estimate is a weighted interpolation of Kalman filter estimates.
We showed in a numerical example how to apply the theoretical results to
compute the worst-case gain from disturbances to error for any multi-model
estimation algorithm online and how to generate estimates that minimize the
said gain.

By running a minimax estimator in parallel to another estimator, we can
measure the worst-case performance level of the other estimator. A large
difference in performance levels indicates that the nominal estimator may be
highly sensitive to errors in the noise model.

Predetermining the smallest achievable gain from disturbances to estima-
tion errors is still an open research problem, that is, finding necessary and
sufficient conditions such that

sup
yN−1

J⋆
N (y

N−1,uN−1) ≤ 0.

In future work, we plan to develop a Multiple-model adaptive estimator with
a prescribed ℓ2-gain bound from disturbance to error and methods for infinite
sets of linear systems.

APPENDIX — SUPPORTING LEMMATA

Lemma 4. The cost function

VN,i(xN ,y
N−1) = min

xN−1

{

|x0 − x̂0|
2
P−1

0

+

N−1
∑

k=1

(|xt+1 − Fixt −Giut|
2
Q−1 + |yt −Hixt|

2
R−1)

}

(7)

under the dynamics (1), is of the form

Vt,i(x,y
t−1) = |x− x̆t,i|

2
Pt,i

+ ct,i,



where Pt,i and ct,i are generated as

P0,i = P0

Pt+1,i = Q + FiPt,iF
⊤
i

− FiPt,iH
⊤
i (R +HiPt,iH

⊤
i )

−1HiPt,iF
⊤
i

x̆0,i = x0

x̆t+1,i = Fix̆t,i +Kt,i(yt −Hix̆t,i) +Giut

Kt,i = FiPt,iH
⊤
i (R +HiPt,iH

⊤
i )

−1

c0,i = 0

ct+1,i = |Hix̆t,i − yt|
2
(R+HiPt,iH⊤

i
)−1 + ct,i.

Proof. The proof builds on forward dynamic programming Cox [1964], and is
similar to one given in Goodwin et al. [2005] but differ in the assumption that
Fi is not invertible. Further, the constant terms ct,i are explicitly computed.
The cost function VN

3 can be computed recursively

V1(x,y
0) = |x− x0|

2
P−1

0

(8)

Vt+1(x,y
t) = min

ξ
|x− Fξ −Gut|

2
Q−1

+ |yt −Hξ|2R−1 + Vt(ξ,y
t−1). (9)

With a slight abuse of notation, we assume a solution of the form Vt(x) =
|x− x̆t|P−1

t
+ ct and solve for the minimum

Vt+1(x) = min
ξ

|x−Gut|
2
Q−1 + |ξ|2

F⊤Q−1F+H⊤R−1H+P−1
t

− 2(F⊤Q−1(x−Gut) +H⊤R−1yt + P−1
t x̆t)

⊤ξ + |yt|
2
R−1 + |x̆|P−1

t
.

Assume at this stage St := F⊤Q−1F +H⊤R−1H + P−1
t ≻ 0, then the mini-

mizing ξ⋆ is a stationary point

ξ⋆ = S−1
t (F⊤Q−1(x−Gut) +H⊤R−1yt + P−1

t x̆t)

and the resulting partial cost

|x− x̆t+1|
2
P−1

t+1

+ ct+1 = |x−Gut|
2
Q−1 + |yt|

2
R−1 + |x̆t|

2
P−1
t

− |F⊤Q−1(x−Gut) +H⊤R−1yt + P−1
t x̆t|

2
S−1
t

+ ct. (10)

3We relax the index i in this proof



Since this should hold for arbitrary x and

x− x̆t+1 = (x−Gut)− (x̆t+1 −Gut),

we get
P−1
t+1 = Q−1 −Q−1FS−1

t F⊤Q−1

x̆t+1 −Gut = Pt+1Q
−1FS−1

t (H⊤R−1yt + P−1
t x̆t)

The expression for calculating Pt+1 can be further simplified using the Wood-
bury identity,

P−1
t+1 = (Q + F (H⊤R−1H + P−1

t )−1F⊤)−1

Pt+1 = Q + FPtF
⊤ − FPtH

⊤(R +HPtH
⊤)−1HPtF

⊤,

where we used the Woodbury matrix identity twice. Inserting these ex-
pressions into (10), applying the Woodbury matrix identity to S−1

t F⊤(Q −
FS−1

t F⊤)−1S−1
t + S−1

t = (St − F⊤Q−1F )−1 = (H⊤R−1H + P−1
t )−1 gives

ct+1 = −|H⊤R−1yt + P−1
t x̆t|

2
(H⊤R−1H+P−1

t )−1 + |yt|
2
R−1 + |x̆t|

2
P−1
t

+ ct

= |Hx̂t − yt|
2
(R+HPtH⊤)−1 + ct

Next we show that x̆ can be formulated as a state-observer

x̆t+1 −Gut = Pt+1Q
−1FS−1

t (H⊤R−1yt + P−1
t x̆)

= Pt+1Q
−1FS−1

t H⊤R−1(yt −Hx̆t)

+ Pt+1Q
−1FS−1

t (H⊤R−1H + P−1
t )x̆t

Use the matrix inversion lemma (A+BCD)−1BC = A−1B(C +DA−1B)−1.

Pt+1Q
−1FS−1

t = −(−Q−1 +Q−1FS−1
t F⊤Q−1)−1Q−1FS−1

t

= −(−Q−1)−1(Q−1F )(St − F⊤Q−1F )−1

= F (H⊤R−1H + P−1
t )−1.

Insert in to the previous expression and conclude

x̆t+1 = F x̆t +Kt(yt −Hx̆) +Gut,

where
Kt = FPtH

⊤(R +HPtH
⊤)−1



Lemma 5. For x ∈ R
n, v, y ∈ R

m, a non-zero matrix A ∈ R
n×m, positive-

definite matrices X ∈ Rn×n and Y ∈ R
m×m, and a positive real number

γN > 0 such that
A⊤X−1A− γ2

NY
−1 ≺ 0,

it holds that

max
v

{

|x− Av|2X−1 − γ2
N |y − v|2Y −1

}

= |x−Ay|2
(X−γ−2

N
AY A⊤)−1 . (11)

Proof. Expanding the left-hand side of (11) and equating the gradient with
0 we get

max
v

{

|x−Av|2X−1 − γ2
N |y − v|2Y −1

}

= max
v

{

|v|2A⊤X−1A−γ2
N
Y + |x|2X−1 − γ2

N |y|
2
Y−1 − 2v⊤(A⊤X−1x− γ2

NY
−1)y

}

= |x|2X−1 − γ2
N |y|

2
Y−1 − |A⊤X−1x− γ2

NY
−1y|(A⊤X−1A−γ2

N
Y −1)−1

= |x|2X−1−X−1A⊤(A⊤X−1A−γ2
N
Y −1)−1A⊤X−1

+ |y|2−γ2
N
Y −1−γ2

N
Y −1(A⊤X−1A−γ2

N
Y −1)−1Y −1γ2

N

− 2x⊤X−1A(A⊤X−1A− γ2
NY

−1)−1(−γ2
NY

−1)y

= |x|2
(X−γ−2

N
AY A⊤)−1 + |Ay|2

(X−γ−2

N
AY A⊤)−1 − 2x⊤(X − γ−2

N AY A⊤)−1Ay

= |x− Ay|2
(X−γ−2

N
AY A⊤)−1 .
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