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Abstract— This paper introduces a computationally efficient
approach for solving Model Predictive Control (MPC) reference
tracking problems with state and control constraints. The
approach consists of three key components: First, a log-domain
interior-point quadratic programming method that forms the
basis of the overall approach; second, a method of warm-
starting this optimizer by using the MPC solution from the
previous timestep; and third, a computational governor that
bounds the suboptimality of the warm-start by altering the
reference command provided to the MPC problem. As a result,
the closed-loop system is altered in a manner so that MPC
solutions can be computed using fewer optimizer iterations
per timestep. In a numerical experiment, the computational
governor reduces the worst-case computation time of a standard
MPC implementation by 90%, while maintaining good closed-
loop performance.

I. INTRODUCTION

Model Predictive Control (MPC) is a feedback strategy
defined by the solution of a receding horizon Optimal Control
Problem (OCP). MPC is widely used in both industrial and
academic settings since it provides high-performance control
while directly accounting for constraints. Additionally, a
wide body of literature on the stability and robustness of
MPC is available [1]–[4]. Unfortunately, implementing MPC
can be challenging since a constrained OCP must be solved
at every timestep. The development of efficient methods for
solving these OCPs has helped address this challenge [5]–
[8], but this still remains an open problem in applications
with fast sampling rates and/or limited computing power.

A common approach to reduce the computational burden
of MPC is to approximate the OCP solutions by performing
a limited number of optimizer iterations per timestep - a
procedure referred to as suboptimal MPC. While results
pertaining to the stability and robustness of such methods do
exist [9]–[11], computable certification bounds are limited to
simple cases (e.g. input constrained linear systems [12]–[14])
or require significant modification of the OCP (e.g. constraint
tightening [15]) to guarantee stability.

Anytime MPC methods are a class of suboptimal strategies
that ensure stabilizing solutions can be computed under
arbitrary time constraints. The approach in [16] ensures that a
specified warm-starting scheme always decreases a Lyapunov
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function through the addition of the so-called Lyapunov
constraint to the OCP. Another approach uses relaxed barrier
functions to ensure anytime stability at the cost of bounded
constraint violation [17]. Alternatively, the approach in [18]
guarantees convergence to a terminal set by solving convex
feasibility problems.

This paper introduces an alternative approach for achiev-
ing computationally efficient MPC. The main novelty intro-
duced in this paper is a computational governing scheme that
alters the MPC reference command so that the suboptimality
of the interior-point optimizer initialization is bounded. In
other words, the proposed strategy modifies the MPC prob-
lem to ensure that nearly optimal solutions can be computed
using fewer interior-point optimizer iterations per timestep.

The paper is organized as follows. Section II introduces the
tracking MPC formulation used to generate control inputs.
Section III provides a brief overview of the log-domain
interior-point method (LDIPM) used for optimization, while
Section IV describes how the LDIPM can be used to solve
MPC problems. Section V introduces the computational gov-
erning strategy and Section VI demonstrates the efficacy of
the computational governor through numerical experiments.

Notation: Let Rn>0 denote the set of real n × 1 vectors,
with strictly positive elements (define Rn≥0 accordingly). Let
Z+ = Z≥0 represent the set of non-negative integers. Given
a, b > 0, let N[a,b] = N ∩ [a, b]. Given x ∈ Rn and W ∈
Rn×n with W � 0, let ‖x‖W =

√
xTWx denote the W -

norm. Let ‖ · ‖ represent the 2-norm when no subscript is
specified. Let λ−(A) and λ+(A) denote the minimum and
maximum eigenvalues of A ∈ Rn×n. Given x ∈ Rn and y ∈
Rm, let (x ◦ y) ∈ Rn denote the elementwise multiplication,
and ex and x−1 denote the elementwise exponentiation and
inverse. Let (x, y) = [xT yT ]T . Given x ∈ Rn, let diag(x) =
diag(x1, ..., xn) denote the n×n diagonal matrix containing
xi in the ith diagonal element ∀i ∈ N[1,n].

II. PROBLEM SETTING

Consider the following Linear Time Invariant (LTI) system

xk+1 = Axk +Buk, (1a)
yk = Cxk +Duk, (1b)
zk = Exk + Fuk, (1c)

where k ∈ Z+ is the discrete-time index, xk ∈ Rn is the
state, uk ∈ Rnu is the control, yk ∈ Rny is the constrained
output, and zk ∈ Rnz is the tracking output. The control
objective is to drive the tracking output zk to a desired
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reference r ∈ Rnz subject to pointwise-in-time constraints

yk ∈ Y, ∀k ∈ Z+, (2)

where Y ⊆ Rny is a specified constraint set.

Assumption 1. The pair (A,B) is stabilizable and the
constraint set Y = {y | Y y ≤ h} is a compact polyhedron
that contains the origin in its interior.

Equilibria of (1) satisfy Z[xT uT zT ]T = 0, where

Z =

[
A− I B 0
E F −I

]
, (3)

and these equilibria can be parameterized by a reference
command v ∈ Rnv according to (x̄v, ūv, z̄v) = Gv, where
GT = [GTx GTu GTz ]T is a basis for the nullspace of Z and
Assumption 1 ensures that Null(Z) 6= {0} [19], [20]. The
following assumption excludes ill-posed reference tracking
problems, e.g., Gz = 0, and ensures that the reference
uniquely determines the target equilibrium.

Assumption 2. The matrix Gz is full rank and nz = nv .

Remark 1. The results herein could be extended to the case
where Gz is full rank and nz < nv [19]. Assumption 2 is
made instead to simplify the approach.

The reference tracking MPC strategy of [20] is employed
to solve the specified control problem. The following para-
metric OCP is used to generated the MPC feedback law:

min
(ξ,µ)

||ξN − x̄v||2P +

N−1∑
i=0

||ξi − x̄v||2Q + ||µi − ūv||2R (4a)

s.t. ξ0 = x, (4b)
ξi+1 = Aξi +Bµi, i ∈ N[0,N−1], (4c)
Cξi +Dµi ∈ Y, i ∈ N[0,N−1], (4d)

(ξN , v) ∈ T , (4e)

where N ∈ N is the prediction horizon, ξ = (ξ0, . . . , ξN )
and µ = (µ0, . . . , µN−1) are the predicted state and control
sequences, P ∈ Rn×n, Q ∈ Rn×n, R ∈ Rnu×nu are
weighting matrices, and T ⊆ Rn+nv is a terminal set. The
current state x and reference command v are parameters in
this OCP. We use the notation PN (x, v) to refer to problem
(4) specified with fixed parameters (x, v) ∈ Rn+nv . The
following assumption ensures that (4) can be used to generate
a stabilizing feedback law.

Assumption 3. The cost matrices satisfy Q � 0 and R � 0.

Remark 2. We assume Q � 0, as opposed to Q � 0, in order
to invoke a stability result [2, Theorem 13.1] for approximate
MPC.

Given Q and R specified according to Assumption 3, let
P be positive-definite the solution to

P = Q+ATPA−ATPBK, (5)

where K is the Linear Quadratic Regulator (LQR) gain

K = (R+BTPB)−1(BTPA). (6)

Further, let T = O∞, where O∞ ⊆ Rn+nv is the maximum
constraint admissible set for the closed-loop system under
LQR feedback [21]. That is, O∞ is the maximal set of pairs
(x, v) such that if LQR is applied to (1) with x0 = x and a
constant reference v, then the constraint (2) is satisfied.

Since T = O∞ is polyhedral under Assumption 1 [21],
then PN (x, v) can be written in a condensed form:

min
µ

1

2
µTHµ+ µTWθ (7a)

s.t. Mµ+ Lθ + b ≥ 0, (7b)

where θ = (x, v) and H � 0,W,M,L, b are defined in [19]
as a function of the problem data in (4). The set of feasible
parameters for (7) is

ΓN = {θ ∈ Rn+nv | ∃µ : Mµ+ Lθ + b ≥ 0}, (8)

which is equivalent to the N -step backwards reachable set
to O∞. Note that both O∞ and ΓN are polyhedral sets with
representations that can be computed offline [19], [21]. The
following set-valued maps are defined for convenience

O∞(v) = {x ∈ Rn | (x, v) ∈ O∞}, (9)
ΓN (v) = {x ∈ Rn | (x, v) ∈ ΓN}. (10)

The MPC feedback policy is defined by

u∗(x, v) = Ξµ∗(x, v), (11)

where µ∗(x, v) is the optimal solution to PN (x, v) and
Ξ = [Inu

0 ... 0] is a matrix that selects the first control input.
The following theorem details the stability and convergence
properties of the closed-loop MPC system for a constant
reference v.

Theorem 1. ([4, Theorem 4.4.2], [19, Theorem 1]) Let
Assumptions 1-3 hold and consider the closed-loop system

xk+1 = Axk +Bu∗(xk, v), (12)

starting from an initial condition x0 with a constant reference
command v. Then for all (x0, v) ∈ ΓN , all solutions satisfy:
(xk, v) ∈ ΓN , ∀k ∈ Z+; yk ∈ Y , ∀k ∈ Z+; and
limk→∞ xk = x̄v . If, in addition, v ∈ Int V then x̄v is
asymptotically stable, where V = {v | Gyv ∈ Y} is the set
of constraint admissible references and Gy = CGx +DGu.

Assumption 4. The target reference satisfies r ∈ Int V .

Clearly, the feedback policy (11) is sufficient to solve the
given control problem. However, computing the solution of
(7) at each timestep may be difficult in applications with
fast sampling rates and/or limited computing power. To this
end, a computationally governed optimization approach for
solving (7) is proposed in this paper.

III. A LOG-DOMAIN INTERIOR-POINT METHOD FOR
QUADRATIC PROGRAMMING

In this section, a brief overview of the log-domain interior-
point method (LDIPM) from [22] is presented. To avoid



dealing with the extra parameters in (7), we consider a
generic convex quadratic program (QP) of the form:

min.
z

1

2
zTHz + cT z (13a)

s.t. Az + b ≥ 0, (13b)

where z ∈ Rp is the vector of decision variables, and A ∈
Rm×p, b ∈ Rm, H ∈ Rp×p, and c ∈ Rp are the problem
data. It is assumed that H � 0, there exists z ∈ Rp satisfying
Az + b > 0 for all β ∈ R, the sublevel set {z | 1

2z
THz +

cT z ≤ β,Az + b ≥ 0} is bounded, and ATA+H � 0.
Consider the following central-path equations for (13)

ATλ = Hz + c, s = Az + b, (14a)
λ ≥ 0, s ≥ 0, siλi = η, ∀i ∈ N[1,m], (14b)

where η > 0 is a fixed homotopy parameter, s ∈ Rm is the
constraint slack, and λ ∈ Rm is the vector of dual variables.
Note that when η = 0, these equations reduce to the Karush-
Kuhn-Tucker (KKT) optimality conditions for (13). Next,
consider the following logarithmic change-of-variables. Let
γ ∈ Rm and define λ =

√
ηeγ and s =

√
ηe−γ , such that

the log-domain central-path equations are
√
ηAT eγ = Hz + c,

√
ηe−γ = Az + b. (15)

Note that the conditions in (14b) are automatically satisfied
by the change-of-variables. We define the central-path as the
map η 7→ (z, γ) such that (z, γ, η) satisfy (15).

The LDIPM solves (13) by applying Newton’s method to
(15) with a decreasing sequence of η. The Newton direction
d = d(γ, η) ∈ Rm of the LDIPM satisfies

√
ηAT (eγ + eγ ◦ d) = Hz + c, (16a)
√
η(e−γ − e−γ ◦ d) = Az + b. (16b)

The following theorem establishes uniqueness of d(γ, η) and
z(γ, η), and provides a method of computing both.

Theorem 2. ([22, Theorem 2.1]) For all γ ∈ Rm and η > 0,
the Newton direction d = d(γ, η) and the decision variable
z = z(γ, η) satisfy

d = 1− 1
√
η
eγ ◦ (Az + b), (17)

(ATΦ(γ)A+H)z = 2
√
ηAT eγ − (c+ATΦ(γ)b), (18)

where 1 ∈ Rm is a vector of ones and Φ(γ) = diag(e2γ).
Moreover, ATΦ(γ)A+H � 0.

Given η > 0, iterates generated by the update rule

γi+1 = γi +
1

αi
d(γi, η), (19)

αi = max
{

1, ‖d(γi, η)‖2∞
}
, (20)

are globally convergent to the central-path point (z, γ, η)
[22]. The following lemma describes conditions under which
iterates are primal-dual feasible with bounded suboptimality.

Lemma 1. ([22, Lemma 3.3]) For η > 0, let d = d(γ, η)
and z = z(γ, η). Let λ =

√
η(eγ+eγ ◦d) and s =

√
η(e−γ−

e−γ ◦ d). If ‖d‖∞ ≤ 1, then (z, s, λ) satisfy the primal-dual
feasibility conditions

Az + b = s, ATλ = Hz + c, λ ≥ 0, s ≥ 0.

Further, ‖s ◦ λ‖1 = η(m− ‖d‖2).

Algorithm 1 Longstep(H, c,A, b, γ0, η0,ηf )
1: γ ← γ0, η ← η0
2: while η > ηf or ‖d(γ, η)‖∞ > 1 do
3: η ← min{η, inf{η > 0 : ‖d(γ, η)‖∞ ≤ 1}}
4: α← max{1, ‖d(γ, η)‖2∞}
5: γ ← γ + 1

αd(γ, η)
6: end while
7: z ← (ATΦ(γ)A+H)−1[2

√
ηAT eγ − (c+ATΦ(γ)b)],

8: return (z, γ, η)

Lemma 1 motivates the longstep procedure described in
Algorithm 1. At each iteration, the longstep procedure seeks
to reduce η by computing

η∗ = inf{η > 0 | ‖d(γ, η)‖∞ ≤ 1}, (21)

where we define η∗ = ∞ when the set in (21) is empty.
When η∗ <∞ is found, Algorithm 1 provides an update that
ensures (z, γ, η) is primal-dual feasible and within a neigh-
borhood of the central-path. Note that η∗ can be computed in
O(m) time by iterating through 2m linear inequalities [22,
Section 3.2.1]. Moreover, the following theorem shows that
Algorithm 1 terminates globally.

Theorem 3. ([22, Theorem 3.2]) For any input (γ0, η0, ηf ) ∈
Rm × R>0 × R>0, Algorithm 1 terminates and returns
(z, γ, η) with η ≤ ηf , ‖d(γ, η)‖∞ ≤ 1, and

Az + b ≥ 0,
1

2
zTWz + cT z ≤ V ∗ +mη,

where V ∗ denotes the optimal value of the QP (13).

IV. APPLICATION OF THE LOG-DOMAIN INTERIOR
POINT METHOD TO MPC

We now consider the application of LDIPM to the MPC
problem in Section II. The following theorem and corollary
demonstrate that the equilibrium x̄v is asymptotically stable
when MPC solutions are computed using Algorithm 1 with
a sufficiently small truncation tolerance ηf .

Theorem 4. Let Assumptions 1-3 hold. Let µ̃ : (x, v) 7→ µ
be a function that generates a feasible solution to PN (x, v)
satisfying

J(x, v, µ̃(x, v)) < V (x, v) + ‖x− x̄v‖2Q, (22)

for all (x, v) ∈ ΓN\(x̄v, v), where J and V are the cost
function and optimal value function of PN (x, v). Then,
consider the closed-loop dynamics

xk+1 = Axk +BΞµ̃(xk, v), (23)

starting from an initial condition x0 with a constant reference
command v. Then for all (x0, v) ∈ ΓN , all solutions satisfy:



(xk, v) ∈ ΓN , ∀k ∈ Z+; yk ∈ Y , ∀k ∈ Z+; and
limk→∞ xk = x̄v . If, in addition, v ∈ Int V then x̄v is
asymptotically stable.

Proof. The result is a direct consequence of Theorem 1 and
[2, Theorem 13.1].

Corollary 1. Suppose Algorithm 1 is applied to PN (xk, v)
and let ηf,k represent the truncation tolerance ηf specified
in Algorithm 1 at timestep k. Further, let ηf,k satisfy

mηf,k < ‖xk − x̄v‖2Q, ∀k ≥ 0, (24)

where m ∈ N is the number of constraints in (7) (i.e. b ∈
Rm). Then, any output of Algorithm 1 satisfies Theorem 4.

Proof. Any solution µ generated by Algorithm 1 is feasible
and satisfies J(x, v, µ) − V (x, v) ≤ mηf,k by Theorem 3.
Hence, (22) is satisfied by the bound in (24).

Assumption 5. At all timesteps k, the LDIPM truncation
tolerance ηf,k is chosen to satisfy (24).

Now we consider how the LDIPM can be warm-
started. Let ξk−1 = (ξ0,k−1, . . . , ξN,k−1) and µk−1 =
(µ0,k−1, . . . , µN−1,k−1) represent the state and control se-
quences outputted by the LDIPM applied to PN (xk−1, v).
Denote by ηk−1 ≤ ηf,k−1 the tolerance that Algorithm 1
truncated with at timestep k − 1. The warm-started primal
decision variable at timestep k is generated by

µ̄k = (µ1,k−1 . . . , µN−1,k−1, ūv −K(ξN,k−1 − x̄v)), (25)

where K is the LQR gain in (6). Note that µ̄k is always a
feasible solution candidate to PN (xk, v) as consequence of
the MPC formulation [1, Chapter 2] and feasibility of µk−1
at k−1. Thus, the corresponding slack variable satisfies s̄k =
Mµ̄k + Lθk + b ≥ 0, where θk = (xk, v). The log-domain
variable used to initialize Algorithm 1 is then generated by

γ̄k = − log

(
max

{
s̄k√
ηk−1

, εs1
})

, (26)

where εs > 0 is a small tolerance, log operates elementwise,
and max{x, y} = (max(x1, y1), ...,max(xn, yn)) ∈ Rn for
x, y ∈ Rn. The first argument in the max operator is a
rearrangement of the parameterization in (15), whereas the
second argument is included to ensure that (26) is defined
when s̄k has elements that are equal to zero.

Once initialized with γ̄k, Algorithm 1 begins by computing
η∗ in (21). That is, it finds the smallest η that ensures the
warm-start is within a neighborhood of the corresponding
central-path point. In this sense, the warm-started solution
only needs to be sufficiently close to some location on the
central-path. In contrast, other IPMs that are not designed
with warm-starting in mind may be forced to start with a
fixed (often large) initial value of η.

Note that the warm-start in (26) may be a poor initial guess
if a large reference change occurs. In such cases, the LDIPM
may require several iterations to converge. The following
section introduces an approach for altering the reference
command to avoid this problem.

V. A COMPUTATIONAL GOVERNOR FOR THE
LOG-DOMAIN INTERIOR-POINT METHOD

Next, consider an MPC feedback law defined by solving
PN (xk, vk) with a changing reference command defined by

vk = vk−1 + κk(r − vk−1), (27)

where r is the desired reference and κk ∈ [0, 1] is a time-
varying parameter that dictates the rate at which vk converges
to r. The parameterization in (27) is commonly used in
Scalar Reference Governors (SRGs), where κk is maximized
at each timestep subject to the constraint that (xk, vk) stays
inside of an invariant constraint admissible set [23].

This section introduces a computational governor (CG)
that chooses κk at each timestep subject to restrictions on
the suboptimality and feasibility of the warm-start. In other
words, the CG enforces a computational constraint in a
similar approach to how SRGs enforce system constraints. To
facilitate this development, note that the LDIPM Newton step
can be parameterized by η and κ in the following manner.

Proposition 1. Let the reference command v = vk in (7)
be defined by (27) and let d(γ, η, κ) represent the LDIPM
Newton step for (7) at a given γ ∈ Rm, η > 0, and κ ∈ [0, 1].
Then, there exist d0(γ), d1(γ), d2(γ) ∈ Rm such that

d(γ, η, κ) = d0(γ) + d1(γ)
1
√
η

+ d2(γ)
1
√
η
κ. (28)

Proof. Note that when (17) and (18) in Theorem 2 are
written for the condensed OCP in (7), one obtains

d = 1− 1
√
η
eγ ◦ (Mµ+ Lxx+ Lvv + b), (29)

(MTΦ(γ)M +H)
1
√
η
µ = 2MT eγ − 1

√
η

(Wxx+Wvv)

− 1
√
η
MTΦ(γ)(Lxx+ Lvv + b), (30)

where Lθ = Lxx + Lvv and Wθ = Wxx + Wvv. Then by
considering the parameterization of v in (27) and observing
that 1√

ηµ is affine with respect to ( 1√
η ,

1√
ηκ) and d is affine

with respect to ( 1√
ηµ,

1√
η ,

1√
ηκ), it follows that d is affine

with respect to ( 1√
η ,

1√
ηκ).

Remark 3. An efficient procedure for computing d0, d1, d2
is provided in the Appendix.

As a consequence of Proposition 1, the solution of the
following optimization problem can be used to specify (η, κ)
prior to the start of Algorithm 1 given a warm-start γ̄k

max
η,κ

κ− c√η (31a)

s.t. ‖d(γ̄k, η, κ)‖∞ ≤ 1, (31b)
η ∈ [ηmin, ηmax], (31c)
κ ∈ [0, 1], (31d)

where c ≥ 0 is a weighting parameter. When c = 0, solving
(31) finds the largest reference step κ∗ that satisfies the
primal-dual feasibility conditions of Lemma 1. Setting c > 0



reduces the reference step but improves optimality of the
warm-start.

Note that (31) can be expressed as a two-dimensional
linear program (LP) in the variables

√
η and κ since (31b)

is equivalent to

(d0 − 1)
√
µ+ d2κ ≤ −d1, −(d0 + 1)

√
µ− d2κ ≤ d1.

To solve the resulting LP, we use Seidel’s algorithm de-
scribed in [24]. We choose this algorithm because of its ca-
pability of solving low-dimensional LPs with m constraints
in O(m) time.

In summary, we propose the following procedure for
efficiently computing MPC control actions at each timestep

1) Warm-start: Initialize γ̄k according to (26),
2) Computational governor: Set (ηk, κk) to the solution

of (31) when feasible, otherwise set (ηk, κk) = (η̄, 0)
where η̄ � 1 is a large constant value,

3) LDIPM: Solve PN (xk, vk) using Algorithm 1 starting
with a penalty parameter ηk and log-space variable γ̄k.

VI. NUMERICAL EXAMPLES

The linear bicycle model in [25, Section II-A] is used
to demonstrate the efficacy of the computationally governed
LDIPM. The system states are x = (β, r, y) where β is
the ratio of lateral to longitudinal velocity, r is the yaw
rate, and y is the lateral position. The control input is
the steering angle u = δ. The continuous-time state-space
matrices (Ac, Bc) are


−(Caf+Car)

mUx

−(aCaf−bCar)
mU2

x
− 1 0

−(aCaf−bCar)
Izz

−(a2Caf+b
2Car)

IzzUx
0

Ux 0 0

 ,

Caf

mUx
aCaf

Izz
0




where Ux = 10 is the constant longitudinal velocity, m is the
vehicle mass, Izz is the yaw moment of inertia, Caf and Car
are the front and rear corning stiffness parameters, and a and
b are the front and rear axle-CG distances. The values used
for these parameters are those in [25, Table I]. The system
is controlled using the MPC feedback law generated by
solving PN (xk, vk) using the three-step strategy described in
Section V. The MPC law is defined using a sampling period
of T = 0.1, a horizon of N = 10, and weight matrices
Q = diag(1, 1, 10) and R = 1. The CG in (31) is executed
with parameters c = 1, ηmin = 10−10, and ηmax = 10−2.
The system constraints are β ∈ [−0.2, 0.2], r ∈ [−4, 4],
y ∈ [−4, 4], and δ ∈ [−1, 1].

Figure 1 compares the system response with and without
the CG. When no CG is used, several iterations are needed to
converge to a solution when the setpoint changes at t = 0 and
t = 10. Meanwhile, MPC solutions are obtained using only
a single iteration per timestep when the CG is added to the
closed-loop system. This is due to the CG maintaining a low
value of η∗, thus Algorithm 1 is initialized near the optimal
solution at each timestep. Moreover, the CG introduces very
little degradation in the settling time of the controller and
the solution operates near the constraint boundary of δ.
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Fig. 1. Selecting (η∗, κ∗) using the computational governor allows for
MPC solutions to be computed using only 1 iteration per timestep.

To quantify the reduction in worst-case computation time
when the CG is used, the experiments in Figure 1 were
repeated 1000 times using a 2018 MacBook Pro running
MATLAB R2019b. The worst-case computation times for
Algorithm 1 in Case (a) and the combination of Algorithms 1
and solving (31) in Case (b) were recorded for each trial.
Over the 1000 trials, the average of these times were (a)
10.8 ± 0.9 ms and (b) 1.0 ± 0.1 ms. Thus, the worst-case
computation time is reduced by approximately 90% when
the CG is used.

VII. CONCLUSIONS

This paper introduced a computationally efficient method
of implementing referencing tracking MPC. The main nov-
elty introduced in this paper is a computational governing
scheme that alters the MPC reference command so that
the suboptimality of the optimizer initialization is bounded.
Examples demonstrated that using this strategy can reduce
the worst-case computation time of MPC by 90%. Future
work will be devoted to deriving theoretical guarantees for
this strategy such as finite-time convergence of the reference
command and asymptotic stability of the desired equilibrium.

APPENDIX: COMPUTATION OF (d0, d1, d2)

Let γ ∈ Rm be a fixed log-domain variable and define
constants η1, η2 > 0, κ1, κ2 ∈ [0, 1], η1 6= η2, κ1 6= κ2.
Consider the Newton direction equation (16a) for (7) given
each permutation of these parameters and a reference defined
by v′ = v + κ(r − v), i.e.,

√
η1A

T eγ ◦ (1 + d̂1) = Hµ1 +Wxx+Wv [v + κ1(r − v)]
√
η1A

T eγ ◦ (1 + d̂2) = Hµ2 +Wxx+Wv [v + κ2(r − v)]
√
η2A

T eγ ◦ (1 + d̂3) = Hµ3 +Wxx+Wv [v + κ1(r − v)]
√
η2A

T eγ ◦ (1 + d̂4) = Hµ4 +Wxx+Wv [v + κ2(r − v)]



By combining these four equations and using some algebraic
manipulation, one can arrive at the equation,
√
ηAT eγ ◦ (1+ d) = Hµ+Wxx+Wv[v+κ(r− v)], (32)

where

κ = pκ1 + (1− p)κ2, µ = qµ̄1 + (1− q)µ̄2,

d = qd̄1 + (1− q)d̄2,
1
√
η

= q
1
√
η1

+ (1− q) 1
√
η2
,

d̄1 = pd̂1 + (1− p)d̂2, µ̄1 = pµ1 + (1− p)µ2,

d̄2 = pd̂3 + (1− p)d̂4, µ̄2 = pµ3 + (1− p)µ4, (33)

and where p, q ∈ R are constants that we will specify later.
Repeating the exact same procedure, but instead starting with
the four equations for (16b) gives
√
ηe−γ◦(1− d) = Mµ+b+Lxx+Lv[v0+κ(r−v0)]. (34)

By comparing (32) and (34) to (16a) and (16b), one can
observe that µ and d defined in (33) are the primal variable
and Newton step for parameters κ and η defined in (33).

So, for a given (η, κ) one can solve for the Newton
step d(γ, η, κ) by defining p = a0 + a1κ and q = b0 +
b1η
−1/2, where a0 = −κ2(κ1 − κ2)−1, a1 = (κ1 − κ2)−1,

b0 = −η−1/22 (η
−1/2
1 − η−1/22 )−1, b1 = (η

−1/2
1 − η−1/22 )−1.

Substituting these expressions for p and q into the equation
for d in (33) yields, after some algebraic manipulation is
performed,

d = d0 + d1
1
√
η

+ d2
κ
√
η

+ d3κ, (35)

where

d0 = b0c1 + (1− b0)c3, d1 = b1(c1 − c3),

d2 = b1(c2 − c4), d3 = b0c2 + (1− b0)c4,

c1 = a0d̂1 + (1− a0)d̂2, c2 = a1(d̂1 − d̂2),

c3 = a0d̂3 + (1− a0)d̂4, c2 = a1(d̂3 − d̂4). (36)

Further, we must have that d3 = 0 according to (28), so
we can eliminate the need to directly compute one Newton
direction (e.g. d̂4) by using the equality d3 = 0 to obtain

d̂4 = b0(1− b0)−1(d̂1 − d̂2) + d̂3. (37)

Thus, d0, d1, and d2 in Proposition 1 can be computed by
defining constants η1, η2, κ1, κ2 and computing the sampled
Newton direction d̂i for three of the four permutations by
exploiting the common factorization.
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