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Barrier States Embedded Iterative Dynamic Game for Robust and Safe

Trajectory Optimization
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Abstract— Considering uncertainties and disturbances is an
important, yet challenging, step in successful decision making.
The problem becomes more challenging in safety-constrained
environments. In this paper, we propose a robust and safe
trajectory optimization algorithm through solving a constrained
min-max optimal control problem. The proposed method
leverages a game theoretic differential dynamic programming
approach with barrier states to handle parametric and non-
parametric uncertainties in safety-critical control systems. Bar-
rier states are embedded into the differential game’s dynamics
and cost to portray the constrained environment in a higher
dimensional state space and certify the safety of the optimized
trajectory. Moreover, to find a convergent optimal solution,
we propose to perform line-search in a Stackleberg (leader-
follower) game fashion instead of picking a constant learning
rate. The proposed algorithm is evaluated on a velocity-
constrained inverted pendulum model in a moderate and high
parametric uncertainties to show its efficacy in such a compre-
hensible system. The algorithm is subsequently implemented on
a quadrotor in a windy environment in which sinusoidal wind
turbulences applied in all directions.

I. INTRODUCTION

Optimal control has been a central element in designing

practical and successful decision polices including those

relying upon reinforcement learning approaches for complex

dynamical systems. Regardless of the employed method-

ology, sound decision polices must take uncertainties and

disturbances into consideration. This is particularly true for

safety-critical systems and especially when learning, models

or policies, is involved.

Min-max optimal control, which can be considered as an

H∞ optimal control technique, is a viable robust control

methodology which has been proven theoretically and practi-

cally to handle various systems’ uncertainties such as model

mismatch, signals noise and disturbances [1], [2]. The Min-

max approach has a game-theoretic interpretation in which

two non-cooperative players have opposing objectives [3].

Specifically, it is a game in which a player is to minimize

some payoff function while the other is to maximize.

Differential Dynamic Programming (DDP), a second order

trajectory optimization technique, is an effective technique

to optimize high dimensional systems’ trajectories and to

improve reinforcement learning outputs. With the goal of
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Fig. 1. Barrier states embedded MinMax DDP successfully and safely
drives the quadrotor to reach the target (green x) starting from the red
circle under a Gaussian sinusoidal wind turbulence applied in all directions
with a standard deviation of 15. Shown here are two robustness results,
Rv =

1

100
I (blue) and Rv =

1

150
I (purple), in which the solid trajectories

represent the undisturbed trajectories and the shaded regions represent
confidence regions of 95%.

collecting meaningful training data for reinforcement learn-

ing, Morimoto et al. [4] proposed the first discrete min-max

DDP to provide robust control polices. Independently, and

around the same time, Ogunmolu et al. [5] and Sun et al. [6]

proposed a correction in the value function’s recursions in

the min-max DDP of Morimoto et al. [4] with applications to

robust nonlinear controls in [5] and extensions to continuous

time min-max DDP in [6]. Nonetheless, there has been

no attempt to consider min-max DDP for safety-critical or

constrained systems, which is a necessary extension.

Safety of dynamical systems can be verified through

forward invariance of the desired set of allowed states

[7]. Barrier-like based methods such as barrier certificates

[8], [9], control barrier functions (CBFs) [10]–[12] and

barrier states [13], [14], use barrier functions, well known

in optimization, to show or enforce invariance. Utilizing

barrier functions, the barrier states (BaS) method, firstly

introduced in [13] for safe stabilization of continuous time

systems, enforces forward invariance of the safe set through

augmenting the state of the barrier function into the model

of the control dynamical system converting the safety-critical

control problem into a control design problem that seeks a

stabilizing control law for the augmented model guaranteeing

boundedness of the barrier states. This concept was adopted

by the authors in the context of trajectory optimization

for discrete time systems developing discrete barrier states

in [14], which was shown to consistently outperforms the

penalty methods and CBFs safety filters in providing safe

optimal trajectories.
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A. Contributions and Organization of the paper

In this paper, we start by introducing some prelimi-

naries about min-max optimal control and the associated

Hamilton-Jacobi-Bellman-Isaacs partial differential equation

and discrete barrier states used to enforce safety in trajectory

optimization in Section II. In Section III, we use barrier

states with min-max DDP to develop a safety embedded min-

max DDP that provides robust and safe nonlinear control for

safety-critical systems. Leveraging min-max optimal control

assumptions, the developed algorithm utilizes a Stackleberg

game strategy which helps finding the optimal strategies for

each player, increasing the robustness of the min player

that produces the feedback control policy of interest. We

implement the proposed algorithm in Section IV first on a

parametrically uncertain model of an inverted pendulum in

which we consider two different cases of uncertainty levels.

To show the efficacy of the algorithm on non-parametric

disturbances, we implement it on a quadrotor flying in an

obstacle course in a windy environment (Fig. 1). Similar to

the pendulum, we consider two different cases of disturbance

levels. The developed algorithm is shown to consistently

outperform standard DBaS-DDP [14] in safely completing

the task with a much less variance in the states at the expense

of having a larger root-mean-square deviation (RMSD) from

the target. Finally, we provide concluding remarks and future

directions in Section V.

II. PRELIMINARIES

A. Differential Games and Min-Max Optimal Control

Consider the differential game problem

J(x,U,V) = min
u

max
v

N−1∑

k=1

L(xk, uk, vk) + φ(xN ) (1)

subject to

xk+1 = f(xk, uk, vk) (2)

where k ∈ Z
+
0 is the time step, xk ∈ X ⊂ R

n is the state of

the system at time step k, uk ∈ U ⊂ R
mu is the minimizing

player, vk ∈ V ⊂ R
mv is the maximizing player, U and V

are the minimzing and maximizing control sequences, L :
R

n × R
mu × R

mv → R
+ is a running cost, φ : R

n →
R

+ is a terminal cost and f : X → X is the model of

some dynamical system. In control theory, this problem is

classically looked at as an optimal control problem with some

disturbance or uncertainty in the dynamics in which it is

desired to find an optimal control policy that is robust against

disturbances and uncertainties. This problem is also known

as a min-max optimal control problem.

In optimal control, it is well known that under certain

conditions, the optimal solution, known as the value func-

tion V , satisfies the Hamilton-Jacobi-Bellman (HJB) partial

differential equation (PDE). In min-max optimal control, i.e.

for the game in (1)-(2), the corresponding PDE is known as

the Hamilton-Jacobi-Bellman-Isaacs (HJBI) PDE [15] which

is given by

V (xk) = min
uk

max
vk

{
L(xk, uk, vk) + V (xk+1)

}
(3)

B. Barrier States

In essence, a barrier function can be defined as a contin-

uous real valued function on a non-empty open set whose

value approaches infinity as its independent variable goes

close to the boundaries of the set’s complement. Namely,

consider a superlevel set S ⊂ R
n defined by a smooth

real valued function h : X ⊂ R
n → R such that the

set, its interior and its boundary are defined respectively as

S = {x ∈ X : h(x) ≥ 0}, S◦ = {x ∈ X : h(x) > 0} and

∂S = {x ∈ X : h(x) = 0}. We can define a barrier function

B : Rn → R to be a smooth function such that for some

x ∈ S◦, if x → ∂S and h → 0, then B(h) → ∞. B is

commonly selected to be a logarithmic barrier or an inverse

barrier.

Consider the discrete-time nonlinear safety-critical control

system

xk+1 = f(xk, uk) (4)

whose states are desired to stay in the interior of the super-

level set S under the feedback controller uk = K(xk). That

is, we seek to render S◦ controlled invariant with respect to

the closed loop system f(xk,K(xk)).

Definition 1. The set S◦ ⊂ R
n is controlled invariant, also

referred to as safe, with respect to the control dynamical

system (4) if ∀x0 ∈ S◦, given the feedback policy uk =
K(xk), xk ∈ S◦ ∀k ∈ Z

+. Equivalently, the safety condition

h(xk) > 0 ∀k ≥ 0; x(0) ∈ S◦ (5)

is satisfied.

The barrier states (BaS) method [13] enforces safety by

embedding the state of the barrier function into the model of

the safety-critical system expressing hard constraints as states

of the system to be driven and stabilized with the original

states. In other words, the safety constraints are transformed

into performance objectives in a higher dimensional state

space. It is worth noting that in optimal control settings,

this also elevates the dimension of the sought-after value

function.

As B can be picked to be any valid barrier function, we

define the barrier function of x to be β(xk) := B ◦h(xk). To

achieve forward invariance of the set S◦, define the barrier

state wk := βk−βd, where βk = β(xk) and βd = B ◦h(xd)
for the target state xd. As noted in [14], shifting w by βd

is not required specifically for our development of safe tra-

jectory optimization. From Definition 1 and the definition of

barrier functions, the following proposition states a necessary

and sufficient condition to enforce safety [14].

Proposition 1. The safe set S◦ is controlled invariant

through the feedback control law uk = K(xk) if and only if

w0 < ∞ ⇒ wk < ∞ ∀k ∈ Z
+.

In other words, as long as the barrier state is rendered

bounded, the system is safe. Hence, the discrete barrier state

(DBaS) of the safety condition (5) for the system (4) can be

given as

wt+1 = B ◦ h(f(xt, ut))− βd (6)



III. ROBUST AND SAFE TRAJECTORY OPTIMIZATION

In this paper, we wish to design a safe and robust feedback

control policy u with the existence of an invasive player v.

To solve this problem, we consider the min-max optimal

control problem (1)-(2) in a constrained environment, i.e.

the dynamics of the system is subject to some safety con-

straints. Specifically, the min-max optimal control problem

is subject to h(xk) > 0 ∀k ∈ [0, N ]. To address the

safety constraint, we use discrete barrier states to portray the

safety condition in the optimization problem which is then

solved through differential dynamics programming (DDP).

In our development, we do not impose other than standard

regularity conditions on the optimization problem and the

safety constraints. Namely, the dynamics of the system f
and the function h defining the safe set are continuously

differentiable, the running and terminal costs are at least

twice continuously differentiable and the players polices are

continuous.

A. Game Theoretic Discrete Time Barrier States

To address the safety constrained min-max optimal control

problem, we reformulate the DBaS according to the differ-

ential dynamics in (2). Consequently, we derive the game

theoretic discrete barrier state equation (GT-DBaS) as

wk+1 = B(h(f(xk, uk, vk))− βd (7)

For q constraints, depending on the problem settings, one

could define a single barrier state or multiple barrier states

for multiple constraints. Let w ∈ R
q be a vector of q barrier

states. Augmenting this state vector to the differential games

dynamical system’s states, we get x̂ =

[
x
w

]
. Therefore, the

safety embedded differential game becomes

J(x̂,U,V) = min
u

max
v

N−1∑

k=1

L(x̂k, uk, vk) + φ(x̂N ) (8)

subject to the dynamics

x̂k+1 = f̂(x̂k, uk, vk) (9)

where f̂ =

[
f(xk, uk, vk)

B(h(f(xk, uk, vk))− βd

]
. It is worth noting

that the GT-DBaS can also be driven by the adversarial

control v and is part of the cost function posing more diffi-

culties to the minimizing control u in achieving performance

and safety objectives in which the latter is achieved by

ensuring boundedness of the GT-DBaS. As a result, unlike

the unconstrained case, picking Rv just slightly bigger than

Ru may not result in a convergent solution as the hostile

player also has access to the safety critical state’s dynamics

and cost. Hence, one needs to tune Rv with a relatively high

penalty to get a convergent solution as we will show in the

application examples in Section IV.

B. Safety Embedded Min-Max DDP

Aiming to develop robust control policies for high-

dimensional discrete-time systems, Morimoto et al. [4] used

discrete DDP in a min-max framework. The developed

optimal policy generated by the min-max DDP was imple-

mented on a simulated biped robot and shown to outweigh

a hand-tuned PD controller which failed to handle unknown

disturbances as did the standard DDP. Sun et al. [6] extended

the min-max DDP to continuous time systems and included

more terms missed in the previous attempt in the DDP

algorithm for the discrete case. The developed algorithm,

named game-theoretic DDP (GT-DDP), was experimented

on a quadrotor with a sling load which can lead to major

errors in the model due to the pendulous oscillation during

flight.

In this work, we are interested in robustifying the tra-

jectory optimization problem in safety-critical environments.

In particular, we are to develop a safe and robust optimal

control policy through the use of DBaS-DDP in [14] in the

framework of differential games, i.e. using min-max DDP.

Consider a nominal trajectory of the safety embedded

states and the players policies (¯̂x, ū, v̄), and the safety

embedded HJBI equation

V (x̂t) = min
ut

max
vt

{
L(x̂t, ut, vt) + V (x̂t+1)

}
(10)

with a boundary condition V (x̂N ) = φ(x̂N ). The algorithm

consists of iterative backward passes along the value function

and its derivatives along the system’s states resulting from

expanding the HJBI equation (10) around the state-inputs

nominal trajectory and forward passes along the safety

embedded dynamics (9). In consideration of that, given a

nominal trajectory, we compute the local second order model

of the variation function H resulted from expanding the HJBI

equation as

Hx̂ = Lx̂ + Vx̂f̂x̂, Hx̂x̂ = Lx̂x̂ + f̂T
x̂ Vx̂x̂f̂x̂ + Vx̂fx̂x̂

Hu = Lu + Vx̂f̂u, Huu = Luu + f̂T
u Vx̂x̂f̂u + Vx̂fuu

Hv = Lv + Vx̂f̂v, Hvv = Lvv + f̂T
v Vx̂x̂f̂v + Vx̂fvv

Hx̂u = Lx̂u + f̂T
x̂ Vx̂x̂f̂u + Vx̂fx̂u, Hux̂ = HT

x̂u

Hx̂v = Lx̂v + f̂T
x̂ Vx̂x̂f̂v + Vx̂fx̂v, Hvx̂ = HT

x̂v

Huv = Luv + f̂T
u Vx̂x̂f̂v + Vx̂fuv, Hvu = HT

uv

(11)

Following the derivations in [6] for the safety embedded min-

max problem, the optimal polices are then computed as

δu∗k = kuk
+Kuk

δx̂k, δv∗k = kvk
+Kvk

δx̂k (12)

where at time instant k,

ku = −H̃−1
uu

(
Hu −HuvH

−1
vv Hv

)

Ku = −H̃−1
uu

(
Hux −HuvH

−1
vv Hvx

)

kv = −H̃−1
vv

(
Hv −HvuH

−1
uuHu

)

Kv = −H̃−1
vv

(
Hvx −HvuH

−1
uuHux

)

given

H̃uu = Huu −HuvH
−1
vv Hvu, H̃vv = Hvv −HvuH

−1
uuHuv



Accordingly, the value function’s equations used in the

backward propagation are

Vk = Vk+1 + k
T
uHu + k

T
vHv + k

T
uHuvkv

+
1

2

(
k
T
uHuuku + k

T
vHvvkv

)

Vx̂k
= Hx̂k

+K
T
uHu +K

T
vHv +Hx̂uku +Hx̂vkv

+K
T
uHuuku +K

T
vHvvkv +K

T
uHuvkv +K

T
vHvuku

Vx̂x̂k
= Hx̂x̂ +K

T
uHux̂ +Hx̂uKu +K

T
vHvx̂ +Hx̂vKv

+K
T
uHuuKu +K

T
vHvvKv +K

T
uHuvKv +K

T
vHvuKu

with terminal conditions VN = φ(x̂N ), Vx̂N
= φx̂(x̂N ) and

Vx̂x̂N
= φx̂x̂(x̂N ). Finally, the safety embedded system is

propagated forward using the dynamics (9) given the optimal

polices as uk = ūk+δu∗k and vk = v̄k+δv∗k. This is repeated

until convergence is achieved.

1) Regularization: In the DDP literature, to avoid irregu-

larities while inverting the matrices in the backward pass and

to ensure the cost reduction by the min player and accession

by the max player, one may add a regularization term to

Huu,Hux,Hvv,Hvx [16] which was adopted in [5] for their

iterative Dynamic Game (iDG). Another option is to use

eigen decomposition to ensure that the eigenvalues of each

matrix is proper as in [17] which was adopted in [6] for their

GT-DDP.

2) Improved Line-Search for Min-Max Optimal Control:

In optimization, line-search is a classical method used to

select a proper step size (also known as learning rate)

towards the decent/ascent direction. In the DDP literature,

a backtracking search is performed on the feedforward term

of the optimal controller through a scaling parameter α [18],

[19] to find a proper local cost reduction. In the min-max

DDP literature [4]–[6], no such procedure was reported be-

sides regularization. For safety-critical applications, systems’

constraints make the optimization problem more complicated

and harder to solve. Therefore, for such a highly nonlinear

control problem, as advocated in [18], without a proper

step toward the decent/ascent direction, a poor and possibly

divergent solution is inevitable even with regularization on

the controllers matrices. Moreover, with a poor step, irregu-

larities are expected which call for regularization that would

not guarantee convergence. Nonetheless, with an adequate

step, the algorithm has a higher chance to converge and may

not need explicit regularizations.

From a game theoretic view, the gain of one player is

a loss for the other. When each player plays its optimal

strategy against the other’s, the game reaches a saddle-

point, when it exists. In min-max optimal control settings,

the differential game interpretation can take the Stackleberg

game, also known as a leader-follower game, since we can

assume that the max player maximizes first and then the

min player minimizes given that the min player can observe

the max player strategy at that time instant [3]. The min

player does not observe future strategies of the max player,

however. Therefore, we propose line-searching an adequate

cost increase step by the max player, then line-searching an

adequate cost decrease step by the min player.

To our interest, preforming a proper line-search for both

players helps converging to the optimal solution and hence

robustifiying our controller. Indeed, performing line-search

for the max player makes it more aggressive in the sense

that it tries to find the optimal strategy to increase the cost

which then the min player observes and optimizes about

hoping to achieve a saddle point with a more robust control.

Min-max DDP [5], [6] with regularization only, solves the

unconstrained problems with no issues. However, once the

constraints are imposed, a more complex problem is faced,

and the algorithm fails to find a convergent solution.

The performed backtracking search takes the form

δv∗k = αvkvk
+Kvk

δx̂k, δu∗k = αukuk
+Kuk

δx̂k (13)

where αv and αu are the search parameters, which start with

a value of 1 and are iteratively reduced as needed. As in [18],

we use the expected total cost change

∆J(αu, αv) =
N−1∑

k=1

αuk
T
uk
Huk

+ αvk
T
vk
Hvk

+

αvαuk
T
uk
Huvk

kvk
+

1

2

(
α2
uk

T
uk
Huuk

kuk
+ α2

vk
T
vk
Hvvk

kvk

)

(14)

The solution is accepted when the ratio of the actual change

in cost to the expected one, z = ∆V
∆J

, is positive when

minimizing and is negative when maximizing. The proposed

algorithm is summarized in Algorithm 1.

Algorithm 1: Safety Embedded Min-Max DDP

Input: Model f , initial condition x0, running cost L,

terminal cost φ, safe region’s function h, nominal

controls ū, v̄, horizon N , convergence threshold ǫ;
Output: V ∗, x∗, ku, Ku, u∗, kv,Kv, v∗;

Precompute: Barrier state dynamics fw and create

f̂ , nominal trajectory ¯̂x;

while ∆V > ǫ do

Compute costs L, φ and V, Vx̂, Vx̂x̂ at k = N ;

for k = N − 1 to 1 do

Compute f̂x̂, f̂u, f̂v;

Compute the matrices in (11);

Regularize Huu and Hvv if needed;

Compute ku, Ku, kv, Kv, Vx̂, Vx̂x̂;

end

for k = 1 to N-1 do

Compute δv∗ and v∗ = v̄ + δv∗;

Backtracking line-search αv and update v∗

given (¯̂x, ū, v∗);
Compute δu∗ and u∗ = ū + δu∗;

Backtracking line-search αu and update u∗

given (¯̂x, u∗, v∗);

Forward propagate f̂(¯̂x, u∗, v∗);
end

Update ∆V, ¯̂x, ū, v̄
end



TABLE I

COMPARISON OF MINMAX DBAS-DDP (PROPOSED) AND DBAS-DDP (BASLINE) UNDER DIFFERENT UNCERTAINTY OR DISTURBANCE LEVELS.

SAFETY, REACHABILITY AND SUCCESS RATES ARE THE PERCENTAGES OF TRAJECTORIES THAT SATISFY THE SAFETY CONSTRAINTS, REACH THE

TARGET, AND SAFELY REACH THE TARGET RESPECTIVELY. RMSD IS THE ROOT-MEAN-SQUARE DEVIATION FROM REACHING THE TARGET AND

TOTAL STATE VARIANCE IS THE SUM OF VARIANCES OF ALL STATES OVER THE ENTIRE TIME HORIZON.

System Pendulum Quadrotor

Noise Level Moderate High Moderate High

Algorithm Proposed Baseline Proposed Baseline Proposed Baseline Proposed Baseline

Safety (%) 98.8 79.4 81.7 59.5 98.6 90.8 94.3 83.3
Reachability (%) 86.7 95.6 71 79.7 98.1 99.4 86.5 90.4

Success (%) 86.4 75.5 66.3 48.9 96.7 90.3 81.6 75.2
RMSD 0.202 0.119 0.275 0.209 0.655 0.584 0.852 0.791

Total State Variance 39.8 86.3 172.9 209.9 230.2 320.3 421.8 603.5

IV. APPLICATION EXAMPLES

In this section, we implement the proposed algorithm,

MinMax DBaS-DDP, and compare it against DBaS-DDP

[14]. The two methods are compared in terms of safety

(defined as not violating the safety constraints), reachability

(defined as reaching a terminal state within a pre-specified

distance from the target), success (defined as safely reaching

the target), root-mean-square deviation from reaching the

exact target state and total state variance (defined as the

sum of variances of all states over the entire time horizon).

We consider two scenarios for each problem, one with a

moderate disturbance level and one with a high disturbance

level. The numerical results are provided in Table I. To get

meaningful results, each experiment is run for 1000 Monte

Carlo simulations. In both examples, and for both cases

of noise levels, MinMax DBaS-DDP consistently achieves

the highest safety and success rates with lower variance

but that comes at the expense of having a bigger RMSD

from the target, which means slightly less reachability rate.

It is worth mentioning that min-max DDP with barrier states

but without the proposed line-search as the algorithms in

[5], [6] fails to converge or compute meaningful solutions

as we hypothesised. Moreover, it is worth mentioning that

converging to a meaningful saddle point, i.e. a solution that

provides a robust feedback policy, using an iterative local

algorithm for such a constrained differential game may not

be easy. Hence, a dense line-search could be needed.

All systems are initialized with steady-state nominal tra-

jectories (zero input for the inverted pendulum and hovering

over the initial condition for the quadrotor). Both systems are

discretized using the forward Euler method with ∆t = 0.01.

A. Velocity Constrained Inverted Pendulum

We start with a constrained simple inverted pendulum to

get a good comprehension about the effect of considering a

maximizing player to the safety-critical problem. Consider

the inverted pendulum dynamics

Iθ̈ + bθ̇ −mgl sin(θ) = u + v (15)

with a safety constraint in the angular velocity not to exceed

5, i.e. |θ̇| < 5 rad/sec. We assume that the model that we

use to design our controller has l = 0.75 m, b = 0.15 N

· s/m, m = 1.5 kg, I = ml2 and g = 9.81 m/s2. The

model’s parameters are assumed to be off from the true

system. We consider two scenarios in which for the first

scenario, the uncertainty is moderate which is modeled by a

normal distribution with mean µModerate = 10% and standard

deviation σModerate = 30%. For the second scenario, the

uncertainty is high which is modeled by a normal distribution

with mean µHigh = 20% and standard deviation σHigh = 50%.

Moreover, we assume that each model parameter has a

different uncertainty, i.e. ltrue = 0.75c1m, btrue = 0.15c2
N · s/m and mtrue = 1.5c3 kg, where ci = 1 − x, where

x ∼ N (µ, σ) and i = 1, 2, 3. The goal is to swing up the

pendulum to the up right position θ = 0 in one and a half

seconds and finish the task with a small angular velocity.

The target is reached if the final angle is within 0.3 rad

from the target 0. Forming the problem as an optimal control

problem while considering a hostile disturbance, we consider

the quadratic cost function

J = min
u

max
v

N−1∑

k=1

(
Ruu

2
k −Rvv

2
k

)
+ xTNSxN

subject to (15) and |θ̇| < 5 rad/sec. To address the safety

constraint, we define h = 52 − θ̇2 and create the barrier

function β = 1

52−θ̇2
and finally we define a DBaS, w,

according to (7). Embedding the DBaS into the dynamics

gives a third order system with the cost function

J = min
u

max
v

N−1∑

k=1

(
QDBaSw

2
k +Ruu

2
k −Rvv

2
k

)
+ x̂TNSx̂N

(16)

where we choose QDBaS = 1000, Ru = 0.1, Rv = 1.1, S =
diag(1000, 5, 500). In such a problem, it must be noted that

the barrier state uses the poor model and is propagated based

on the poor model.

The results are As shown in Fig. 2 and in Table I. It can

be concluded that the proposed MinMax-DBaS-DDP clearly

robustifies the controller in terms of handling uncertainty

and completing the task safely. Nonetheless, this comes at

the sacrifice of having a larger RMSD, which can be seen

in Fig. 2 near the end of the trajectory that it has a larger

variance.

B. Quadrotor in a Windy Constrained Environment

We consider a quadrotor flying in a windy environment

with obstacles. We use the model derived in [20] in which

the force of a sinusoidal wind turbulence enters the linear

velocities, in the body frame, of the quadrotor in all three

dimensions x, y and z randomly with a zero mean and a

standard deviation σ, i.e. Fi−wind = σρ sin(t) where F is



Fig. 2. Inverted pendulum states and control under DBaS-DDP (basline)
and MinMax-DBaS-DDP (proposed) with moderate and high parametric
uncertainties in the model. Solid trajectories represent the mean trajectories
and the shaded regions represent confidence regions of 95%. It can be
seen that the proposed approach provides a more robust and safer feedback
control, i.e. less variance and less violation of the safety bound (black dashed
line) compared to the standard (min) approach.

the force, i is x, y or z and ρ is a random variable drawn

from the standard normal distribution. The obstacle course

consists of randomly generated obstacles and thus the safe set

is defined as S◦ = {[x y z]T ∈ R
3| (x−ojx)

2+(y−ojy)
2+

(z− ojz )
2− r2j > 0} where j is number of obstacles, and oj

and rj are the j obstacle’s center and radius. The quadrotor

is to fly from the starting point (10, 0,−1) to the target point

(−5,−3, 2) in a moderate turbulence with σ = 15 and a high

turbulence with σ = 20 in 5 seconds. The target is considered

reached if the final position is within 2 units from it.

We first examine different robustness results with different

choices of Rv under the moderate turbulence. For a quadratic

cost as in (16) and one DBaS representing all the obstacles,

we choose the parameters, Ru = 10−4I,QDBaS = 0.1, S =
I, Si = 10. Fig. 1 shows two robustness results for two

different penalization coefficients of the maximizing player’s

input, Rv = 1

100
I (blue) and Rv = 1

150
I (purple). The solid

trajectories represent the mean trajectories and the shaded

regions represent confidence regions of 95% generated by

1000 trajectories. It can be seen that the control policy

generated by the min player with less penalization of the

max player generates a more risk sensitive solution and is

completely safe.

Now we compare the proposed approach against the stan-

dard DBaS-DDP while allowing less control authority for the

minimizing player. Namely, we pick Ru = 10−2I and Rv =
15 × 10−2, which is the smallest coefficient obtained with

a convergent solution. Fig. 3 shows a comparison between

the proposed MinMax-DBaS-DDP and the DBaS-DDP flying

the quadrotor in the moderately turbulent environment. As

shown, the proposed controller provides a substantial im-

provement in robustness compared to the standard DBaS-

DDP. The standard DBaS-DDP has a larger, hazardous con-

fidence region while the more robust MinMAx-DBaS-DDP,

has a tighter and safer confidence region. Table I provides

the detailed comparison under the moderate disturbance as

well as the high disturbance in which it is shown that the

proposed method achieves higher safety and success rates

and less variance but a lower reachability rate and a larger

RMSD.

From our experiments, we can conclude that penalizing

Ru less or Rv more tends to ease the problem for the min

player and thus converges quickly, but makes the controller

less robust. However, to increase robustness, the max player

needs to be penalized less but needs to be tuned carefully to

avoid divergence especially with the existence of GT-DBaS

as we mentioned earlier. Moreover, penalizing the running

and terminal states more, including the GT-DBaS, tends to

decrease robustness of the min player. This can be interpreted

as increasing the importance of achieving the target over

handling disturbances. In other words, there is a trade-off

between increasing robustness and completing the task with

a small deviation from the target.

V. CONCLUSION

In this paper, a robust and safe trajectory optimization al-

gorithm was presented. To enforce safety, the proposed algo-

rithm utilized barrier states that are embedded into the model

of the safety-critical system to reconstruct the constraints

as performance objectives in a higher dimensional state

space. For robustness, a min-max optimal control approach

was adopted utilizing a game-theoretic interpretation to the

problem developing a more robust minimizing controller.

The min-max optimal control problem was solved using

differential dynamic programming. Finally, an improved line-

search strategy in the feed-forward gains of players was

proposed. The line-search helps the max player to increase

the cost and helps avoiding irregularities in Hvv and Huu.



Fig. 3. Three angles view of the quadrotor flying in a windy environment
using MinMax-DBaS-DDP (left, in blue) and DBaS-DDP (right, in orange).
The figures show the mean trajectories (solid) and the 90% confidence
region (shaded). Clearly, the proposed controller is able to safely fly the
quadrotor to avoid the obstacles (dark red ellipsoids) and reach the target
(green x) with less variance.

This results in a more risk-aware min player, and hence

a robust controller. Two application examples representing

parametric and non-parametric uncertainties were presented.

The algorithm was compared against standard DBaS-DDP

in which the proposed method was shown to consistently

provides more robust and safer control but with a larger

RMSD from the target, which implies a smaller reachability

rate.

Future work will include developing a receding-horizon

min-max DDP to be deployed on physical systems and

extending the work to decentralized multi-agent control

and planning. Generalizing the algorithm to risk-sensitive

stochastic trajectory optimization is an active research.
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