
Distributed Online Optimization with Byzantine Adversarial Agents∗

Sourav Sahoo1, Anand Gokhale1, and Rachel Kalpana Kalaimani1

1Department of Electrical Engineering, IIT Madras
rachel@ee.iitm.ac.in

Abstract

We study the problem of non-constrained, discrete-time,
online distributed optimization in a multi-agent system
where some of the agents do not follow the prescribed
update rule either due to failures or malicious intentions.
None of the agents have prior information about the iden-
tities of the faulty agents and any agent can communicate
only with its immediate neighbours. At each time step, a
locally Lipschitz strongly convex cost function is revealed
locally to all the agents and the non-faulty agents up-
date their states using their local information and the
information obtained from their neighbours. We measure
the performance of the online algorithm by comparing it
to its offline version, when the cost functions are known
apriori. The difference between the same is termed as
regret. Under sufficient conditions on the graph topology,
the number and location of the adversaries, the defined
regret grows sublinearly. We further conduct numerical
experiments to validate our theoretical results.

1 INTRODUCTION

In recent years, the emphasis on identifying decentral-
ized optimization algorithms for distributed systems has
gained much traction. Many problems in network systems
may be posed in the framework of distributed optimiza-
tion. Some common applications appear in problems
involving sensor networks [RN04], localization and robust
estimation [DFB12], and power networks [DGCH12].
In the classical distributed optimization problem, a

network of agents attempts to minimize a cost function
collaboratively. This cost function is given by a sum of
cost functions which are only locally accessible to each
agent. There is a vast amount of literature detailing ap-

∗This work has been partially supported by DST-INSPIRE
Faculty Grant, Department of Science and Technology (DST), Govt.
of India (ELE/16-17/333/DSTX/RACH).

proaches to solve the distributed optimization problem.
These approaches are summarized in [YYW+19] and the
references therein. The classical distributed optimization
problem assumes that the local cost function is fixed
throughout the duration of the problem. However, in dy-
namically changing environments, the objective function
of each agent may be time-varying. For example, in a
tracking problem, the sensor readings may be influenced
by noise. This problem can be tackled under the domain
of online optimization. In the online optimization prob-
lem, at each time-step, an agent “plays” a vector x(t).
The environment then “reveals” the cost function ft(·)
and the agent incurs a cost ft(x(t)). In such problems,
the objective is to minimize the difference between the
accumulative cost incurred and the cost incurred by a
hypothetical agent which had knowledge about all the
objective functions apriori. Notably, methods such as
dual averaging [HCM13], mirror descent [SJ17], push
sum [AGL15] have been used to solve online distributed
optimization problems.
Given the large scale and safety-critical applications

of distributed optimization based algorithms in many
different engineering problems, there is a need to develop
algorithms robust to adversarial attacks, where some
agents in the system may be compromised. Recent studies
have considered the effect of adversaries on consensus-
based distributed optimization problems [SV15a, SG18,
KXS20]. Although, it is not possible to identify the exact
optimal point under such circumstances, the filtering
algorithm presented in does give certain performance
guarantees in the adversarial case [SG18].
In our work, we consider the problem of online opti-

mization, in the presence of byzantine adversaries. Our
contributions are summarized as follows

• We formulate the problem of online distributed op-
timization in the presence of byzantine adversaries.
To our knowledge, we are the first paper to consider
this problem

1

ar
X

iv
:2

10
9.

12
34

0v
2

 [
m

at
h.

O
C

]
 9

 A
pr

 2
02

2

• We motivate and define a notion for regret based on
the behavior of the adversarial agents. We show that
the regret is sublinear for any finite time horizon T
and grows as O((lnT)2).

The paper is organized as follows: we discuss the relevant
preliminaries and notations in Section 2. We formally
describe the problem statement in Section 3 and the main
results are detailed in Section 4. The experimental results
are in Section 5, and the conclusions follow in Section 6.
Notation: We denote the set of real numbers, non-

negative reals, and natural numbers by R, R≥0 and N
respectively. The set of all m× n real-valued matrices is
denoted by Rm×n and ‖·‖ is the Euclidean norm unless
stated otherwise. [k] denotes the set {1, 2, . . . , k} for
k ∈ N. A stochastic vector is a vector with non-negative
numbers that add up to one. We denote B(x, r) = {y ∈
Rn| ‖x− y‖ ≤ r}, the closed ball of radius r centred at
x. For any statement X, 1 (X) is the indicator function
which is 1 if X is true and 0 otherwise.

2 PRELIMINARIES

2.1 Graph Theory
The communication network across the agents in a dis-
tributed setting is depicted using a graph G. An undi-
rected graph G = (V, E) consists of a vertex set V and
an edge set E ⊆ V × V . A graph is said to be undirected
when every edge is bidirectional i.e. if (i, j) ∈ E , then
(j, i) ∈ E . Each vertex represents an agent, so in a system
with n agents, |V| = n. On indexing the agents from
{1, 2, . . . , n}, a graph may be characterised using an ad-
jacency matrix A ∈ Rn×n≥0 . This matrix is constructed
such that Aij > 0 iff {i, j} ∈ E . For an undirected graph
A = A>. A path from agent i to agent j is a sequence
of agents vk1 , vk2 , . . . , vkl such that vk1 = i, vkl = j and
(vkr , vkr+1

) ∈ E for 1 ≤ r ≤ l − 1. A graph is said to be
connected if there exists a path between any two distinct
vertices. The set of neighbours of an agent i are defined
as Ni = {j ∈ V | (i, j) ∈ E}.

Next, we define some properties associated with graphs
as presented in [SG18], which will be used to define con-
straints on the network structure in our problem formu-
lation.

Definition 1 (r-Reachable set). For a given r ∈ N, a
subset of vertices S ∈ V is said to be r-reachable if there
exists a vertex i ∈ S such that | Ni\S |≥ r.

Definition 2 (r-robust graphs). For some r ∈ N, a graph
G is said to be r-robust if for all pairs of disjoint nonempty

subsets S1,S2 ⊂ V, at least one of S1, S2 is r-reachable.

2.2 The Adversarial Model

We assume that the set of adversarial agents is fixed, and
the agents do not follow any prescribed algorithm. Fur-
ther, these agents are capable of sending different values
to each of their neighbours. This behaviour is referred to
as Byzantine adversarial behavior in literature [FLM85].
We also do not assume that the adversarial agents fol-
low a certain pattern to achieve a goal, ensuring that
our adversarial model is as general as possible and ro-
bust to all potential attacks. Regarding the distribution
and the topology of the adversarial agents, we assume
that each agent has at most F adversaries among its
neighbours. This is termed as F -local distribution of ad-
versaries [LZKS13]. Formally, for each agent i, we assume
that |Ni ∩ A| ≤ F .

3 PROBLEM STATEMENT

Consider a set of N ≥ 2 agents, interacting via a network
modelled by a graph G(V, E). Let V = [N]. Let A ⊂ V be
the set of Byzantine adversaries. Let the non-adversarial
agents be denoted by R = V\A. Suppose there are
R ≤ N non-adversarial agents. Without loss of generality,
assume R = [R]. None of the non-adversarial agents
have knowledge regarding the identities of the adversarial
agents. At each time step t, a regular agent i, chooses its
state xi(t) ∈ R based on some proposed algorithm. Each
agent i ∈ V has access to a sequence of locally strongly
convex cost functions f it : R→ R, where f it is revealed to
agent i only at the end of each time step t ∈ [T], where
T is the time horizon.
We first discuss the offline version of multi-agent op-

timization in the presence of adversaries. It has been
shown that there exists no algorithm such that

min
x∈R

1

R

R∑
i=1

fi(x) (1)

is solvable, where fi(·)’s are the local cost functions
corresponding to the regular agents [SV15a]. We say a
problem is solvable if there exists an algorithm that ob-
tains the optimal point which satisfies all the constraints.
Hence, a relaxed version of the problem has been proposed
in [SV15a] where a convex combination of the objective
functions under additional constraints is minimized as op-
posed (1). Ideally, we would like the convex combination
coefficients, αi = 1

R , i ∈ R. However, it is possible that

2

several elements of α are not non-zero. So, additional pa-
rameters β and γ were introduced to control the “quality”
of α, i.e., for some γ ∈ R, at least γ elements of α are
lower-bounded by β > 0. This is formally stated in (2).

x̃ ∈ argmin
x∈R

R∑
i=1

αifi(x) (2)

subject to αi ≥ 0 and
R∑
i=1

αi = 1,∀i ∈ R,

R∑
i=1

1 (αi ≥ β) ≥ γ

In the distributed online convex optimization setting,
in the absence of adversaries, the performance of an algo-
rithm is measured in terms of regret defined as follows.
An agent’s regret [AGL15, HCM13] is measured as the dif-
ference between the actual cost incurred and the optimal
choice in hindsight, i.e, for agent j,

RegjT =

T∑
t=1

N∑
i=1

f it (xj(t))−
T∑
t=1

N∑
i=1

f it (x
∗) (3)

where

x∗ ∈ argmin
x∈R

T∑
t=1

N∑
i=1

f it (x) (4)

The problem in (4) is solvable [DAW11, NO09, NO14].
Next, we provide a notion of regret when there are adver-
sarial agents in the network.

Combining the idea of solvability of the offline version
of the problem and the conventional definition of regret
in (3), we define agent regret and network regret similar
to [AGL15]. Define Y β,γT as:

Y β,γT :=

x : x ∈ argmin
x∈R

T∑
t=1

R∑
j=1

αj(t)f
j
t (x), (5)

0 ≤ αi(t) ≤ 1,

R∑
i=1

αi(t) = 1 ∀i ∈ R,∀t ∈ [T]

R∑
i=1

1 (αi(t) ≥ β) ≥ γ,∀t ∈ [T]

}

Definition 3 (Agent’s Regret). Consider a sequence of
cost functions {f1t , f2t , . . . , fRt }Ri=1 and stochastic vectors
{α(t)}Tt=1. Then, ∀j ∈ R, for any z∗ ∈ Y β,γT , the agent’s

regret bound is given as:

Regjα,T =

T∑
t=1

R∑
i=1

αi(t)f
i
t (xj(t))−

T∑
t=1

R∑
i=1

αi(t)f
i
t (z
∗),

(6)

Definition 4 (Network Regret). Consider a sequence of
cost functions {f1t , f2t , . . . , fRt }Ri=1 and stochastic vectors
{α(t)}Tt=1. Then, ∀j ∈ R, for any z∗ ∈ Y

β,γ
T , the network

regret bound is given as:

Regα,T =

T∑
t=1

R∑
i=1

αi(t)f
i
t (xi(t))−

T∑
t=1

R∑
i=1

αi(t)f
i
t (z
∗),

(7)

Note that in the regret definition for offline case in (2),
the co-efficient vectors α are fixed. But for the online case
since the objective functions change at each time step,
the co-efficient vectors are assumed to be time-varying as
given in (6) and (7).
Before we proceed with our main results, we make

the following assumptions regarding the nature of the
objective functions and the communication model.

Assumption 1. We consider the following assumptions
regarding the objective functions:

1. All the (sub)-gradients g are bounded, i.e., ‖g‖ ≤
L,∀t ∈ [T], i ∈ [N]. This implies that f it is L-
Lipschitz, i.e., |f(x)− f(y)| ≤ L ‖x− y‖.

2. f it (·) is ρ-strongly convex, ∀t ∈ [T], i ∈ [N]
in B(0,K1) and ∪Ri=1 ∪Tt=1 argmin f it ∈ B(0,K2)
where K1 and K2 are constants defined similarly
as in [AGL15].

Assumption 2. We consider the following assumptions
regarding the communication model:

1. The underlying graph representing the network is
static and undirected.

2. The set of adversarial agents A remains fixed for all
the time steps.

3. F -local Byzantine model of adversarial attack.

4. The network is (2F + 1)-robust.

5. Each non zero value in the adjacency matrix describ-
ing the graph is lower bounded by some κ > 0.

3

4 MAIN RESULTS
We first present the optimization algorithm in Algorithm 1.
Most of the existing literature in distributed optimization
involving adversaries have a filtering step included in the
algorithm [SV15b, SG18, KXS20] where the non-faulty
agents sort the received values and reject the top k and
bottom k values for some k ∈ N. If there are less than k
values higher (or respectively lower) than agent’s value,
it removes all such values. The intuitive idea is to reject
the outlier values, which are more likely to disrupt the
consensus step. We use distributed gradient descent for
its simplicity and ease of implementation.

Algorithm 1 Byzantine-Resilient Online Distributed
Gradient Descent
For each i ∈ R, initialize xi(0).
for t = 1 to T do
Obtain {f it (xi(t)), gi(t)}, gi(t) ∈ ∂f it (xi(t)) from en-
vironment.
Send xi(t) to all neighbours.
Sort the values obtained from neighbouring agents
Ni.
Ui(t)← Set of agents that sent the top F values.
Li(t)← Set of agents that sent the bottom F values.

Ji(t)← (Ni\(Li(t) ∪ Ui(t))) ∪ {i}.
Update local state as

xi(t+1) =
1

|Ni| − 2F + 1

 ∑
j∈Ji(t)

xj(t)

−η(t)gi(t)

(8)
end for

To do a mathematical analysis of Algorithm 1, we need
to represent the update law in (8) in an expression that
involves only the non-faulty agents.

Proposition 1 ([SG18, Proposition 5.1],[Vai12]). Con-
sider the network G = (V, E), with a set of regular nodes
R and a set of adversarial nodes A. Suppose that A is an
F -local set, and that each regular node has at least 2F + 1
neighbors. Let x(0) ∈ RR denote the initial states of all
non-faulty agents and x(t) denote their states at time
step t. Then, the update rule (8) for each node i ∈ R is
mathematically equivalent to

xi(t+ 1) = Mi(t)x(t)− η(t)gi(t) (9)

where Mi(t) is a row vector that satisfies

1. Mi(t) is a stochastic vector, i.e,
∑R
j=1Mij(t) = 1.

2. Mij(t) 6= 0 only if (i, j) ∈ E or i = j.

3. Mii ≥ κ and at least |Ni| − 2F of the other weights
are lower bounded by κ

2 for some κ > 0.

It should be noted that Mi(t) can depend on x(t) and the
behaviour of the adversarial agents.

So, the update law in (9) can be written for all the
agents in a matrix form as

x(t+ 1) = M(t)x(t)− η(t)g(t) (10)

where g(t) = [g1(t), g2(t), . . . , gR(t)]> and
M(t) = [M1(t)>,M2(t)>, . . . ,MR(t)>]>.
Let Φ(t, s) =

∏t
i=sM(i) with Φ(t, t) = M(t). Then,

from [NOP10],

lim
t≥s,t→∞

Φ(t, s) = 1q(s)> (11)

where q(s) is a stochastic vector. We now present three
lemmas which are crucial for the main result of the paper.

Lemma 1. A reduced graph H of a graph G(V, E) is de-
fined as a subgraph obtained by removing all the faulty
nodes from V and additionally removing up to F edges
at each non-faulty agent. For a graph satisfying Assump-
tion 2, each of its reduced graphs is connected and has at
least γ ≥ F + 1 nodes.

Proof. Let GR(R, ER) denote the subgraph of G consist-
ing only non-faulty nodes. Then, for a network G satis-
fying Assumption 2, GR is (F + 1)-robust [LZKS13]. So,
trivially, the number of nodes in GR is at least F + 1.
Furthermore, if a graph is r-robust, then the resulting
graph after removing upto r − 1 edges from each node is
connected [SG18]. Combining both the statements, we
conclude that the reduced graph of G is connected with
at least F + 1 nodes.

From [SV15b, Lemma 5], we have that for any fixed s,
there exists at least γ (as defined in Lemma 1) elements
in q(s) that are lower bounded by ξR, for some ξ ∈ (0, 1),
i.e,

R∑
i=1

1
(
qi(s) ≥ ξR

)
≥ γ (12)

Define
y(t) := 〈q(t),x(t)〉 (13)

as the convex combination of the current states. It mimics
the “average” state x̄(t) = 1

N

∑N
i=1 xi(t) considered in the

4

case of distributed optimization without adversarial nodes.
Furthermore, it is not difficult to show that the update
rule for y(t) is given by

y(t+ 1) = y(t)− η(t)q(t+ 1)>g(t) (14)

Lemma 2. Consider the network G = (V, E). Suppose
that the convex functions f it , i ∈ V are L-Lipschitz. Let
the update law be given by:

x(t+ 1) = M(t)x(t)− η(t)g(t) (15)

Suppose, there exists a constant κ > 0 such that at each
timestep t ∈ [T], the diagonal elements of the weight ma-
trix M(t) is lower bounded by κ and the network contains
a rooted subgraph whose edge weights are lower bounded
by κ. Let y(t) be the sequence defined as per (13). If
η(t)→ 0 as t→∞, then

‖xi(k)− y(k)‖ ≤ Cθk−1
R∑
j=1

‖xj(0)‖

+RCL

k−2∑
r=0

η(r)θk−r−2 + 2η(k − 1)L

(16)

for some C > 0 and θ ∈ [0, 1). It is to be noted that the
upper bound is independent of i and depends only on k.
We denote this upper bound by ζ(k) which we refer several
times later in this paper.

Proof. Consider the dynamics of y(k), and use the update
law from the equation (15).

y(k + 1) = q(k + 1)>x(k + 1)

= q(k + 1)>(M(k)x(k)− η(k)g(k)))

(a)
= q(k)>x(k)− η(k)q(k + 1)>g(k)

=⇒ y(k + 1) = y(k)− η(k)q(k + 1)>g(k) (17)

where (a) holds because by definition of Φ, we have
q(s)> = q(s + 1)>M(s). Considering the dynamics of
xi(k) and y(k) over several time steps, starting from time
s, and ending at time k + 1, For i ∈ R,

xi(k + 1) = [Φ(k, s)x(s)]i

−
k−1∑
r=s

η(r)

R∑
j=1

Φ(k, r + 1)ijgj(r)− η(k)gi(k)

(18)

Similarly, using the update step in (17) for y(k′) for
s ≤ k′ ≤ k + 1 recursively,

y(k + 1) = q(s)>x(s)−
k−1∑
r=s

η(r)

R∑
j=1

qj(r + 1)gj(r)

− η(k)

R∑
j=1

qj(k + 1)gj(k)

Setting s = 0, and using the triangle law,

‖xi(k)− y(k)‖

≤

∥∥∥∥∥∥
R∑
j=1

xj(0)(Φ(k − 1, 0)ij − qj(0))

∥∥∥∥∥∥
+

k−2∑
r=0

η(r)

∥∥∥∥∥∥
R∑
j=1

gj(r)(Φ(k − 1, r + 1)ij − qj(r + 1))

∥∥∥∥∥∥
+ η(k − 1) ‖gi(k − 1)‖+ η(k − 1)

∥∥∥∥∥∥
R∑
j=1

qj(k)gj(k − 1)

∥∥∥∥∥∥
≤

R∑
j=1

‖xj(0)‖ ‖Φ(k − 1, 0)ij − qj(0)‖

+

k−2∑
r=0

η(r)

R∑
j=1

‖gj(r)‖ ‖Φ(k − 1, r + 1)ij − qj(r + 1)‖

+ η(k − 1) ‖gi(k − 1)‖+ η(k − 1)

R∑
j=1

qj(k) ‖gj(k − 1)‖

(19)

From Nedic et al. [NOP10], we get that for some C >
0, θ ∈ [0, 1), ‖Φ(k, s)ij − qj(s)‖ ≤ Cθk−s. Further,
‖gi(k)‖ ≤ L and

∑R
j=1 qj(k) = 1. Hence, by upper bound-

ing the terms of (19) appropriately, for k ≥ 2, we get the
result of Lemma 2.

Lemma 3. Consider the conditions mentioned in
Lemma 2. Then, for learning rate η(t) = 1

ρt , t ≥ 1,
η(0) = 0 and any finite time horizon T ,

T∑
t=1

‖xi(t)− y(t)‖ ≤ C1 + C2(1 + lnT),∀i, where

C1 =
C

1− θ

R∑
j=1

‖xj(0)‖ , C2 =
2L

ρ
+

RCL

ρ(1− θ)
(20)

5

Proof. Consider η(t) = 1
ρt , t ≥ 1 and η(0) = 0. Observe,

t∑
s=1

η(t) ≤ 1

ρ

(
1 +

∫ t

1

1

z
dz

)
=

1

ρ
(1 + ln t) (21)

If η(t) = 1
ρt and θ ∈ [0, 1), then,

t∑
k=1

k−2∑
r=0

η(r)θk−r−2 ≤
t∑

r=0

η(r)

∞∑
s=0

θs
(21)
≤ (1 + ln t)

ρ(1− θ)
(22)

t∑
k=1

‖xi(k)− y(k)‖

≤
t∑

k=1

Cθk−1
R∑
j=1

‖xj(0)‖

+RCL

k−2∑
r=0

η(r)θk−r−2 + 2η(k − 1)L

}

≤ C

1− θ

R∑
j=1

‖xj(0)‖

+

t∑
k=1

{
RCL

k−2∑
r=0

η(r)θk−r−2 + 2η(k − 1)L

}
(21)
≤ C

1− θ

R∑
j=1

‖xj(0)‖+
2L

ρ
(1 + ln t)

+RCL

t∑
k=1

k−2∑
r=0

η(r)θk−r−2

(22)
≤ C

1− θ

R∑
j=1

‖xj(0)‖+
2L

ρ
(1 + ln t) +

RCL(1 + ln t)

ρ(1− θ)

Hence, by grouping the constant terms and the coefficients
of (1 + ln t), we get the result.

We state a theorem regarding the sublinearity of the
network regret in Theorem 1.

Theorem 1 (Sublinear Network Regret Bound). Under
Assumption 1 and Assumption 2, with a learning rate
η(t) = 1

ρt , the network regret defined in (7) with α(t) =

q(t+ 1), defined in (11), is sublinear. Precisely,

Regα,T ≤ A1 +A2(1 + lnT) +A3(1 + lnT)2

where

A1 = LC1 + ρC1 ‖y(0)− z∗‖+
ρ

2
‖y(0)− z∗‖2

A2 = L(C1 + C2) +
L2

2ρ
+ (L+ ρC2) ‖y(0)− z∗‖

A3 =
L2

2ρ
+ LC2

(23)

and C1 and C2 are the constants mentioned in Lemma 3
and z∗ ∈ Y β,γT .

Proof. Let z∗ ∈ Y β,γT and α(t) = q(t+ 1). By definition
of Regα,T ,

T∑
t=1

R∑
j=1

αj(t)(f
j
t (xj(t))− f jt (z∗))

≤

T∑
t=1

R∑
j=1

αj(t)
(
〈gj(t), xj(t)− z∗〉 −

ρ

2
‖xj(t)− z∗‖2

)
=

T∑
t=1

R∑
j=1

αj(t) 〈gj(t), xj(t)− y(t)〉

+

R∑
j=1

αj(t) 〈gj(t), y(t)− z∗〉

− ρ

2

R∑
j=1

αj(t) ‖xj(t)− y(t) + y(t)− z∗‖2

≤
T∑
t=1

R∑
j=1

αj(t)L ‖xj(t)− y(t)‖

− ρ

2

R∑
j=1

αj(t)(‖xj(t)− y(t)‖2 + ‖y(t)− z∗‖2

+ 2〈xj(t)− y(t), y(t)− z∗〉)

+

R∑
j=1

αj(t) 〈gj(t), y(t)− z∗〉

≤ L

T∑
t=1

R∑
j=1

αj(t) ‖xj(t)− y(t)‖

+

T∑
t=1

〈

R∑
j=1

αj(t)gj(t), y(t)− z∗
〉

− ρ

2

T∑
t=1

{
‖y(t)− z∗‖2

6

+2

R∑
j=1

αj(t)〈xj(t)− y(t), y(t)− z∗〉

 (24)

4.1 Bounding the first term of (24)

The first term can be bounded directly as follows:

L

T∑
t=1

 R∑
j=1

αj(t) ‖xj(t)− y(t)‖

 ≤ L T∑
t=1

R∑
j=1

αj(t)ζ(t)

= L

T∑
t=1

ζ(t)
(20)
≤ LC1 + LC2(1 + lnT) (25)

4.2 Bounding the second and third term
of (24)

For non-constrained optimization,

‖y(t+ 1)− z∗‖2 − ‖y(t)− z∗‖2

= ‖y(t)− η(t)〈q(t+ 1), g(t)〉 − z∗‖2 − ‖y(t)− z∗‖2

= ‖η(t)〈q(t+ 1), g(t)〉‖2

− 2η(t)〈〈q(t+ 1), g(t)〉, y(t)− z∗〉

≤ η(t)2L2 ‖q(t+ 1)‖21
− 2η(t)〈〈q(t+ 1), g(t)〉, y(t)− z∗〉

= η(t)2L2 − 2η(t)〈〈q(t+ 1), g(t)〉, y(t)− z∗〉

So,

〈〈q(t+ 1), g(t)〉, y(t)− z∗〉

≤ η(t)

2
L2 +

‖y(t)− z∗‖2

2η(t)
− ‖y(t+ 1)− z∗‖2

2η(t)
(26)

For α(t) = q(t + 1), as mentioned in Theorem 1, the
second term of (24) is

T∑
t=1

〈 R∑
j=1

αj(t)gj(t), y(t)− z∗
〉

=

T∑
t=1

(〈〈q(t+ 1), g(t)〉, y(t)− z∗〉)

(26)
≤

T∑
t=1

(
η(t)

2
L2 +

‖y(t)− z∗‖2

2η(t)
− ‖y(t+ 1)− z∗‖2

2η(t)

)

≤
T∑
t=1

(
η(t)

2
L2 +

‖y(t)− z∗‖2

2η(t)
− ‖y(t+ 1)− z∗‖2

2η(t+ 1)

+
‖y(t+ 1)− z∗‖2

2η(t+ 1)
− ‖y(t+ 1)− z∗‖2

2η(t)

)

=
L2

2

T∑
t=1

η(t) +

T∑
t=1

(
‖y(t)− z∗‖2

2η(t)
− ‖y(t+ 1)− z∗‖2

2η(t+ 1)

)

+

T∑
t=1

(
‖y(t+ 1)− z∗‖2

2η(t+ 1)
− ‖y(t+ 1)− z∗‖2

2η(t)

)

≤ L2

2

T∑
t=1

η(t) +
‖y(1)− z∗‖2

2η(1)

+

T∑
t=1

‖y(t+ 1)− z∗‖2
(

1

2η(t+ 1)
− 1

2η(t)

)

≤ L2

2ρ
(1 + lnT) +

ρ

2
‖y(0)− z∗‖2 +

ρ

2

T∑
t=1

‖y(t+ 1)− z∗‖2

(27)

The last statement holds because, by assumption, η(0) =
0 =⇒ y(1) = y(0). Considering the second and third
term of (24) jointly,

T∑
t=1

〈 R∑
j=1

αj(t)gj(t), y(t)− z∗
〉− ρ

2

T∑
t=1

{
‖y(t)− z∗‖2

+2

R∑
j=1

αj(t)〈xj(t)− y(t), y(t)− z∗〉

(27)
≤ L2

2ρ
(1 + lnT) +

ρ

2
‖y(0)− z∗‖2

+
ρ

2

T∑
t=1

(
‖y(t+ 1)− z∗‖2 − ‖y(t)− z∗‖2

)

− ρ
T∑
t=1

R∑
j=1

αj(t)〈xj(t)− y(t), y(t)− z∗〉

=
L2

2ρ
(1 + lnT) +

ρ

2
‖y(T + 1)− z∗‖2

− ρ
T∑
t=1

R∑
j=1

αj(t)〈xj(t)− y(t), y(t)− z∗〉

≤ L2

2ρ
(1 + lnT) +

ρ

2
‖y(T + 1)− z∗‖2

+ ρ

T∑
t=1

R∑
j=1

αj(t) ‖xj(t)− y(t)‖ ‖y(t)− z∗‖

≤ L2

2ρ
(1 + lnT) +

ρ

2
‖y(T + 1)− z∗‖2

7

+ ρ

T∑
t=1

R∑
j=1

αj(t)ζ(t) ‖y(t)− z∗‖

≤ L2

2ρ
(1 + lnT) +

ρ

2
‖y(T + 1)− z∗‖2

+ ρ

T∑
t=1

ζ(t) ‖y(t)− z∗‖ (28)

Observe,

y(s+ 1)− y(s) = −η(s)〈q(s+ 1), g(s)〉
t∑

s=1

(y(s+ 1)− y(s)) = −
t∑

s=1

η(s)〈q(s+ 1), g(s)〉

y(t+ 1) = y(0)−
t∑

s=1

η(s)〈q(s+ 1), g(s)〉

Subtracting z∗ on both sides and using the triangle law,

‖y(t+ 1)− z∗‖ ≤ ‖y(0)− z∗‖

+

t∑
s=1

η(s)

R∑
j=1

qj(s+ 1) ‖gj(s)‖

≤ ‖y(0)− z∗‖+ L

t∑
s=1

η(s)

≤ ‖y(0)− z∗‖+
L

ρ
(1 + ln t) (29)

Bounding the second term of (28),

‖y(T + 1)− z∗‖2
(29)
≤
(
‖y(0)− z∗‖+

L

ρ
(1 + lnT)

)2

= ‖y(0)− z∗‖2 +
L2

ρ2
(1 + lnT)2

+
2L

ρ
‖y(0)− z∗‖ (1 + lnT)

Bounding the third term of (28),

T∑
t=1

ζ(t) ‖y(t)− z∗‖

(29)
≤

T∑
t=1

ζ(t)

(
‖y(0)− z∗‖+

L

ρ
(1 + ln t)

)
(20)
≤ (C1 + C2(1 + lnT))

(
‖y(0)− z∗‖+

L

ρ
(1 + lnT)

)

So, (28) (equivalently, the second and third terms of (24))
is bounded by:

L2

2ρ
(1 + lnT) +

ρ

2

(
‖y(0)− z∗‖2 +

L2

ρ2
(1 + lnT)2

+
2L

ρ
‖y(0)− z∗‖ (1 + lnT)

)
+ ρ(C1 + C2(1 + lnT))

(
‖y(0)− z∗‖+

L

ρ
(1 + lnT)

)
(30)

Combining the results of (25) and (30), we complete
the proof of Theorem 1.

We now present the main result of our paper, i.e., the
sublinearity of agent’s regret in Theorem 2.

Theorem 2 (Sublinear Agent’s Regret Bound). Under
Assumption 1 and Assumption 2, with a learning rate
η(t) = 1

ρt , the regret of agent i ∈ R defined in (6) with
α(t) = q(t+ 1), defined in (11), is sublinear. Precisely,

Regiα,T ≤ B1 +B2(1 + lnT) +B3(1 + lnT)2

where

B1 = 3LC1 + ρC1 ‖y(0)− z∗‖+
ρ

2
‖y(0)− z∗‖2

B2 = L(C1 + 3C2) +
L2

2ρ
+ (L+ ρC2) ‖y(0)− z∗‖

B3 =
L2

2ρ
+ LC2

(31)

and C1 and C2 are the constants mentioned in Lemma 3
and z∗ ∈ Y β,γT .

Proof. Let z∗ ∈ Y β,γT and α(t) = q(t+ 1). By definition
of Regiα,T ,

T∑
t=1

 R∑
j=1

αj(t)f
j
t (xi(t))−

R∑
j=1

αj(t)f
j
t (z∗)

=

T∑
t=1

 R∑
j=1

αj(t)(f
j
t (xi(t))− f jt (y(t)))

+

R∑
j=1

αj(t)(f
j
t (y(t))− f jt (xj(t)) + f jt (xj(t))− f jt (z∗))

(7)
≤ Regα,T

+ L

T∑
t=1

 R∑
j=1

αj(t) ‖xj(t)− y(t)‖+ ‖xi(t)− y(t)‖

8

From Theorem 1,

Regα,T ≤ A1 +A2(1 + lnT) +A3(1 + lnT)2 (32)

for A1, A2 and A3 described in (23). Further,

L

T∑
t=1

 R∑
j=1

αj(t) ‖xj(t)− y(t)‖+ ‖xi(t)− y(t)‖

(20)
≤ 2LC1 + 2LC2(1 + lnT) (33)

where ζ(t) is defined in Lemma 2. Combining (32) and
(33), we get the desired result.

5 NUMERICAL EXPERI-
MENTS

We provide an experiment to verify our algorithm. Mo-
tivated by [HCM13], we consider a network of N sen-
sors. All of these sensors observe a vector x ∈ Rd, which
is randomly chosen. Each sensor i ∈ [N] measures a
quantity zi(t) ∈ Rpi at time t. We assume that each
measurement is associated with some noise. Formally,
each sensor is modelled as a linear function of x, i.e.
zi(t) = Hix + vi. Here, Hi ∈ Rpi×d is an observation
matrix, with a bounded norm, and vi represents the the
noise. The local estimate for x, given by x̂i is used to
compute a cost function. The cost function at time t is
given by

fi(t) =
1

2
‖zi(t)−Hix̂i‖2

Clearly, the cost functions satisfy Assumption 1. The
underlying network and locations of the adversaries are
chosen such that Assumption 2 is satisfied. At each
step, the non-faulty agents attempt to minimize regret
by following Algorithm 1. The vector q(t) is calculated
similar to the method described in [SG18], and our regret
is estimated as described in (6) and (7) . In an offline
setting, the optimal point is given by

x∗i =
1

T

T∑
t=1

(
N∑
i=1

H>i Hi

)−1(N∑
i=1

H>i zi(t)

)
.

If the noise characteristics for vi were known beforehand,
it would have been possible to solve the problem in an
offline mode. To complete our problem setup, we as-
sume that a fixed set of agents have been compromised,

Figure 1: The Network Regret averaged over
time(R(T)/T) is presented, based on the setup described
in section 5. We also present the agent regrets for the
agents with maximum and minimum regret, averaged
over time. The regret is sublinear in nature, as expected
based on the upper bound presented in Section 4.

either by an external attacker, or due to some adverse
environmental conditions. These agents are modelled as
adversaries. We do not assume any knowledge of the
location of these agents.
For the purposes of our numerical simulation, we as-

sume that x ∈ R. For each sensor, Hi ∈ R is chosen from
a uniform distribution ranging (0, 2), and vi is sampled
from a normal random variable at each time instant. We
consider a network of 100 agents, with 15 adversarial
agents. We construct a (2F + 1)-robust graph using the
method proposed in [ZS12]. The adversarial agents send
conflicting and incorrect information to their neighbours,
sampled from a uniform distribution. Fig. 1 shows the
agent regret and network regret as defined in (6) and (7)
respectively.

6 CONCLUSION

In this work, we discuss the problem of distributed online
optimization in the presence of Byzantine adversaries.
We defined the notion of regret for this case and proved
that our algorithm results in a sublinear regret bound.
Currently, the coefficients that define the convex combina-
tion for the local objective functions are time dependent
in nature. An interesting direction of research involves
the identification of an algorithm resulting in a time in-

9

variant convex combination of cost functions. We also
assume that the objective functions considered in this
work are strongly convex and the regret bound obtained
is O((lnT)2). A different research direction could be to
consider non-strong convex functions and attain sublinear
regret of the form O(T 1−δ), δ > 0.

References

[AGL15] Mohammad Akbari, Bahman Gharesifard,
and Tamás Linder. Distributed online convex
optimization on time-varying directed graphs.
IEEE Transactions on Control of Network
Systems, 4(3):417–428, 2015. 1, 3

[DAW11] John C Duchi, Alekh Agarwal, and Martin J
Wainwright. Dual averaging for distributed
optimization: Convergence analysis and net-
work scaling. IEEE Transactions on Auto-
matic control, 57(3):592–606, 2011. 3

[DFB12] Joseph W. Durham, Antonio Franchi, and
Francesco Bullo. Distributed pursuit-evasion
without mapping or global localization via
local frontiers. Autonomous Robots, 32(1):81–
95, Jan 2012. 1

[DGCH12] Alejandro D. Domínguez-García, Stanton T.
Cady, and Christoforos N. Hadjicostis. De-
centralized optimal dispatch of distributed
energy resources. In 2012 IEEE 51st IEEE
Conference on Decision and Control (CDC),
pages 3688–3693, 2012. 1

[FLM85] Michael J. Fischer, Nancy A. Lynch, and
Michael Merritt. Easy impossibility proofs
for distributed consensus problems. In Pro-
ceedings of the Fourth Annual ACM Sympo-
sium on Principles of Distributed Computing,
PODC ’85, page 59–70, New York, NY, USA,
1985. Association for Computing Machinery.
2

[HCM13] Saghar Hosseini, Airlie Chapman, and
Mehran Mesbahi. Online distributed opti-
mization via dual averaging. In 52nd IEEE
Conference on Decision and Control, pages
1484–1489. IEEE, 2013. 1, 3, 9

[KXS20] Kananart Kuwaranancharoen, Lei Xin, and
Shreyas Sundaram. Byzantine-resilient dis-
tributed optimization of multi-dimensional

functions. In 2020 American Control Confer-
ence (ACC), pages 4399–4404. IEEE, 2020.
1, 4

[LZKS13] Heath J LeBlanc, Haotian Zhang, Xenofon
Koutsoukos, and Shreyas Sundaram. Re-
silient asymptotic consensus in robust net-
works. IEEE Journal on Selected Areas in
Communications, 31(4):766–781, 2013. 2, 4

[NO09] Angelia Nedic and Asuman Ozdaglar. Dis-
tributed subgradient methods for multi-agent
optimization. IEEE Transactions on Auto-
matic Control, 54(1):48–61, 2009. 3

[NO14] Angelia Nedić and Alex Olshevsky. Dis-
tributed optimization over time-varying di-
rected graphs. IEEE Transactions on Auto-
matic Control, 60(3):601–615, 2014. 3

[NOP10] Angelia Nedic, Asuman Ozdaglar, and
Pablo A Parrilo. Constrained consensus
and optimization in multi-agent networks.
IEEE Transactions on Automatic Control,
55(4):922–938, 2010. 4, 5

[RN04] Michael Rabbat and Robert Nowak. Dis-
tributed optimization in sensor networks. In
Proceedings of the 3rd International Sympo-
sium on Information Processing in Sensor
Networks, IPSN ’04, page 20–27, New York,
NY, USA, 2004. Association for Computing
Machinery. 1

[SG18] Shreyas Sundaram and Bahman Gharesifard.
Distributed optimization under adversarial
nodes. IEEE Transactions on Automatic
Control, 64(3):1063–1076, 2018. 1, 2, 4, 9

[SJ17] Shahin Shahrampour and Ali Jadbabaie. Dis-
tributed online optimization in dynamic envi-
ronments using mirror descent. IEEE Trans-
actions on Automatic Control, 63(3):714–725,
2017. 1

[SV15a] Lili Su and Nitin Vaidya. Byzantine multi-
agent optimization: Part i. arXiv preprint
arXiv:1506.04681, 2015. 1, 2

[SV15b] Lili Su and Nitin H Vaidya. Fault-tolerant
distributed optimization (part iv): Con-
strained optimization with arbitrary directed
networks. arXiv preprint arXiv:1511.01821,
2015. 4

10

[Vai12] Nitin Vaidya. Matrix representation of
iterative approximate byzantine consen-
sus in directed graphs. arXiv preprint
arXiv:1203.1888, 2012. 4

[YYW+19] Tao Yang, Xinlei Yi, Junfeng Wu, Ye Yuan,
Di Wu, Ziyang Meng, Yiguang Hong, Hong
Wang, Zongli Lin, and Karl H. Johansson. A
survey of distributed optimization. Annual
Reviews in Control, 47(1), 5 2019. 1

[ZS12] Haotian Zhang and Shreyas Sundaram. Ro-
bustness of information diffusion algorithms
to locally bounded adversaries, 2012. 9

11

	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Graph Theory
	2.2 The Adversarial Model

	3 PROBLEM STATEMENT
	4 MAIN RESULTS
	4.1 Bounding the first term of (24)
	4.2 Bounding the second and third term of (24)

	5 NUMERICAL EXPERIMENTS
	6 CONCLUSION

