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Abstract— Exploring and traveling to distant stars has long
fascinated humanity but has been limited due to the vast
distances. The Breakthrough Starshot Program aims at elimi-
nating this limitation by traveling to Alpha Centauri, which
is 4.37 light-years away. This is only possible if a vehicle
travels at a substantial fraction of the speed of light. The
Breakthrough Starshot Program initiative is to develop a proof-
of-concept that is accelerating a sail to relativistic speeds using
a laser beam aimed at the sail. At this high speed, while stable
beam riding is one of the crucial concerns of this concept, the
dynamic stability analysis of a sail is hardly present in the
previous literature. Furthermore, it is important to investigate
the dynamic stability in the experiment before driving the sail to
relativistic speeds. As a proof-of-concept, we study the dynamic
stability of the sail levitated at a certain height by a laser
beam. The sail’s dynamics are modeled as a rigid body whose
shape is parameterized by a sweep function. We estimate the
region of attraction (ROA) for dynamic stability analysis using
Lyapunov theory and sum-of-square (SOS) programming. The
ROA confirms how many transverse and angular perturbations
a levitated sail can tolerate. We also conclude on some of
the important parameters of the sail that affects the dynamic
stability. Simulation results validate our theoretical analysis.

Index Terms— Levitation, dynamic stability, Lyapunov sta-
bility, sailcraft, laser propulsion, region of attraction, sum of
squares, positive semidefinite programming.

I. INTRODUCTION

The Breakthrough Starshot project aims to demonstrate a
proof-of-concept for ultra-fast laser beam-driven sail and lays
the foundations for the first launch to Alpha Centauri within
the next generation [1]–[3]. The idea is to propel a sail, which
will carry ultra-low-mass “starchips” to 20% of the speed of
light. The spacecraft would spend 20 years getting to Alpha
Centauri and another 4.25 years sending back its data so that
they can be analyzed within next generation. The stability of
the sail is a key consideration in the success of this concept
and is affected by sail shape, laser beam profile, beam jitter,
mass distribution, payload, spinning dynamics, flexibility,
material properties, etc. There are several investigations on
the stability of a sail based on the sail configuration [4]–[8].
There are some other works where the material and optical
properties have been included to investigate the stability [9]–
[13].

Although these initiatives towards stability analysis of the
sail are promising, they are based on static stability analysis
and carry some limitations. First, static stability, which is the
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linearization around an equilibrium, can be used to indicate
stability/instability for the particular parameters they used,
but the conclusions may not apply to the parameters or
timescales other than those considered in the study. Second,
the precise nano-patterning and handling of a lightweight
macroscopic substrate is a delicate task. Also, the loading of
the object in the laser beam will be difficult as it will require
the system to be released in a very controlled way.

As the sail itself does not have any propeller or control
and the laser will be ground based or in a low earth orbit,
the perturbations in translational and angular positions with
respect to the laser beam are very critical and measuring the
maneuverability is very important. This analysis can be done
by using dynamic stability or nonlinear Lyapunov stability
[14], which has barely made an appearance in the current sail
literature. One of the aspects of dynamic stability analysis is
to estimate the region of attraction (ROA). Any perturbation
of the states within the ROA will converge to the equilibrium
point. The ROA can be used to quantify the maneuverability
with respect to the laser beam. However, estimation of the
ROA of an equilibrium point for uncertain systems is itself
a challenging problem that requires the development of
computationally efficient methods. To address the dynamic
stability analysis of a levitated sail, we estimate the ROA.
In this article, we consider the sail dynamics as a 3D rigid
body. We parameterize the sail shape. Then we use Lyapunov
theory and sum-of-squares (SOS) programming to estimate
the ROA [15]. Finally, we analyze how the ROA is affected
as a sail’s parameter changes.

II. PARAMETERIZED SAIL

The whole vehicle consists of a sail, a mast, and a payload.
The payload is assumed to be attached by the mast to the sail.
To generate the sail surface a parameterized sweep curve in
the x-z plane is rotated about the z-axis [16]. In this article,
two types of sail shapes are considered: 1) conical sail and 2)
spherical-cap sail. The conical sail is studied in [4], [7] and
a spherical-cap sail in [6]. For the conical sail, the following
curve is used

gs(x) = c0+c1

( x
R

)
+c2

( x
R

)2

+c3

( x
R

)3

+c4

( x
R

)4

. (1)

Here c0, c1, c2, c3, and c4 are coefficients of the polynomials
and define different shapes of the sail with base radius R.
A conical sail with base radius R and cone angle α can be
obtained by setting c0 = R tan(α), c1 = −R tan(α), c2 =
c3 = c4 = 0 in Eq. (1). Here the angle α is between the
conical sail surface and the horizontal plane. For the conical
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sail, the cone angle α is considered an important parameter
and it is analyzed how the dynamical stability is affected as
the parameter α changes. To generate a spherical-cap sail,
the following function is used

gs(x) =
√
R2 − x2 −

√
R2 − a2. (2)

Notice that the mast length is an important parameter to
analyze the dynamic stability. A conical sail and a spherical-
cap sail are presented in Fig 1.
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Fig. 1. a) A conical sail with base radius R = 1, h = 1 and α = π
4

. b)
A portion of a spherical-cap sail with base radius a = 0.5, h = 0.13 and
with a radius of curvature R = 1.

III. MODELING THE DYNAMICS OF THE SAIL

For mathematical modeling, we assume that the whole
vehicle, which includes a sail, a mast, and a payload, is a
rigid body. The sail shape is chosen from Section II, the
length of the mast is l, and the total mass of the vehicle
is m. The sail is fully reflective and not a multi-reflector
1. The vehicle motion is represented as a translation of the
vehicle’s center of mass (CM) and a rotation of the body
frame (xb − yb − zb) with respect to the inertial frame (x−
y−z). The vehicle’s CM position is described by its inertial
Cartesian coordinates, r = (x, y, z), and its orientation with
respect to the inertial reference frame by three Euler angles
αE = (ψ, θ, φ). The convention of rotations is considered as
x−y′−z′′ by following the sequence: (1) rotation about the
x-axis by angle φ; (2) rotation about the new position of the
y-axis by angle θ; (3) rotation about the new position of the
z-axis by angle ψ. Now the vehicle dynamics is described
by 12 ODEs [17]:

ṙ = v, (3a)

α̇E = LI
Bωb, (3b)

v̇ =
F
M

+ g, (3c)

ω̇b = J−1[−ωX
b × Jωb + τ b], (3d)

where v is the inertial velocity of the vehicle, ωX
b is the

skew-symmetric matrix associated with the vehicle’s angular
velocity vector, ωb is the angular velocity of the vehicle
in the inertial frame and expressed in the body-frame, J is
the inertia matrix with respect to the vehicle’s CM, g =
[0, 0,−9.8] m/s is the gravity vector, M is the total mass of
the vehicle. In this formulation, we assume that the origin of

1multi-reflector: A surface that reflects the light more than once.

the body axis moves along the inertial z-axis. The force F
and the torque τ b are the net external force and torque acting
on the body, respectively. When the laser beam is radiated
onto the sail, the force and the torque are given by

F(x,Θ) =
(
RB

I

)−1

[∫∫
S(Θ1)

2
P (x,Θ2)b̂ · n̂(x)

c
n̂bdS

]
,

n̂(x) =
(
RB

I

)−1 n̂b.
(4)

τ b(x,Θ) =

∫∫
S(Θ1)

2
P (x,Θ2)b̂ · n̂(x)

c
(rb(x)× n̂b)dS, (5)

where c is the speed of light, S is the domain of integration
of the surface of the sail, n̂b is the unit vector normal to the
sail surface at the generic point on the sail, b̂ is a unit vector
parallel to the beam axis, rb is the position vector from the
vehicle CM to the point x in the body frame. Here Θ =
{Θ1,Θ2}, Θ1 is the set of parameters used to describe the
sail geometry, and Θ2 is the set of parameters to express the
beam profile. The laser beam is assumed to have a radially
symmetric Gaussian power distribution with full-width-at-
half-maximum (FWHM) w = 2σ

√
2 ln(2), where σ is the

standard deviation of the Gaussian beam. The beam power
flux P at the point x is given as

P (x,Θ2) =
P0

2πσ2
e−

(x2+y2)

2σ2 , (6)

where P0 (in GW) is the total beam power. In Eq. (3b), the
matrix LI

B relates the time derivative of the Euler angles
to the body frame components of the angular velocity and
derived as [16]. In Eq. (4), RI

B is the rotation matrix
associated with the considered rotation convention [16].

We now assume the material of the sail has a damping
effect. Common qualified dampers may include viscous and
magnetic induction devices and physical implementation can
be obtained [18]. These effects will improve the stability
performance of the beam-driven sail [19]. We model the
damping effect in the equations of motion, and the dynamics
in (3c) and (3d) can be modified as

v̇ =
F
M

+ g− D

M
v.

The matrix D captures the damping effect and satisfies the
condition: Dij = −Dji. In Fig. 2, a schematic illustration
of a sail riding on a Gaussian beam is presented.

IV. LEVITATION OF THE LASER BEAM-DRIVEN SAIL

A. Hypothetical Setup of the Experiment

For an experimental setup, we assume that a sail is placed
in a vacuum chamber and is driven by a Gaussian laser beam
as discussed previously. We also assume that the velocometer
acts like a sensor and can send the feedback signal to the
actuator (laser) to produce the force from the beam to levitate
the sail. A hypothetical representation of the experiment is
shown in Fig. 3.



Fig. 2. Schematic illustration of a sail riding on a Gaussian laser beam.

Fig. 3. Schematic of a sub-scale experimental laser-driven sail. Credit:
Breakthrough Foundation.

B. Lyapunov Based Design

It turns out that we need to design a nonlinear closed-loop
control law that not only can levitate the sail at an assigned
height but also guarantees the closed-loop stability of the
sail. In this case, the force directly drives the states z and vz
and the other states indirectly. Thus, the states z and vz are
considered as actuated states. The dynamics of the actuated
system can be written as

ż = vz, (8a)

v̇z = g +
Fz

M
, (8b)

where Fz is the z component of the force F given in Eq. (4).
We can rewrite Eq. (8) as,[

ż
v̇z

]
=

[
vz
g

]
+

[
0
Gz
M

]
u, (9)

where the vector quantity,

G =
1

cπσ2
(RB

I )−1

∫∫
S(Θ1)

e−
(x2+y2)

2σ2 b̂.n̂(x)dS,

u = P0,

and Gz is the z component of G. Note Fx = Gx, Fy =
Gy , and Fz = Gzu. The actuator only can produce force
along the z-direction but not any applied torque. But the
torque due to the force F is still considered. If there is any
angular perturbation, i.e., (RB

I )−1 6= I3, non-zero x and y
components of F will be produced. Moreover, we assume
that spinning of the sail around the z-axis is allowed and
will not affect the dynamic stability, but the spinning around
x and y will as these spinnings will tumble the sail. We
separate the actuated and underactuated states as follows

xa =
[
z vz

]T
,

xu =
[
x y ψ θ φ vx vy ωx ωy ωz

]T
.

Consider the Lyapunov function for the actuated states to
design a closed-loop controller

Va(xa) =
1

2
z2 +

1

2
v2
z (11)

of which the time derivative is

V̇a = zvz + vz

(
g +

G

M
u

)
. (12)

The control input

u = P0 =
−M
G

[g + z + vz] (13)

leads to V̇a = −v2
z < 0. If we want to levitate the sail at

z = zd, the transformation e = z − zd accommodates the
case and we obtain

u = P0 =
−M
G

[g + e+ vz]. (14)

This feedback control law u levitates the sail at zd. Now we
need to analyze the local stability of the internal dynamics.
The internal dynamics can be written as

ẋ
ẏ
α̇E

v̇x
v̇y
ω̇b

 =


vx
vy

LI
Bωb

0
0

J−1[−ωX
b × Jωb]


︸ ︷︷ ︸

f̄

+



0
0
0
Fx
M
Fy
M

J−1τ b


︸ ︷︷ ︸

ḡ

. (15)

The states’ associated with the internal dynamics can be
written as,

xu =
[
x y ψ θ φ vx vy ωx ωy ωz

]T
.

The internal dynamics can be considered as a perturbation
of a nominal system ẋu(t) = f̄(xu(t)) and the perturbed
system is given in the form,

ẋu(t) = f̄(xu(t)) + ḡ(xu). (16)



With the control input u in Eq. (13), the full dynamics
is (locally) exponentially stable. We assume that ḡ(xu) is
bounded on some set Γ. By considering the stability of
perturbed systems, more specifically vanishing perturbation,
[14, Section 9.1], the internal dynamics are stable and there
exists a Lyapunov function V (xu(t)) in [0, inf) × Γ, where
Γ = {xu ∈ R10 : ‖xu‖ < c̄} such that V̇ (xu) ≤ 0. Here c̄
is a positive constant. Such a set Γ suggests that there exists
an invariant subset of Γ which can be estimated as a ROA
described in the following subsection. Let

V (xu) = xTuPxu(t) (17)

be a Local Lyapunov Function (LLF) for the system in Eq.
(15), where P is a 10×10 positive definite matrix. This LLF
is used to compute the ROA to study the dynamic stability
of the sail.

V. ROA ESTIMATION

To address the dynamic stability of the sail, it is sufficient
to analyze the dynamic stability of the internal dynamics.
Specifically, we estimate the ROA of the internal dynamics
by using Lyapunov theory and SOS programming. In SOS
programming, the SOS decomposition technique is used
to convert the cost and constraints such that the ultimate
optimization problem becomes a Semidefinite Programming
Problem (SDP) [15]. In [20], it has been proved that locally
stable polynomial systems admit polynomial LLFs on com-
pact sets. For polynomial systems and polynomial LLFs, one
can maximize the size of the ROA using SOS programming
(e.g., [21], [22]). Here the procedure to estimate the ROA
is presented for a general nonlinear system of the form
ẋ(t) = f(x).

A. Procedure to Estimate the ROA

Consider that V (x) is an LLF for the equilibrium x = 0
of a nonlinear system ẋ(t) = f(x). If x = 0 is asymptotically
stable such that the following condition holds

V (x) ≤ ρ =⇒ V̇ (x) < 0, (18)

then the ρ sublevel set of V (x) is an inner subset of the
ROA. This condition can be solved by using the S-procedure
[23, Chapter 2.6.3]. For a general polynomial, S-procedure
is stated by the following lemma.

Lemma 1. Let q0, q1, · · · , qm be quadratic functions on x ∈
Rn. If it is required that

q0(x) ≥ 0 such that qi(x) ≥ 0, i = 1, 2, · · · ,m (19)

then there exist polynomials si(x) ≥ 0, i = 1, · · · ,m such
that

q0(x)−
i=m∑
i=1

si(x)qi(x) ≥ 0. (20)

Here s(x) is a multiplier polynomial.

By using the above lemma, a sufficient condition is,

p(x)(V (x)− ρ) + s(x)V̇ (x) ≥ 0 (21)

to hold the condition in Eq. (18) to be true. By replacing the
non-negativity condition in Eq. (21) with an SOS constraint,
the following SOS optimization problem can be formulated
to estimate the ROA

max
ρ∈R,s∈S ρ (22a)

subject to p(x)(V (x)− ρ) + s(x)V̇ (x) ∈ SOS. (22b)

Here S is a given subspace of polynomials in Eq. (22a),
for example, one consisting of all quadratic polynomials
or all quartic polynomials, p(x) is a deterministic positive
definite polynomial, for example, p(x) = xT x. The opti-
mization problem in Eq. (22) is an SDP and can be solved
numerically. For polynomial systems and polynomial LLF
one can maximize the invariant subset of the ROA by using
SOS programming. Therefore, the step-by-step procedure is
as follows,
• Express the nonlinear system ẋ(t) = f(x) in the form

of polynomials by series expansion. Although the dy-
namical system might not be directly expressed in the
form of polynomials, it can be approximated by series
expansion [22].

• Find an LLF V (x) for the equilibrium point x = 0 of
the nonlinear system. An LLF can be found by using
Eq. (17) and then compute V̇ = ∂V

∂x ẋ.
• Solve the SOS optimization problem in Eq. (22).

B. SOS Programming Solver

A software package using the Systems Polynomial Opti-
mization Toolbox (SPOT) [24] features is used to set up the
polynomial algebra and the large-scale SOS programming
arising from our problem. We use MOSEK as the optimiza-
tion solver. A complete implementation is available online
1.

VI. NUMERICAL RESULTS

A. Parameter Setting for the Dynamics

For simulations, we consider the proposed Starshot design
parameters: the beam power P0 is measured in GW, the
FWHM of the beam w is set to the base radius of the
sail, a sail with mass ms = 10 g, the mass of the payload
mp = 10 g (if any, otherwise, mp = 0). The integrals
in Eqs. (4) and (5) were approximated by discretizing the
beam into a grid of 100 × 100 rays. The path of each ray
is then traced as it intersects the sail and is reflected off
of its surface. The net change in momentum of each ray is
calculated, and the resulting forces and torques are applied
to the sail. For matrix D we set D11 = D12 = D22 = 0.01,
D13 = D23 = D33 = 0.0.

B. Numerical Computation of the ROA

In this section, we numerically compute the ROA of the
sail and conduct its dynamic stability analysis. For the ROA
computation, first, express the internal dynamics in Eq. (15)
in the form of polynomials by Taylor expansion of degree

1https://github.com/anirudhamajumdar/spotless/
tree/spotless_isos

https://github.com/anirudhamajumdar/spotless/tree/spotless_isos
https://github.com/anirudhamajumdar/spotless/tree/spotless_isos


3. We find a LLF V (xu) as we discussed previously. Then,
compute V̇ = ∂V

∂x ẋ. The ROA can be approximated by solv-
ing the optimization problem in Eq. (22). For simulations,
we choose S as a set of quadratic polynomials.

1) The ROA of a Conical Sail: We consider a conical sail
with c0 = R tan(α), c1 = −R tan(α), c2 = c3 = c4 = 0
in Eq. (1). The base radius is set to R = 1, the mast length
l = 2 m, and the levitation height zd = 10 m. We conduct
the stability analysis with respect to the cone angle α. It
is found that the α is one of the crucial parameters for the
conical sail [4]. We compute the ROA for α = 40◦ and
α = 45◦ and plot the projected regions in the x− y, x− φ,
y − θ, and θ − φ planes. The other projections of the ROA
are omitted due to symmetry or redundancy. In Fig. 4(a)-
(d), we plot the projected region of the ROA on the x − y,
x− φ, θ − φ, and y − θ planes, respectively. The projected
regions are shaded with colors. The sail with α = 40◦

can tolerate transverse perturbations of at least 8% of the
base radius R (Fig. 4(a)), and roll and pitch perturbations of
about 10◦ (0.17 rad) (Fig. 4(c)). The same conical sail with
α = 45◦ can tolerate transverse perturbations of at least 9%
of the base radius, and roll and pitch perturbations of about
8◦ (0.13 rad). Upon comparison with the regions, we observe
that the ROA of the conical sail with α = 40◦ can tolerate
more pitch and roll perturbations than the other one. To check
the dynamic stability of the conical sail, the state trajectories
of the full system in Eq. (3) are computed with the initial
roll and pitch angles perturbed about 10◦ (0.17 rad). In Fig.
5, the state time histories of the dynamics with closed-loop
control u are plotted for the conical sail with α = 40◦. The
sail is levitated at 10 m. Also, in each case, the states can
tolerate the initial perturbations and becomes steady after a
certain amount of time.

2) The ROA of a Spherical-cap Sail: We next consider a
part of a spherical sail with base radius a = 0.5 m and with a
radius of curvature R = 1 m in Eq. (2). The levitated height
is set at 10 m. Now we analyze the stability of the spherical-
cap sail. The interesting parameter, in this case, is the mast
length l. In [8], it has been shown that for a spherical-cap
sail with base radius a and a radius of curvature R, the
condition to be stable is l > 2R. Now we compute the ROA
for l = 2.3 m and l = 2.5 m and plot the projected region on
different planes as we did for the conical sail. It is important
to mention that the spherical-cap sail with l = 2.1 m is
hardly stable. In Fig. 6(a)-(d), we plot the projected region
in the x−y, x−φ, θ−φ, and y−θ planes, respectively. The
sail with l = 2.3 m can tolerate transverse perturbations of
at least 20% of the sail radius and roll and pitch perturbation
of at least 6◦ (0.1 rad). The same sail with l = 2.5 m
can tolerate transverse perturbations of 10% and roll and
pitch perturbations of 5◦. Upon comparison with two shaded
regions, it is observed that the spherical-cap sail with l = 2.3
m can tolerate more transverse and angular perturbations than
the sail with l = 2.5 m. To check the dynamic stability of
the spherical-cap sail, the state trajectories of the full system
in Eq. (3) are computed with the initial roll and pitch angles
perturbed of about 10◦ (0.17 rad). For this computation,

the differential equations of motion described in Section III
are integrated using the standard fourth-order Runge–Kutta
method. In Fig. 7, the state time histories of the dynamics
with closed-loop control are plotted for the spherical-cap
sail with l = 2.3 m. The sail is levitated at 10 m. Also,
in each case, the states can tolerate the initial perturbations
and become steady after a certain amount of time.

VII. DISCUSSION

The dynamics of the beam-driven sail are modeled as a
rigid body. The sail shape parameterized as a sweep function
has been presented to define the sail shape. A Lyapunov-
based closed-loop controller which levitates a sail at an
assigned height, is designed. The dynamic stability analysis
of a levitated sail is conducted through the estimation of
the ROA. The ROA is computed using Lyapunov theory and
SOS. Moreover, the ROA indicates how much perturbation
a sail can tolerate. A full simulation of the sail system with
the control law confirms these regions. The dynamic stability
analysis conveys that the system with closed-loop control is
not only levitated, but also confirms its dynamic stability. It
is also noticeable that with the control law, the sail is not
only levitated but also stable even for large perturbations of
the states. Upon comparison with the ROA for the conical
sail with α = 40◦ and 45◦, this analysis suggests that the
conical sail with angle α = 40◦ performs better than the
sail with α = 45◦. A similar analysis is also performed for
the spherical-cap sail for which the parameter of interest is
the mast length l. The ROA for the spherical-cap sail with
mast lengths l = 2.3 m and 2.5 m. This dynamic stability
analysis indicates that the spherical-cap sail with l = 2.3 m
can tolerate more perturbations than that of l = 2.5 m. By
comparing the ROA of a conical sail with a spherical-cap
sail, we conclude that in general, a conical sail can tolerate
more angular perturbations while the spherical-cap sail can
tolerate more transverse perturbations.
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