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Abstract— We study the problem of target stabilization with
robust obstacle avoidance in robots and vehicles that have
access only to vision-based sensors for the purpose of real-
time localization. This problem is particularly challenging
due to the topological obstructions induced by the obstacle,
which preclude the existence of smooth feedback controllers
able to achieve simultaneous stabilization and robust obstacle
avoidance. To overcome this issue, we develop a vision-based
hybrid controller that switches between two different feedback
laws depending on the current position of the vehicle using
a hysteresis mechanism and a data-assisted supervisor. The
main innovation of the paper is the incorporation of suitable
perception maps into the hybrid controller. These maps can
be learned from data obtained from cameras in the vehicles
and trained via convolutional neural networks (CNN). Under
suitable assumptions on this perception map, we establish
theoretical guarantees for the trajectories of the vehicle in
terms of convergence and obstacle avoidance. Moreover, the
proposed vision-based hybrid controller is numerically tested
under different scenarios, including noisy data, sensors with
failures, and cameras with occlusions.

I. INTRODUCTION

During recent years, there has been an increasing num-
ber of works on systems that integrate high-dimensional
inputs, such as images, into feedback control loops. For
example, several successful end-to-end approaches have em-
ployed reinforcement learning (RL), including [1], where
the state-space construction is automated by learning a
state representation directly from camera images. Also, in
[2] the authors introduced deep Q-networks into a control
command, achieving approximate human-level performance.
Other works have used deep generative models to synthesize
controllers with inputs coming from an embedding space
of high-dimensional data, which does not necessarily cor-
respond to an interpretable space (e.g., joint coordinates of
the robot). Some examples in this direction include [3]–
[7]. In other works, such as [5], [8] and [9], the authors
integrated state predictions via robust control tools to handle
approximation errors.

While significant progress has been made in different
communities during the last years, most of the results in the
literature have focused on applications where the feedback
control law α(·) leads to closed-loop systems of the form

ẋ = f(x+ e1, u) + e2, u = α(x+ e3) + e4, (1)

Alejandro Murillo-González is with the Department of Mathematical
Sciences at Universidad EAFIT, Colombia. Email {amurillog@eafit.edu.co}

Jorge I. Poveda is with the Department of Electrical, Computer,
and Energy Engineering, University of Colorado, Boulder, CO, 80309.
Email:{jorge.poveda@colorado.edu}.

where f and α are continuous functions, and the signals
ei, for i ∈ {1, 2, 3, 4}, model measurement noise, imple-
mentation errors, or approximation inaccuracies induced by
learning mechanisms such as linear parametric approxima-
tions, neural networks, multi-time scale techniques, etc. For
these perturbed dynamical systems, stability and robustness
results are well established, and they can be characterized
via practical or input-to-state stability results [10], [11].

On the other hand, many robust control problems cannot
be solved via smooth dynamical systems of the form (1).
Typical examples include robust global stabilization prob-
lems on smooth compact manifolds [12], global stabilization
of a disconnected set [13], the asymptotic stabilization of
vehicles with geometric constraints [11], the robust control
of switched systems [14], and the robust stabilization of
targets in obstacle avoidance problems [15], to name just
a few. In the latter problem, the objective is to robustly
stabilize a target point in spaces with global obstacles, i.e.,
the operational space, or “free world”, is a strict subset of Rn.
In this setting, global stabilization using smooth feedback of
the form (1) is precluded by the fact that the domain of
attraction of an asymptotically stable vector field (i.e., the
operational space) must be diffeomorphic to the Euclidean
space, a condition that is not satisfied under global obstacles
[11]. Given that discontinuous controllers have also been
shown to suffer from fundamental robustness limitations
[12], most works have focused on achieving local or almost
global convergence results [16]–[20], which exclude from the
basin of attraction a particular set of measure zero. On the
other hand, the impossibility result for smooth controllers has
also triggered an active line of research on the development
of hybrid control techniques able to achieve robust global
stabilization and obstacle avoidance, e.g., [13], [15], [21],
[22], [23]. However, unlike smooth dynamical systems of
the form (1), establishing suitable robustness guarantees for
hybrid controllers is far from trivial, which motivates current
research on the integration and analysis of learning-based
mechanisms into these types of systems. In particular, to the
best knowledge of the authors, the systematic integration of
hybrid control and data-assisted vision-based mechanisms for
robust stabilization and obstacle avoidance has remained an
open problem.

Contributions: In this work, we develop a vision-based
hybrid controller for robust and resilient obstacle avoidance
in mobile robots. We show that, unlike standard smooth
feedback controllers, the proposed hybrid algorithm can
overcome arbitrarily small and potentially adversarial dis-
turbances, noisy states, sensor failures, as well as camera
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occlusions. Our approach synergistically leverages robust
hybrid control theory [14] and recent results in perception-
based control [6], [8], which have studied the incorporation
of perception maps learned from data to predict the states and
dynamics of the system. The proposed hybrid controllers are
suitable for vehicles with vision sensors, such as cameras,
that have access to historical data in order to learn a suitable
perception map via convolutional neural networks (CNNs).
Our main results provide theoretical guarantees, as well as
extensive numerical validations in different scenarios.

II. PRELIMINARIES

Given a compact set A ⊂ Rn and an arbitrary vector
z ∈ Rn, we use |z|A := mins∈A||z − s||2 to denote the
minimum distance from z to A. We use (x, y) to denote the
concatenation of the vectors x and y. A set-valued mapping
M : Rp ⇒ Rn is said to be: a) outer semicontinuous (OSC)
at z if for each sequence {zi, si} → (z, s) ∈ Rp × Rn
satisfying si ∈ M(zi) for all i ∈ Z≥0, we have s ∈ M(z);
b) locally bounded at z if there exists an open neighborhood
Nz ⊂ Rp of z such that M(Nz) is bounded. We use rB to
denote a closed ball in the Euclidean space, of radius r > 0,
and centered at the origin, and we use {p} + rB to denote
the union of all the points pi that satisfy |p− pi| ≤ r. Given
a set B, we use B̄ and bd(B) to denote the closure, and
the boundary, respectively, and we use int(B) to denote its
interior. Given a single-valued or set-valued map f , we use
dom(f) to denote its domain.

In this paper, we will use the formalism of hybrid dy-
namical systems [14] for the synthesis and analysis of
robust vision-based control systems. Specifically, a hybrid
dynamical system (HDS) with state z ∈ Rn is represented
by its data H := {C,F,D,G}, and the dynamics

z ∈ C, ż ∈ F (z), (2a)

z ∈ D, z+ ∈ G(z), (2b)

where the set-valued mappings F : Rn ⇒ Rn and G : Rn ⇒
Rn, called the flow map and the jump map, respectively,
describe the evolution of the state z when it belongs to the
flow set C, and the jump set D, respectively. Solutions to
(2) are defined on hybrid time domains, which, under mild
assumptions on the data H, permits the use of graphical
convergence notions to establish sequential compactness
results for the solutions of (2), e.g., the graphical limit of
a sequence of solutions is also a solution. These sequential
compactness results play an important role in the robustness
analysis of dynamical systems. For a precise definition of
hybrid time-domains and solutions to HDS of the form (2)
we refer the reader to [14, Ch. 2].

To guarantee suitable robustness properties, we will im-
pose the following Basic Conditions on the data H.

Definition 1: The HDS (2) is said to satisfy the Basic
Conditions if: (a) the sets C ⊂ dom(F ) and D ⊂ dom(G)
are closed; (b) F is convex-valued, outer-semicontinuous,
and locally bounded relative to C; (c) G is outer-
semicontinuous and locally bounded relative to D. �

Note that when F is a (single-valued) continuous function,
item (b) of Definition 1 is automatically satisfied.

III. THE OBSTACLE AVOIDANCE PROBLEM:
ROBUSTNESS LIMITATIONS IN SMOOTH VISION-BASED

CONTROL

In this paper, we are interested in the synthesis and analy-
sis of robust feedback controllers able to autonomously steer
a vehicle from any initial position p0 ∈ R2 to a final target
pT ∈ R2, by using real-time data provided by a visual sensor
as feedback. Typical examples include cameras and high-
dimensional data generated by the fusion of multiple noisy
sensors. To illustrate our controllers, we will consider simple
velocity actuated vehicle dynamics, given by an integrator
evolving on the plane, of the form

ẋ = ux, ẏ = uy, θ = h(x, y), (3)

where (x, y) are the coordinates in the Cartesian plane, and
θ corresponds to real-time data generated by h, which can
be seen as a map that produces images as functions of the
vehicle’s position. The main goal is to design a feedback
law (ux, uy) such that the trajectories of the vehicle avoid an
obstacle N ⊂ R2 contained in a sphere of constant radius,
and also converge to an arbitrarily small neighborhood of
the target destination pT ∈ R2. Such types of navigation
problems have been extensively studied in the literature via
different approaches, including planning and tracking algo-
rithms [24], [25], triangular partitions [26], and barrier func-
tions [27], to name just a few. In contrast to these settings,
in this paper, we are interested in real-time feedback-based
controllers where planning and navigation are simultaneously
executed, and where robustness guarantees can be provided
under arbitrarily small disturbances.

Remark 1: Even though, for simplicity, in this paper we
focus on simple velocity actuated dynamics of the form (3),
our results can be easily extended to more complex models,
including nonlinear and nonholonomic dynamics, by using
a multi-time scale approach, where a low-level controller
(smooth, or hybrid, if needed) stabilizes the vehicle with
respect to an external reference, see [15, Sec. VI]. �

Gradient Flows, Anti-Potentials, and Perception Maps

One of the most popular approaches for the solution of
navigation problems in mobile robots is based on implement-
ing navigation functions φ : R2 → R, and gradient-based
feedback laws of the form

ux = kx
∂φ(x, y)

∂x
, uy = ky

∂φ(x, y)

∂y
. (4)

In this setting, a continuously differentiable function φ is
usually designed to have a maximizer at the desired target
point, while also having minimizers at the location of the
obstacles. In this way, the control law (4) incorporates
attractive terms (to converge to the target point) and repulsive
terms (to avoid the obstacles); see [16]–[20]. Note that the
closed-loop dynamics (3)-(4) can be written as ṗ = k∇φ(θ),
with p = (x, y)>, evolving in the set R2\N , where for
simplicity we used kx = ky = k ∈ R>0.



Fig. 1: Closeness between trajectory of the robot and the pre-
dicted states by a learned perception map via convolutional neural
networks (CNN).

To study controllers based on vision-based sensors, and
similar to [8], we will assume the existence of a perception
map ` that generates imperfect predictions of the state of
the vehicle using the images θ, namely, `(θ) = Mp + e,
where M ∈ R2×2 is a constant matrix, and e ∈ R2 is
the approximation error. Using this perception map to close
the loop between the camera and the vehicle, the resulting
dynamics become

ṗ = k∇φ(`(θ)), p ∈ R2\N . (5)

To learn the perception map `, in this paper we will use data-
driven techniques that make use of a sequence of labeled
training data T = {pi, θi}Ni=1, to be used in traditional
supervised learning methods (e.g., CNNs), and which is
selected to satisfy the following assumption.

Assumption 1: For each compact set K ⊂ R2, and each
pair L, ε > 0, there exists a function ` learned with training
data T = {pi, θi}Ni=1, such that K ⊂ int(SLε ), where SLε :=⋃
(pd,θd)∈T

{p ∈ {pd}+ rB : |`(θd)−Mpd|+ L|p− pd| ≤ ε} .

In words, Assumption 1 guarantees the existence of suffi-
cient data to learn a suitable perception map that can cover
any compact set K of interest. This assumption is standard in
the literature of perception-based control, e.g, [8]. It allows
establishing the following lemma, which will be instrumental
for the characterization of the approximation error of the
perception map learned from the data. The proof follows by
a straightforward application of the triangle inequality.

Lemma 1: Let F (p) := ` ◦ h(p)−Mp, and suppose that
Assumption 1 holds and p 7→ F (p) is L-Lipschitz. Then,
|`(θ)−Mp| ≤ ε, for all (p, θ) such that p ∈ SLε . �

To illustrate Lemma 1, Figure 1 shows a trajectory of
a vehicle, as well as the predicted states by a perception
map ` that satisfies |`(θ) − Mp| ≤ ε on compact sets,
with M being the identity matrix. The perception map was
learned by using a convolutional neural network (CNN).
As observed, the predictions of the perception map remain
in an ε-neighborhood of the actual trajectory. Therefore,
throughout the rest of this document, we will take M = I .

Note that if the learned perception map ` satisfies the
conditions of Lemma 1, then the closed-loop system (5)
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Fig. 2: An obstacle avoidance problem with target G and obstacle
N , and the “sensitive” set K.

behaves as the following perturbed dynamical system

ṗ = k∇φ(p+ e), |e| ≤ ε, ∀ p ∈ SLε \N , (6)

which has the form of (1). Stability and convergence prop-
erties of perturbed systems of the form (6) have been
extensively studied in the control’s literature [11]. Indeed, as
discussed in [11], [13], and [15], for the obstacle avoidance
problem the disturbance e can have a dramatic effect on the
trajectories of the vehicle. To illustrate this fact, consider
Figure 2, where a vehicle, denoted with a white square,
aims to converge to the target, denoted with a red circle
while avoiding the obstacle N denoted with a white circle.
Note that, to arrive at the target, the vehicle must choose a
trajectory that goes above the obstacle or below the obstacle.
Let K1 denote the set of initial conditions for which the
closed-loop system (6) converges to the region P from above,
and let K2 denote the initial conditions for which the closed-
loop system (6) converges to the region P from below. It then
follows that there must exist a set K where the vehicle must
make a binary decision. Mathematically, for the obstacle
avoidance problem, this behavior is captured by the following
assumption; see also [13], [15]:

Assumption 2: There exists T > 0 such that for each ρ >
0 and each p̃0 ∈ K, where K := K1 ∩K2, there exist points
p̃1(0), p̃2(0) ∈ {p̃0} + ρB, for which there exist solutions
p̃1 and p̃2 of (6) with e = 0, satisfying p̃1(t) ∈ K1\K and
p̃2(t) ∈ K2\K for all t ∈ [0, T ]. �

Under Assumption 2, the next proposition establishes zero
margins of robustness against small adversarial perturbations
t 7→ e(t) in the closed-loop system (6). The proposition
follows by [28, Thm. 6.5] or [15, Prop. 1]:

Proposition 1: Suppose that Assumption 2 holds. Then
for each ε,ρ′,ρ′′ > 0, and every p̃0 ∈ K + εB such that
p̃0 + ρ′B ⊂ R2\N and p̃0 + ρ′′B ⊂ (K1 ∪ K2) there exist
a piecewise constant function e : dom(e) → εB and a
(Carathéodory) solution p̃ : dom(p̃) → R2\N to (6) such
that p̃(t) ∈ (K + εB) ∩ (K1 ∪ K2) ∩ (p̃0 + ρ′B), for all
t ∈ [0, T ′) for some T ′ ∈ (T ∗,∞], where dom p̃ = dom ẽ,
T ∗ = min{ρ′, ρ′′}m−1, and m = sup{1 + |k∇J(η)| : η ∈
p0 + max{ρ′, ρ′′}B}. If T ′ is finite, then limt→T ′ p̃(t) /∈
(K1 ∪ K2) ∪ (p̃(0) + ρ′B). �



The result of Proposition 1 has important implications for
vision-based controllers based on perception maps, operating
under topological obstructions such as obstacles. Namely,
it establishes the existence of a set of points K ⊂ R2

where arbitrarily small approximations e on the learned
perception map ` can have a dramatic effect on the stability
properties of the controller. Given that, in general, the error
in the perception map ` can only be guaranteed to be
bounded (see Lemma 1), Proposition 1 establishes that no
robust controller based on smooth vector fields (e.g., based
on navigation functions) exists for the solution of obstacle
avoidance problems with inexact perception maps. Indeed,
for navigation functions that combine attractive fields and
repulsive fields, the set K will contain the spurious critical
points of the navigation function φ, which includes any
saddle-point1. In this case, it is even possible to design
adversarial disturbances t 7→ e(t) in (6) able to stabilize
a spurious equilibrium [15, Ex. 1].

IV. ROBUST VISION-BASED HYBRID CONTROL

To synthesize a hybrid controller that overcomes the
limitations of smooth feedback laws, we first characterize a
class of admissible obstacles. We recall that pT ∈ R2 denotes
the target point of the robot.

Assumption 3: There exists ρ ∈ R>0 and ε ∈ R>0 such
that the obstacle N ⊂ R2 satisfies N ⊂ p0 + ρB and (p0 +
2ρ
√

2B) ∩ ({pT }+ εB) = ∅, where p0 = [x0, y0]T ∈ R2. �

In words, Assumption 3 considers obstacles that are con-
tained in spheres located sufficiently far away from the target
point. Next, to achieve robust obstacle avoidance, we will
design a switched perception-based controller that imple-
ments different potential fields in different sub-regions of
the operational space of the vehicle. By using this switching
approach, we will be able to rule out the emergence of
problematic sets K such as the one shown in Figure 2. We
note that our approach differs from existing works on hybrid
control [13], [15], [21] due to the use of perception maps
employed by the vehicles to estimate their positions in real-
time. However, we also stress that our methodology can be
naturally extended to other hybrid controllers that are well-
posed in the sense of [14, Ch.7].

A. Synthesis of the Controller

To design the covering of the operational space, for each
p0 ∈ R2 and ρ > 0, define the set Bp0,ρ := {p ∈ R2 :
||p − p0|| ≤ 2ρ

√
2}, which satisfies {p0} + ρB ⊂ Bp0,ρ ⊂

{p0}+2ρ
√

2B. As in the standard state-based hybrid control
[13], [15], we define the sets:

L1a := {p ∈ R2 : y < −x+ y0 + x0 − 2ρ
√

2},
L1b := {p ∈ R2 : y < x+ y0 + x0 + 2ρ

√
2},

L2a := {p ∈ R2 : y > x+ y0 + x0 − 2ρ
√

2},
L2b := {p ∈ R2 : y > −x+ y0 + x0 + 2ρ

√
2},

1The existence of such saddle points in navigation functions with attrac-
tive and repulsive fields was established in [16].

Fig. 3: Covering of the operational space of the vehicle. Top: q = 1.
Bottom: q = 2.

as well as the unions O1 := L1a∪L1b, O2 := L2a∪L2b, and
O := O1∪O2. In this way, O = R2\Bp0,ρ and N∩O = {∅}.
For each of the sets O1 and O2, we will design suitable
potential functions Vq , q ∈ {1, 2}, that can be used in a
gradient-based controller of the form (5). The controller will
then switch between these two potential functions depending
on its current location p generated by a perception map `.
Specifically, the potential functions are defined as

Vq(p) :=

{
φq(p)− φ(p) ∀ p ∈ Oq

∞ ∀ p /∈ Oq,
(7)

where φ and φq satisfy the next assumption.
Assumption 4: The functions {Vq}q∈{1,2} satisfy the fol-

lowing: (a) For each q ∈ {1, 2} there exist functions
α1,q, α2,q ∈ K∞, and proper indicators2 ω̃q of {pT } on Oq ,
such that α1,q(ω̃q(p)) ≤ Vq(p) ≤ α2,q(ω̃q(p)),∀ p ∈ Oq;
(b) For each q ∈ {1, 2}, we have {p∗ ∈ Oq : ∇Vq(p∗) =
0} = pT ; (c) For each q ∈ {1, 2}, the function Vq(·) is
continuously differentiable in Oq . �

Remark 2: A shown in [15], the conditions of Assumption
4 can be readily satisfied using different classes of functions
φ and φq . For example, they hold when φ is given by
φ = −(x− xT )2 − (y − yT )2, and φq is given by φq(p) :=
B(d̃q(p)), where d̃q(p) := |p|2R2\Oq

, and B(s) := (s −
ρ)2 log

(
1
s

)
, if s ∈ [0, ρ], and B(s) := 0, if s > ρ, with

ρ ∈ (0, 1] being a tunable parameter selected sufficiently
small. Figure 3 shows the geometric structure of both sets
O1 (top plot), and O2 (bottom plot). The level sets of the

2For a compact set A contained in an open set U , a continuous function
ω̃ : U → R≥0 is a proper indicator of A on U if ω̃(z) = 0 if and only if
z ∈ A, and ω̃(zi) → ∞ when i → ∞ if either |zi| → ∞, or the sequence
{zi}∞i=1 approaches the boundary of U .
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functions Vq are also shown in Figure 3. Note that in each
of the sets Oq the potential function Vq has a unique critical
point located at the position of the target.

B. Main Results: Stability and Robustness

Using the above construction, we can now formulate the
complete perception-based hybrid control system. Let χ ∈
(1,∞) and λ ∈ (0, χ−1) be tunable parameters. The closed-
loop hybrid system has states (p, q) ∈ R2 ×Q, where Q =
{1, 2}. The continuous-time dynamics are given by

ṗ = −k∇Vq(`(θ)), q̇ = 0, (8)

which are allowed to evolve in the set

Cp,q :=
{

(`(θ), q) ∈ O ×Q : Vq(`(θ)) ≤ χV3−q(`(θ))
}
.
(9)

The discrete-time dynamics are given by

p+ = p, q+ = 3− q, (10)

which are allowed to evolve in the set

Dp,q :=
{

(`(θ), q) ∈ O ×Q : Vq(`(θ)) ≥ (χ− λ)V3−q(`(θ))
}
.

(11)
Note that in (8), (9), and (11), the position of the vehicle
is given by the perception map `(θ) rather than the state p.
The term (χ − λ) in (11) guarantees that the intersection
of the sets Cp,q and Dp,q is not empty. Thus, for initial
conditions in Cp,q ∩Dp,q solutions are not unique. The set
Cp,q characterizes the points where the vehicle implements
the controller (8) with constant state q. On the other hand,
the set Dp,q describes the points in the space where the
vehicle toggles the logic state q whenever it approaches
the boundary of the respective set Oq . In particular, note
that since χ > 1 and χ − λ > 1, the robot toggles
the potential field Vq whenever its current value exceeds a
threshold compared to the other potential fields Vq′. After
each jump, the robot flows again using now the new potential
function Vq′, until a new jump (if at all) is triggered. Note
that this switching rule describes a hysteresis property in the
feedback controller based on a supervisor mechanism. Figure
4 presents a schematic representation of the controller.

The following theorem is the main result of this paper.
Theorem 1: Let δ > 0 and K0 ⊂ Cp,q∪Dp,q , where K0 is

compact. Suppose that p 7→ F (p) is L-Lipschitz continuous,
where F is defined in Lemma 1. Then, there exists a
perception map ` and training data T = {pi, θi}Ni=1 such

that every trajectory of the vehicle generated by the hybrid
system (8)-(11), with initial condition in K0, is complete and
converges to a δ-neighborhood of the target point pT while
avoiding the obstacle N . �

Proof: Under Assumption 1, and using Lemma 1, for any
compact set K ⊂ R2, and any pair ε, L ∈ R>0 there exists
a perception map `(θ) satisfying the bound:

|`(θ)− p| ≤ ε, (12)

for all p ∈ SLε . It follows that `(θ) ∈ p + εB, ∀ p ∈ SLε .
Based on this observation, on compact sets, the solutions of
(8)-(11) are also solutions of the inflated inclusion with state
z = (p, θ):

ż =

(
ṗ

θ̇

)
∈ F (z) :=

(
−k∇Vq(p+ εB)

0

)
(13a)

Cp,q =
{
z ∈ O ×Q : Vq(p+ εB) ≤ χV3−q(p+ εB)

}
+ εB,
(13b)

z+ =

(
p+

θ+

)
∈ G(z) :=

(
p

3− q

)
, (13c)

Dp,q :=
{
z ∈ O ×Q : Vq(p+ εB) ≥

(χ− λ)V3−q(`(θ))
}

+ εB. (13d)

In turn, every solution of (13) is also a solution of an inflated
hybrid system, given by

z ∈ Cε, ż ∈ Fε(z), (14a)

z ∈ Dε, z+ ∈ Gε(z), (14b)

where the data (Cε, Fε, Dε, Gε) is defined as

Cε := {z ∈ Rn : (z + εB) ∩ C 6= ∅},
Fε(z) := co F ((z + εB) ∩ C) + εB
Dε := {z ∈ Rn : (z + εB) ∩D 6= ∅},

Gε(z) := {v ∈ Rn : v ∈ g + εB, g ∈ G((z + εB) ∩D)}.

Based on this observation, in order to establish a stability
property for the closed-loop system (8)-(11), it suffices to
establish a stability result for the inflated system (14). The
following Lemmas will be instrumental for our results.

Lemma 2: The closed-loop hybrid system (13) with ε = 0
satisfies the Basic Conditions. �

Proof: Follows directly by [14, Thm. 6.8]. �
Lemma 3: Consider the HDS (13) with ε = 0. Then,

under Assumption 4, the set {pT } × Q is asymptotically
stable with basin of attraction given by O ×Q.

Proof : The proof follows the same ideas of [28, Sec. 6]
and [15, Thm. 1]. Using Assumption 1, let us define ω̃(z) :=
minq∈Q s.t. p∈Oq

ω̃q(p) for each z ∈ O. We obtain that ω̃ is
a proper indicator of pT on O. Let

α1(s) := min
q∈Q

α1,q(s), α2(s) := max
q∈Q

α2,q(s), (15a)

Using Assumption 4-(a), the function Vq satisfies

α1(ω̃(p)) ≤ Vq(p) ≤ α2(ω̃(p)), ∀ p ∈ O. (16)



During flows of the hybrid system, the time-derivative of Vq
is given by:

V̇q(p) = −k|∇Vq(p)|2 < 0, (17)

for all (p, q) ∈ Cp,q ∩ (O\{pT })× {q}. Inequality (17) im-
plies that, for each q ∈ {1, 2}, the function Vq(z) decreases
outside the target point pT . On the other hand, jumps in the
closed-loop system are allowed only when Vq gets larger or
equal than (χ−λ)V3−q . Since, by construction (χ−λ) > 1,
it follows that during jumps Vq satisfies:

Vq+(p+) ≤ 1

χ− λ
Vq(p), ∀ (p, q) ∈ Dp,q.

Therefore, the Lyapunov function decreases during jumps.
The hysteresis mechanism rules out Zeno behavior, and
the decrease of the Lyapunov function during flows and
jumps implies that, for any complete solution of the system,
the position p converges to pT , uniformly on compact sets
in the basin of attraction [14, Prop.7.5]. Completeness of
solutions follows because: a) the system has no finite escape
times; b) solutions cannot stop due to flows leaving the
flow set; c) solutions cannot stop due to jumps leaving
the union of the flow and jump set. This establishes the
stability result. Obstacle avoidance follows by ε-closeness
of solutions between the perturbed dynamics (14) and the
nominal dynamics corresponding to (13) with ε = 0. �

With Lemma 3 at hand, Theorem 1 follows now by a direct
application [14, Thm. 7.21]. �

To the best knowledge of the authors, Theorem 1 is the first
result in the literature that integrates perception-based maps
and hybrid controllers with stability and convergence guaran-
tees. In fact, the previous arguments can be trivially extended
to guarantee robustness with respect to additional external
disturbances, including small measurement noise, sporadic
camera failures, and slowly moving targets (provided they
remain in a compact set), a setting that emerges in leader-
follower systems where the follower tracks the position of
the leader. Figure 5 illustrates this scenario by showing the
level sets of Vq at three different instants of time. Here, the
white triangle denotes the position of the leader, which acts
as a target for the follower, denoted with the green triangle.

V. NUMERICAL EXPERIMENTS

We test the perception-based hybrid controller by training
a perception map using a convolutional neural network. The
model’s architecture consists of three sets of Conv-ReLU-
MaxPool blocks, with a kernel size of 3 × 3 and 2 × 2,
respectively. A dense layer, preceded by a Dropout layer
with probability 0.5, takes the flattened output of the last
Conv-ReLU-MaxPool block of layers and outputs a vector
that imperfectly describes the state information. The model
was trained using Keras. The training took place for 5
epochs, with batch size 128 and input images with shape
(60, 100, 3). The output is a 1 × 2 vector describing the
predicted (x, y)-position of the agent. The optimizer was
Adam with learning rate 0.001. The loss function was the
Mean Squared Error (MSE) between the predicted and real

state of the agent. Mean Absolute Error (MAE) was also used
as a validation metric. To test the controller, we consider
a leader robot (denoted with a white square) aiming to
converge to the static target G while avoiding the obstacle
N . We also consider a follower robot (denoted with a green
square), which tracks the leader. Both employ the hybrid
controller, and the follower robot uses the learned perception
map to approximate the leader’s state. Figure 7 shows the
trajectories obtained in this scenario under two different
initial conditions: (-12, 2) in the left plot, and (-37, -17)
in the right plot. In the simulations, we added noise to
state measurements and we also included sensor failures
(e.g., the camera does not transmit data at each time t with
a certain probability). As observed, the hybrid controller
provides suitable robustness properties. On the other hand,
in Figure 6 we tested the generalization capabilities of the
perception map. Here, we considered images containing
occlusions (simulating, e.g., clouds). The left plot shows the
performance of the hybrid controller when using a perception
map trained on images without occlusions. It can be seen
that the controller successfully handles the increment in
prediction error due to inputs to the vision model being
generated from a different process. The right plot of Figure
6 considers a controller trained on data with occlusions.

VI. CONCLUSIONS

In this paper, we introduced a perception-based hybrid
controller for the robust solution of obstacle avoidance prob-
lems that use vision-based sensors for the purpose of feed-
back. Unlike existing results in the literature, our controller
incorporates a perception map learned by using supervised
learning methods, which provides a suitable approximation
of the position of the vehicle based on images generated by a
camera. By leveraging the structural robustness properties of
the hybrid controller, and the generalization capabilities of
the perception map, we established obstacle avoidance and
convergence to the target point. Future research will focus
on the theoretical guarantees under multiple obstacles.
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