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Abstract— Classically, the optimal control problem in
the presence of an adversary is formulated as a two-
player zero-sum differential game or an H∞ control
problem. The solution to these problems can be obtained
by solving the Hamilton-Jacobi-Issac equation (HJIE).
We provide a novel Koopman-based expression of the
HJIE, where the solutions can be obtained through
the approximation of the Koopman operator itself. In
particular, we developed a data-driven and model based
policy iteration algorithm for approximating the optimal
value function using a finite-dimensional approximation
of the Koopman operator and generator.

I. INTRODUCTION

The control of complex dynamical systems in ap-
plications such as vehicle autonomy, robotics, and
advanced manufacturing involves interactions of sys-
tem dynamics with the environment. There are two
common approaches to account for these interactions:
robust control formulation using H∞ optimal control
or control with adversary using two-player zero-sum
differential games [1]. These two formulations are
intimately connected and essentially reduce to solving
the HJIE [2]. The HJIE is a nonlinear partial differential
equation (PDE) that is difficult to solve for nonlinear
dynamical systems. Numerical methods are often used
for the approximate solution to the HJIE. In this paper,
we provide a novel Koopman-based perspective to the
HJIE. The Koopman operator provides a linear lifting
of a nonlinear system in the space of observables or
functions [3]. The linearity of the Koopman operator
provides a powerful tool in the development of data-
driven analysis and synthesis methods for nonlinear
systems [4]–[12].

Given the significance of H∞ optimal control and
two-player zero-sum differential game problems, there
is extensive literature on the computational aspects of
this problem.

Many of the algorithms that we consider require
an initial stabilizing controller and follow a nested
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loop structure [13]–[15]. The inner loop iterates to find
the worst adversary or disturbance, given a controller.
The outer loop works to find the best response to the
adversary; for more details, we refer the reader to [13].
Our algorithm will utilize the same architecture. In
contrast to nested loops, the algorithm in [16] computes
the adversary and control updates simultaneously. Other
techniques for solving the HJIE are adapted from works
developed to solve the Hamilton-Jacobi-Bellman equa-
tion (HJBE). Recent works have adapted the Kleinman
algorithm [17] by converting the problem of solving
a Riccati equation, with a sign indefinite quadratic
term, into one of generating successive iterations of
solutions of LQ-type Riccati equations, each with neg-
ative semidefinite quadratic terms [18]. These results
were extended for solving the HJIE with guarantees
on the local convergence rate and no requirements for
an initial admissible control [19]. These works and
others can benefit from the Koopman-based HJIE as we
provide new insights into solutions for these equations.

The main contribution of this paper is a Koopman-
based derivation of the HJIE. In this paper, we pro-
vide model-based and data-driven algorithms for the
approximate solution of the HJIE. Given the intimate
connection between the HJIE and H∞ optimal control,
our proposed Koopman-based computational frame-
work will solve either of these problems.

The paper is organized as follows. Preliminaries on
the Koopman operator and its data-driven approxi-
mation are presented in Section II. Results involving
the connection between the HJIE and the Koopman
operator are presented in Section III. Model-based and
data-driven algorithms for obtaining iterative solutions
of the HJIE based on the approximation of the Koop-
man operator are presented in Section IV. Simulation
results of the developed framework on nonlinear system
examples are presented in Section V, followed by
conclusions in Section VI.

II. PRELIMINARIES AND NOTATIONS

Notation: Rn denotes the n dimensional Euclidean
space and Rn≥0 is the positive orthant. Given X ⊆ Rn
and Y ⊆ Rm, let L1(X,Y),L∞(X,Y), and Ck(X,Y)
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denote the space of all real valued integrable functions,
essentially bounded functions, and space of k times
continuously differentiable functions mapping from X
to Y respectively.

st(x) denotes the solution of dynamical system ẋ =
f(x) starting from initial condition x.

A. Koopman Operators and Generators

Consider a dynamical system

ẋ = f(x), x ∈ X ⊆ Rn, (1)

where the vector field is assumed to be
f(x) ∈ C1(X,Rn). The nonlinear dynamics in
the state space can be lifted to infinite dimension space
of functions using the Koopman operator defined as
follows.

The Koopman operator Ut : L∞(X) → L∞(X) for
dynamical system (1) is defined as

[Utϕ](x) = ϕ(st(x)), ϕ ∈ L∞.

The infinitesimal generator for the Koopman operator

lim
t→0

Utϕ− ϕ
t

= f(x) · ∇ϕ(x) =: Kfϕ. (2)

Since Ut is semi-group with generator Kf it satisfies

d

dt
Utϕ = KfUtϕ. (3)

Next we describe algorithms for the finite dimen-
sional approximation of Koopman operator.

B. Data-driven Approximation of Koopman Operator

Extended dynamic mode decomposition (EDMD)
method is one of the popular algorithms for the data-
driven approximation of the Koopman operator [20].
The basic idea of the algorithm can be explained as
follows. For the continuous-time dynamical system (1),
consider snapshots of time-series data from single or
multiple trajectories

X = [x1,x2, . . . ,xM ], Y = [y1,y2, . . . ,yM ], (4)

where xi ∈ X and yi ∈ X. The pair of data sets are
assumed to be two consecutive snapshots i.e., yi =
s∆t(xi), where s∆t is solution of (1) with ∆t the
discretization time-step. Let Ψ = [ψ1, . . . , ψN ]> be
the choice of basis functions. The EDMD algorithm
provides a finite-dimensional approximation of the
Koopman operator as the solution of the following least
square problem min

K
‖ GK −A ‖2F . With K,G,A ∈

RN×N , ‖ · ‖F is the Frobenius norm. The matrices are

computed from data G = 1
M

∑M
m=1 Ψ(xm)Ψ(xm)>

and A = 1
M

∑M
m=1 Ψ(xm)Ψ(ym)>. The solution to

the least square problem is

U∆t ≈ Kedmd = G†A. (5)

Where † stands for pseudo-inverse. The convergence
of EDMD towards the true Koopman operator as the
number of data points and basis functions go to in-
finity are provided in [21], [22]. The EDMD-based
approximation of the Koopman operator can be used
to approximate the Koopman generator as follows,

Kf ≈
K− I

∆t
=: L. (6)

III. KOOPMAN AND HAMILTON-JACOBI EQUATIONS

There are different ways in which control problems
in the presence of an adversary can be formulated. In
particular, the adversary can be viewed as a passive
disturbance as in the H∞ problem, or it can be viewed
as an active player as in the two-player zero-sum dif-
ferential game problem. In this paper, we use the latter
approach. Consider an affine in control and disturbance
system of the form

ẋ = f(x) + g(x)u(t) + h(x)ω(t), (7)

where x ∈ Rn, u ∈ R, and ω ∈ R are the state,
control input, and adversarial input respectively. For
the simplicity of presentation, we restrict the discussion
to the case of scalar control and adversary inputs. We
make the following assumptions on the vector fields.

Assumption 1: We assume that the vector fields f ,g,
and h are C1(Rn) and that f(0) = 0 so that the origin
is the equilibrium point of the system in the absence
of control and adversarial inputs.

In the two-player zero-sum differential game, we
proceed with the following performance index.

J(x, u, w) =

∫ ∞
0

(
q(x) + ru2(t)− γ2ω2(t)

)
dt, (8)

where q(x) ≥ 0 is assumed to be a state cost with
q(x) ∈ C1(R) and γ, r are positive constants. The
two-player zero-sum differential game is defined as the
following min-max optimization problem

min
u[0,∞)

max
w[0,∞)

J(x, u, w), (9)

where the objective of the control and adversarial inputs
is to minimize and maximize the performance, respec-
tively. The game yields a unique solution V ? (known
as the value of the game) if a saddle point (u?, w?)
exists that satisfies the following condition, V ?(x) =



minu maxw J(x, u, w) = maxw minu J(x, u, w). This
saddle point follows the so called Nash equilibrium
condition, namely J(x, u?, w) ≤ J (x, u?, w?) ≤
J (x, u, w?). It is known that the optimal value function
V ?(x) is obtained from the solution of the HJIE

0 = q + f(x) · ∇V − r−1

4
∇V >g(x)g>(x)∇V

+
1

4γ2
∇V >h(x)h>(x)∇V, V (0) = 0 (10)

and, the optimal control and adversarial input obtained
from V ? is as follows:

u(x) = −1

2
r−1g · ∇V ?, w(x) =

1

2γ2
h · ∇V ?. (11)

The minimum positive semi-definite (PSD) solution
gives the value of the game or the Nash value. It has
been shown that a unique minimum PSD solution exists
for all γ ≥ γ̄, where the γ̄ corresponds to the solution
of the H∞ control problem. For more details on this
connection between the differential games and the H∞
problem, refer to [2].

In the following, we derive the HJIE using the
Koopman theory. This result is novel and will lay the
foundation for the further development of Koopman-
based computational frameworks. Consider the min-
max performance index subject to the constraints of
system dynamics as follows

min
u

max
w

J(x, u, w)

s.t. ẋ = f(x) + g(x)u(t) + h(x)ω(t), (12)

where J is defined in (8). We make following assump-
tion on the min-max problem (12).

Assumption 2: We assume that the solution to the
min-max problem (12) for the control and adversarial
inputs is feedback in nature i.e., u = k(x) ∈ C1(Rn)
and w = `(x) ∈ C1(Rn). Furthermore, γ is assumed
to be larger than γ̄ so that the optimal value function,
V ?(x) ≥ 0, is finite for any finite value of x ∈ Rn.
Following Assumption 2, we can write

V ?(x) = min
k

max
`
J(x, k, `)

s.t. ẋ = f(x) + g(x)k(x) + h(x)`(x). (13)

The above assumption could be restrictive, and in fact,
the HJIE for solving the min-max problem is derived
under a less restrictive assumption [2]. For example, the
assumption rules out the possibility for the existence of
viscosity based solution of the HJIE [23]. Essentially,
the viscosity-based solutions allow for a continuous
function to be defined as a unique solution of the HJIE.

Theorem 1: For the min-max optimization problem
(12) satisfying Assumption 2 and system dynamics
Assumption 1. The optimal cost function V ? can be
obtained as the solution of following equation

Kf+gk+h`V
? = −q − r(k?)2 + γ2(`?)2

k?(x) = −1

2
r−1KgV

?, `?(x) =
1

2γ2
KhV

?,
(14)

where Kf+gk+h`, Kg, and Kh are the Koopman gen-
erators where the subscript denotes the vector field.

Proof: Following Assumption 2, we write the
feedback system as

ẋ = f(x) + g(x)k(x) + h(x)`(x).

Let Uct be the Koopman operator for this feedback
system. Using the definition of Koopman operator, we
can write performance measure J(x, k, `) as

V (x) =

∫ ∞
0

[Uctϕ](x)dt, (15)

where ϕ(x) := (q+ rk2− γ2`)(x). We next claim that
V (x) satisfies

Kf+gk+h`V = −q − rk2 + γ2`2. (16)

Substituting (15) in the LHS of (16), we obtain∫ ∞
0
Kf+gk+h`Uctϕdt =

∫ ∞
0

d

dt
Utϕdt

= Utϕ|∞t=0 = lim
t→∞

Utϕ− ϕ, (17)

where we have used the infinitesimal generator property
of the Koopman semi-group (3). Then, we can show
that limt→∞[Utϕ](x) = 0. To prove this we use the
Assumption 2 that V (x) is finite for any finite x.
Furthermore, [Utϕ] is uniformly continuous w.r.t. time
which follows from the definition of the Koopman
operator semi-groups and the fact that the solution
of the closed loop system is uniformly continuous
w.r.t. time. Hence, we can apply the Barbalat Lemma
which states that for any function G(t) ∈ C1, and
limt→∞G(t) = α. If G′(t) is uniformly continuous,
then limt→∞G

′(t) = 0. Applying the Barbalat Lemma
with G′(t) = [Utϕ](x) for a fixed x, we obtain
limt→∞[Utϕ](x) = 0. Hence, we prove the claim
(16). The optimal control and adversarial inputs are
obtained as the critical or extremum point of (16). This
extremum is obtained by differentiating (16) w.r.t. k and
` leading to

k(x) = −1

2
r−1KgV, `(x) =

1

2γ2
KhV. (18)



Substituting (18) in (16) we obtain the desired HJIE
(14) for optimal value function V ?.

Note that the Koopman-based perspective developed
here can be easily extended to the HJBE and the H∞
control problem. The HJBE appears in the optimal
control problem in absence of the adversary and can
be obtained from (10) when γ →∞.

IV. COMPUTATIONAL METHODS

The complexity associated with the nonlinear nature
of the PDE is overcome by developing an iterative
algorithm for solving the HJIE. In the following, we
present the Koopman Policy Iteration (KPI) algorithm.

A. Koopman policy iteration approximation of HJIE

In the approximation of the HJIE, we can assume
that we have access to the system vector fields in the
form of f ,g, and h. If we do not, then EDMD based
methods can be employed to approximate these vector
fields. For a given control and adversarial input at the
iteration step (i, j) i.e., ki and `(i,j), the time-series data
from system dynamics ẋ = f +gki+h`(i,j) =: f

(i,j)
c is

used to construct the approximation of the closed loop
Koopman generator Kf

(i,j)
c
≈ Lfc

(i,j) for a given choice
of basis functions Ψ = (ψ1, . . . , ψN )>. Similarly, the
right hand side of (16) can be approximated as follows:

−q(x)− r(ki)2(x) + γ2(`(i,j))2(x) ≈ b>(i,j)Ψ(x),

where the coefficient vector b(i,j) is obtained as the
solution of following least square problem. Let {xt}Mt=0

be the time series data collected by sampling uni-
formly over the state space. Construct the matrices
for the lifted states Ψ̄ = [Ψ(x0), ...,Ψ(xM )]>, state
cost q̄ = [q(x0), ..., q(xM )]>, control cost k̄ =
[(ki)2(x0), ..., (ki)2(xM )]>, and adversary cost l̄ =
[(`(i,j))2(x0), ..., (`(i,j))2(xM )]>. Where the coefficient
vector b(i,j) is obtained as the solution of following
least square problem,

min
b(i,j)

‖ Ψ̄(x)b(i,j) − (−q̄− rk̄i + γ2l̄(i,j)) ‖22, (19)

which admits the following analytical solution.

b(i,j) = Ψ̄
†
(−q̄− rk̄i + γ2l̄(i,j)). (20)

The value function is approximated as V (i,j)(x) =
v>(i,j)Ψ(x), then the finite dimensional approximation

Fig. 1: Example 1: Analytical (dashed) and KPI (solid).

Fig. 2: Example 1: State trajectories.

Fig. 3: Example 1: Control and adversary trajectories.

of (14) can be written as

Lfc
(i,j)v(i,j) = b(i,j), (21)

k(i+1)(x) = −1

2
r−1g · ∇(v>(i,∞)Ψ(x)), (22)

`(i,j+1)(x) =
1

2γ2
h · ∇(v>(i,j)Ψ(x)). (23)



V. SIMULATION RESULTS

All the simulation results assume knowledge of the
vector fields f , g, and h. All the computations are
performed in MATLAB with a i9-10900KF CPU.

A. Example 1: F16 Aircraft

The HJIE for linear systems can be solved analyti-
cally, so we validate our KPI algorithms solution. The
system dynamics of a F16 aircraft is given as a linear
continuous time model ẋ = Ax+Bu+Hω,

ẋ =

−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

x+

0
0
1

u+

1
0
0

ω. (24)

The basis functions used in this problem are Ψ(x) =
[x2

1, x1x2, x1x3, x
2
2, x2x3, x

2
3]. The time step between

snapshots is ∆T = 0.15s with a total of 10 initial
conditions sampled uniformly from xic ∈ [−5, 5]. We
choose γ = 5 and r = 1. Let the initial admissible
control using pole placement method with poles p =
[−2,−1,−0.5]. The game algebraic Ricatti equation
(GARE) for H∞ control problem takes the form,

A>P + PA− P [H,B]

[
−γ2I 0

0 I

] [
HT

BT

]
P + C>C = 0.

The analytic value function, using the GARE solution
P , is V ? = x>Px. In this example, the P matrix is, 1.657 1.395 −0.166

1.395 1.657 −0.180
−0.166 −0.180 0.437

 . (25)

Our proposed KPI algorithm converges to coefficient
vector v = [p11, 2p12, 2p13, p22, 2p23, p33]> =
[1.7293, 2.7756,−0.343, 1.733,−0.373, 0.544]>,
which closely matches with the analytical solution
obtained using GARE. The KPI value function
coefficients converge to the HJIE solutions in 4
iterations, see Fig. 1. The closed loop state trajectories
from the initial, KPI, and H∞ control is shown Fig. 2,
and 3. The total algorithm runtime was 0.243s.

B. Example 2: 2D Nonlinear System HJBE

The continuous time nonlinear dynamical system is,

ẋ =

[
−x1 + x2

−0.5(x1 + x2) + 0.5(x2
1x2)

]
+

[
0
x1

]
u+

[
0.1

0.5x2

]
ω. (26)

We choose polynomial basis functions of the form
Ψ(x) = [x2

1x2, x
2
1, x1x2, x

2
2, x

2
1x

2
2, x

4
1, x

4
2]. The initial

admissible control is chosen to be uinitial = 0, as
the system has a stable equilibrium at the origin. In
absence of ω or when γ = ∞, the analytical solution
of HJBE for the optimal value function is V ? =
0.5x2

1 + x2
2, hence v?(x2

1) = 0.5 and v?(x2
2) = 1.

Fig. 4: Example 2: HJBE simulation results. Top left: state
space trajectory, bottom right: control input trajectory, top
right: value function coefficients (dashed lines are analytical
values), and bottom right: value function error.

Fig. 5: Example 3: HJIE simulation results. Top row: (left)
value function coefficients and (right) error, middle row: state
response over time, and bottow row: (left) control and (right)
adversary input values over time.

The HJBE optimal control signal is u?(x) = −x1x2.
The analytical solutions can be found in [24]. In this
case r = 1 and ∆T = 0.01s are used with a total
of 50 initial conditions sampled from xic ∈ [−1, 1].
The KPI value function for this case converges to
coefficient vector v = [0, 0.505, 0, 1.00, 0.005, 0, 0]>,
which matches the analytical solution. The solution
converges to the optimal HJBE control in 3 iterations as
shown in Fig. 4 with a total run-time of 0.396s. In the
second case, ω is introduced and γ = 5 is chosen. The
optimal value function is not know. The KPI algorithm
converges to a value function with coefficients v =
[0, 0.504,−0.002, 1.005, 0.003, 0.001, 0.003]>.



C. Example 3: 2D Nonlinear System HJIE

The continuous time nonlinear dynamical system is,

ẋ =

[
−x1 + x2

−x3
1 − x3

2 + x2(cos(2x1)+2)2

4 − x2(sin(4x1)+2)2

4γ2

]
+[

0
cos(2x1) + 2

]
u+

[
0

sin(4x1) + 4

]
ω.

(27)

We use the following basis Ψ(x) =
[x1, x2, x

2
1x2, x

3
1, x

2
2, x

3
2, x

4
1]. In this example, r = 1,

γ = 8 and, ∆T = 0.025s with a total of 100
initial conditions sampled from xic ∈ [−1.25, 1.25].

u =
(
x2(cos(2x1)+2)2

4
− x2(sin(4x1)+2)2

4γ2
)

(cos(2x1)+2) is used as the initial
controller. The solution to the HJIE for the optimal
value function is V ? = 1

4x
4
1 + 1

2x
2
2. The optimal

control is u? = −(cos(2x1) + 2)x2 and the optimal
adversarial disturbance ω? = 1

γ2 (sin(4x1) + 2)x2.
The analytical solution can be found in [16].
The value function coefficients converge to v =
[0.033, 0.024,−0.003,−0.023, 0.588,−0.008, 0.301]>.
The solutions converges near to the HJIE in a few
iterations. A more appropriate choice of basis function
can help improve this approximation. The total
run-time was 0.826s.

VI. CONCLUSIONS

We presented a Koopman-based policy iteration
(KPI) algorithm for solving the HJIE. This iterative
algorithm can be implemented in the model-based and
data-driven setting and relies on approximation of the
Koopman operator. Future research efforts will focus
on understanding the role of the Koopman spectrum in
the data-driven approximation of the HJIE.
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[21] M. Korda and I. Mezić, “On convergence of extended dynamic
mode decomposition to the koopman operator,” Journal of
Nonlinear Science, vol. 28, no. 2, pp. 687–710, 2018.
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