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High Order Robust Adaptive Control Barrier Functions and
Exponentially Stabilizing Adaptive Control Lyapunov Functions

Max H. Cohen and Calin Belta

Abstract— This paper studies the problem of utilizing data-
driven adaptive control techniques to guarantee stability and
safety of uncertain nonlinear systems with high relative de-
gree. We first introduce the notion of a High Order Robust
Adaptive Control Barrier Function (HO-RaCBF) as a means
to compute control policies guaranteeing satisfaction of high
relative degree safety constraints in the face of parametric
model uncertainty. The developed approach guarantees safety
by initially accounting for all possible parameter realizations
but adaptively reduces uncertainty in the parameter estimates
leveraging data recorded online. We then introduce the notion
of an Exponentially Stabilizing Adaptive Control Lyapunov
Function (ES-aCLF) that leverages the same data as the HO-
RaCBF controller to guarantee exponential convergence of the
system trajectory. The developed HO-RaCBF and ES-aCLF
are unified in a quadratic programming framework, whose
efficacy is showcased via two numerical examples that, to our
knowledge, cannot be addressed by existing adaptive control
barrier function techniques.

I. INTRODUCTION

The problem of developing control policies that guarantee
stability and safety of nonlinear control systems has received
significant attention in recent years. In particular, the unifi-
cation of Control Lyapunov Functions (CLFs) [1], [2] and
Control Barrier Functions (CBFs) [3], [4] has provided a
pathway towards safe and stable control of complex non-
linear systems such as autonomous vehicles [5], [6], multi-
agent systems [7], and bipedal robots [8]. Although powerful,
the guarantees afforded by these approaches are model-
based, hence the success in transferring such guarantees
to real-world systems is inherently tied to the fidelity of
the underlying system model. Inevitably, such models are
only an approximation of the true system due to parametric
uncertainties and unmodeled dynamics, thus there is strong
motivation to study the synthesis of CLF and CBF-based
controllers in the presence of model uncertainty. Although
robust approaches [9], [10] have demonstrated success in
this regard, in general, such techniques can be highly con-
servative. On the other hand, data-driven approaches have
demonstrated the ability to reduce uncertainty and yield
high-performance controllers in terms of both safety and
stability. Popular data-driven approaches for reducing uncer-
tainty include work based on episodic learning [11], [12]
or by modeling the uncertainty using Gaussian processes
(GPs) [13], [14]. However, providing strong guarantees in
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an episodic learning setting is challenging and, although
GP-based approaches account for very general classes of
uncertainties, GPs can be computationally intensive and the
generality offered by GPs generally results in probabilistic,
rather than deterministic, guarantees on stability and safety.

As adaptive control [15] has a long history of success
in controlling nonlinear systems with parametric uncertainty,
there is also a rich line of work that unites CLFs and CBFs
with techniques from adaptive control. The authors of [16]
extend the adaptive CLF (aCLF) paradigm [15, Ch. 4.1] to
CBFs, yielding the first instance of an adaptive CB (aCBF)
that allows for the safe control of uncertain nonlinear systems
with parametric uncertainty. The authors of [18]-[20] extend
the aCBF techniques from [16] using set-membership iden-
tification, concurrent learning (CL) [21], [22], and hybrid
techniques, respectively, which were shown to reduce the
conservatism of original aCBF formulation. Nevertheless, all
of the aforementioned aCBF techniques are limited to CBFs
with relative degree one. In practice, however, many safety-
critical constraints have relative degrees larger than one (e.g.,
constraints on the configuration of a mechanical system
generally have at least relative degree two). The unification
of CLFs/CBFs with techniques from CL adaptive control was
also presented in [23], [24]; however, the resulting CLF con-
trollers either only guarantee uniformly ultimately bounded
stability or are limited to single-input feedback linearizable
systems. Importantly, the CL-based aCBF controllers from
[23], [24] do not provide strong safety guarantees since the
CBF-based control inputs are generated using the estimated
dynamics without accounting for estimation errors, leading
to potential safety violations that can be understood through
the notion of input-to-state-safety [25].

To address high relative degree safety constraints for
systems with known dynamics, the authors of [26]-[29]
introduce exponential and high order CBFs (HOCBFs),
which provide a systematic framework to construct CBFs
that account for high relative degree constraints. Importantly,
as noted in [29], HOCBFs can also be used to simplify the
search for valid CBFs since the dependence on higher order
dynamics need not be directly encoded through the definition
of the CBF itself (as in the relative degree one case). Rather,
the dependence on higher order dynamics is implicitly en-
coded through conditions on higher order derivatives of the
CBF candidate. Despite the advancements of both aCBFs
and HOCBFs, to our knowledge, the intersection of these

IThe term aCBF was also used in [17] to refer to a class of CBFs that
account for time-varying control bounds.



two techniques has yet to be explored in the literature.

In this paper we unite aCBFs and HOCBFs to develop
control policies satisfying high relative degree safety con-
straints for nonlinear systems with parametric uncertainty.
Similar to [19], our approach leverages the concurrent learn-
ing technique presented in [22], which identifies uncertain
parameters of the nonlinear system online by exploiting
sufficiently rich data collected along the system trajectory.
A key insight enabling our high relative degree approach is
that if the relative degrees of the CBF with respect to the
control and uncertain parameters are the same (in a sense to
be clarified later in this paper), then the sufficient conditions
for safety can be encoded through affine constraints on the
control input, allowing control synthesis to be performed in a
computationally efficient quadratic programming framework.
Furthermore, unlike existing aCBF formulations for relative
degree one constraints [16], [18]-[20], we show that our
High Order Robust Adaptive Control Barrier Functions (HO-
RaCBFs) inherit the robustness properties of zeroing CBFs
[30] in the sense that our developed aCBFs not only render
the safe set forward invariant, but also asymptotically stable
when solutions begin outside the safe set. We then introduce
a novel class of aCLF, termed exponentially stabilizing
aCLFs (ES-aCLFs), that extends the CL paradigm from [22]
to a CLF setting by exploiting the same history stack used
to reduce conservatism of the safety controller to endow a
nominal CLF-based control policy with exponential stability
guarantees. The efficacy of the combined HO-RaCBF/ES-
aCLF controller is demonstrated through simulations of a
robotic navigation task and an inverted pendulum, both of
which involve high relative degree safety constraints that
cannot be addressed by existing aCBF approaches.

II. MATHEMATICAL PRELIMINARIES

Consider a nonlinear control affine system of the form
&= f(x) +g(x)u, (D

with state x € R™ and control v € U C R™, where [ :
R™ — R™ and g : R™ — R™ "™ are locally Lipschitz vector
fields modeling the drift and control directions, respectively.
Given a feedback law u = k(x,t), locally Lipschitz in x
and piecewise continuous in ¢, the closed-loop vector field
fa(z,t) = f(z) + g(x)k(x,t) is also locally Lipschitz in
x and piecewise continuous in ¢, implying that (T) admits a
unique solution x : Z — R" starting from z(0) € R™ on
some maximal interval of existence Z C Rxq. A closed set
C C R” is said to be forward invariant for the closed-loop
system & = fq(z,t) if 2(0) € C = x(t) € Cforallt € .
In this paper (and in the related literature) forward invariance
is used to formalize the abstract notion of safety. Hence, if
a given “safe” set C is forward invariant for © = fy(x,t),
then we say the closed-loop system is safe with respect to C.
It will be assumed throughout this paper that any safe set C
can be expressed as the zero-superlevel set of a continuously
differentiable function h : R™ — R as

C = {z € R" | h(z) > 0}. )

A popular tool for developing controllers that render (2)
forward invariant for (I is the concept of a CBF [3], [4],
which places Lyapunov-like conditions on the derivative of
h to guarantee safety. A limitation of traditional CBFs from
[3], however, is that their effectiveness is conditioned upon
the assumption that the function h has relative degree one.
Yet, many relevant systems and safe sets fail to satisfy such a
condition, which has motivated the introduction of exponen-
tial and higher order CBFs [26]—-[29] to account for safety
constraints with high relative degree. Before proceeding, we
recall that the Lie derivative of a differentiable function
h : R™ — R along a vector field f : R™ — R" is defined
as Lyh(z) = 22 f(z). This notation allows us to denote
higher order Lie derivatii\iels along an additional vector field
gas LyLi ' h(x) = 252" g(2) (see e.g. [31, Ch. 13.2)).
Definition 1 ([31]). A sufficiently smooth function h
R™ — R is said to have relative degree r € N with respect
to (I) on a set R ¢ R*if 1) forall 1 < ¢ < r —1,
LyL 'h(z) = 0;2) LyL} 'h(z) # 0 for all z € R.

To account for high relative degree safety constraints,
the authors of [27]-[29] introduce the notion of a HOCBF.
Before stating the definition, we recall from [3] that a
continuous function «« : (—b,a) — (—00,00), for some
a,b € Ry, is said to be an extended class K function if it
is strictly increasing and «(0) = 0.

Definition 2 ([27]-[29]). Consider system and a set C C
R™ as in @2). Let {C;}"_, be a collection of sets of the form
Ci ={x € R™|¢;_1(x) > 0}, where ¢(z) := h(x) and

V(@) =vi-1(2) + @i (W1 (2)), i€ {1,...,r — 1},
%»(% u) 3:1%—1(937 ’U,) + ar (%»—1(53)), (3

)
where {c; }I_ is a collection of differentiable extended class
IC functions. Then, the function A is said to be a HOCBF
of order r for (I) on an open set D O N!_,C; if h has
relative degree r on some nonempty R C D and there exists
a suitable choice of {«;}7_; such that for all z € D

sup{L¢r—1(x) + Lgtpr—1(2)u + ar(¢r—1(z))} > 0.
ucl
Yr(w,u)

If U = R™, the above states that h is a HOCBF if
Hquvb'r’—lh(x)H =0 = Lf¢r—1h($) > —047~(¢7-_1(33)),
implying that h need not have uniform relative degree on D
as illustrated in [29], provided the unforced dynamics satisfy
the above condition at points where || Ly, —1h(x)|| = 0. The
following result provides higher order conditions for safety.

Theorem 1 ([29]). Let h be a HOCBF for (1) on D C R™ as
in Def. |2| Then, any locally Lipschitz controller w = k(z) €
Keayp(x), where Kpp(x) = {u € U |, (x,u) > 0}, renders
N;_,Cl forward invariant for the closed-loop system.

III. HIGH ORDER ROBUST ADAPTIVE CONTROL
BARRIER FUNCTIONS

This section introduces the concept of a High Order
Robust Adaptive Control Barrier Function (HO-RaCBF),



which provides a tool to synthesize controllers that guarantee
the satisfaction of high relative degree safety constraints for
nonlinear systems with parametric uncertainty. To this end,
we now turn our attention to systems of the form

&= f(x) +Y ()0 + g(2)u, “)

where f and g are known locally Lipschitz vector fields as in
(I, Y : R™ — R™*? is a known locally Lipschitz regression
matrix, and & € RP is a constant vector of uncertain
parameters. We assume that f(0) = 0 and Y (0) = 0 so that
0 is an equilibrium point of the unforced system. Our main
objective is to synthesize controllers for (@) that guarantee
safety under the presumption that the function h defining the
safe set C as in (2) has a high relative degree with respect
to @). To facilitate our approach, we make the following
assumption on the structure of the uncertainty in (4)).

Assumption 1. Consider a set C as in ([Z) and an open set
D as in Def. [2| If h has relative degree » on R C D with
respect to (i.e., if there exist some nonempty R C D
such that L,L’ 'h(z) = 0 for all 1 < i < r —1 and
LgL’}flh(x) # 0 for all z € R), then there exists R’ C D
such that Lijc_lh(x) =0foralll <i<r—1and
Ly Ly 'h(z) # 0 for all z € R,

Remark 1. The above assumption requires that the un-
certainty in (@) does not appear before the control when
taking higher order derivatives of h. Although this may seem
restrictive, a variety of physical systems satisfy Assumption
[I} Examples include Lagrangian mechanical systems, where
h is a function of only the system’s configuration. If the
above assumption is not made, then the uncertain parameters
6 will appear alongside the control input u in higher order
terms, complicating the formulation of the affine constraints
on u developed in this paper. From an adaptive control
perspective, Assumption [I]is similar to the assumption that
the uncertain parameters satisfy the matching condition.

According to Theorem [T the forward invariance of C can
be enforced by ensuring that the control input is selected such
that the HOCBF condition from Def.[2]is satisfied for all 2 €
N?_,C;; however, the presence of model uncertainty in (@)
makes it impossible to directly enforce such a condition. To
address this challenge, we aim to take a data-driven approach
and update the estimates of the uncertain parameters online
using techniques from adaptive control [15], [19], [21],
[22] while guaranteeing safety at all times. Following the
approach from [22], observe that integrating @) over a time
interval [t — AT, t] C R using the Fundamental Theorem of
Calculus allows (@) to be equivalently represented as

Az(t)=z(t) —z(t — AT)=Ft)+ Y+ G(t), (5)

where F(t) = [l fla(r)dr. V() =
[ ap Y(@(m))dr, G(t) = [ \pg(@(7))u(r)dr. Now let
H = {(tj7xj,:c;,uj)}jj\il be a history stack of M € N
instances of input-output data, where ¢; € [AT,t] denotes a

sampling time, z; = z(t;), z; = x(t; — At), u; = u(t;),

and define?]
M
A=) Y]V A0 = da(A®), (6
=1

where A\pin(A) denotes the minimum eigenvalue of A. As
noted in [19], [22], the function A is piecewise constant be-
tween sampling times and nonnegative since A(¢) is at least
positive semidefinite at all times. The following assumption
will be used to ensure safety for all possible realizations of
the uncertain parameters.

Assumption 2. The uncertain parameters 6 belong to a
known convex polytope © C RP.

The above assumption implies that for any given parameter
estimate § € © there exists some maximum possible estima-
tion error ¥ € R? in the sense that || — || < ||J| for all
0 € ©. Given that © is a convex polytope, each component
of 9 can be computed as
V; = max{‘ min 6; — éZ’, | max 0; — éi|},

0,0c0 0,0c0
where | - | denotes aboslute value and 6; denotes the ith
component of #, which requires solving a pair of linear
programs for each parameter. The following lemma, adapted
from [19], provides a verifiable bound on the parameter
estimation error.

Lemma 1 ([19]). Consider system (@) and suppose the
estimated parameters are updated according to

i M
é:yZij(ij—}‘j—ij—gjL @)
j=1
where Ax; = z; —a;, Vi = V() F; = F(t5),

Gj = G(t;), and v € Rx is an adaptation gain. Provided
Assumption 2| holds and 6(0) € ©, then the parameter
estimation error 0 = 0 — 0 is bounded for all t € T as

16(t)[| < v(t) = [|9]|e= o AT, ©)

The above lemma implies that, under the update law in
(7, the parameter estimation error is always bounded by
a known value provided the initial parameter estimates are
selected such that é(O) € ©. Moreover, if there exists some
time T such that \(¢) > O for all ¢ > T, then the bound in
implies all estimated parameters exponentially converge
to their true value We now have the necessary tools in
place to introduce a new class of aCBF that allows for the
consideration of high relative degree safety constraints.

Definition 3. Consider system () and a safe set C C R™ as
in (Z). Consider a collection of sets {C; }/_; of the form C; :=
{z € R™|9;_1(z) > 0}, where ¢g(z) = h(z) and {¢;};_,

2The function A is implicitly a function of time as data is added/removed
from the history stack H along the system trajectory.

3See [21, Ch. 3] for a discussion on the relation between traditional per-
sistence of excitation conditions and the milder finite excitation conditions
leveraged in concurrent learning adaptive control required to achieve A > 0.
We also refer the reader to [32] for various algorithms that record data points
in H so as to ensure A(t) is always nondecreasing.



are defined as in (3). The sufficiently smooth function h
is said to be a high order robust adaptive control barrier
Sfunction (HO-RaCBF) of order r for (4) on an open set D D
M;_,C; if h has relative degree r on some nonempty R C D
and there exists a suitable choice of {c;}i_; as in () such
that forall xr € D, 0 € ©,and t € Z

sup {Lgbr—1(z) + Lyhr—1(2)0 + Lygtpr—1(x)u}

> —or(r—1(2)) + | Ly thr 1 (2)[|l(2),

where v is defined as in ().

€))

Intuitively, the above condition adds a buffer to the original
HOCBF condition from Def. [2| to account for all possible
realizations of the uncertain parameters given the set ©. This
buffer may shrink over time as the uncertain parameters are
identified and exponentially converges to zero in the limit as
t — oo provided there exists a time 7' for which A(t) > 0
for all ¢ > T'. Furthermore, Def. [3| allows us to consider the
set of all control values satisfying (9) as

{ueU|Lypr—1(x) + Ly tpr—1(2)0
+ Lytpr—1(z)u + ar(hr-1(x))

— [ILy ¢r—1(2)[[v(t) = 0}.

The following theorem shows that any well-posed control
law u = k(x, 6, t) satisfying k(z,0,t) € Ku(x,0,t) renders
N7_,C; forward invariant for ().

[A(be(l', 9, t) =
(10)

Theorem 2. Consider system @), a set C defined by a
sufficiently smooth function h as in (2), and let h be a
HO-RaCBF on D. Provided Assumptions [I}2] hold and the
estimated parameters are updated according to then
any controller u = k(x,0,t) locally Lipschitz in (ac 9) and
piecewise continuous in t satisfying k(x,0,t) € Keay(, 0,t)
renders N;_,C; forward invariant for ({@).

Proof. According to Theorem [I] to guarantee forward in-
variance of N;_,C;, it is sufficient to show that for each
x € Ni_,C; the input is selected such as ¢,.(z,u) > 0. For
the dynamlcs in @), if Assumption [I]holds, then ¢, (z, u) =

Lyt (@) + Lyt 1(2)0 + Lytby1 (@) + 0 (11 (2).
Hence, it is our aim to show that any u = k(z, 6 , 1) satisfying

k(xz,0,t) € chf(x 0,t) satisfies 1,.(z, k(z, 0,t)) > 0 for all
xr € N;_,C;, all ¢ ©, and alAl tel. ATo '[hlSA end, observe
that under control u = k(z,0,t) € Kee(z,0,t) (omitting
functional arguments for ease of presentation)
Yr =Lr_1 4 Lyt 10 4+ Ly, 10
+ Lg/(brflk + ar(@[]rfl)
ZLf'l/]rfl + LY¢r719 + ngrflk
+ ar(tr—1) = [ Ly tr 1 [|[|6]]
Zwar—l + Ler—lo + ngr—lk
+ ar (Y1) = [ Ly hr—allv
>0

b

for all z € N7_,C;, all € ©, and all t € Z. In the above,
the first inequality follows from the fact that Ly, (z)0 >

— || Ly r—1(2)||[|0]|, the second from the bound in (§), and
the third from (T0). Since v, (z, k(z,0,t)) > 0 holds for
all z € N;_,C;, all 0 c O, and all ¢t € Z, it follows from
Theorem [I] that N;_,C; is forward invariant for the closed-
loop system, as de51red O

Definition [3] and Theorem [2] generalize the ideas intro-
duced in [19] to constraints with high relative degree, thereby
facilitating the application of such ideas to more complex
systems and safe sets. Although the results of [19] apply to
safe sets defined by multiple barrier functions, whereas ours
apply only to those defined by a single barrier function, there
exist various approaches in the CBF literature [33], [34] to
formally combine multiple barrier functionsﬂ using smooth
approximations of min/max operators [33] or nonsmooth
analysis [34]. We now show that if the conditions of Theorem
2 hold on D and z(0) € D\ Nj_, C;, then any controller
satisfying k(z,0,t) € Keg(x,0 t) also guarantees asymp-
totic stability of C, which ensures the developed controller
is robust to perturbations [30].

Corollary 1. Let the conditions of Theorem (2| hold and
suppose that z(0) € D\ N_, C;. Provided u = k(z,0,t) €
K’be(x,é,t) renders the closed-loop dynamics @) forward
complete, then the set N_,C; is asymptotically stable for
the closed-loop system.

Proof. 1t was shown in Theorem 2| 2] that the proposed con-
troller k(z, 6, t) € Kei(,0,t) satisfies 1, (x, k(z,0,t)) >0
forall z € D, # € © and t € Z. Hence, by definition,
k(z,0,t) € Keg(z) forall z € D, § € ©, and ¢ € . It
then follows from [29, Prop. 3 and Rem. 2] that N]_,C; is
asymptotically stable for the closed-loop system. O

A controller satisfying the conditions of Theorem 2] can be
computed through the use of quadratic programming (QP).
Specifically, given an estimate of the uncertain parameters
6 and a nominal feedback control policy kq(z, 6 ,1), a min-
imally invasive safe controller can be computed using the
following HO-RaCBF-QP

%Hu - kd(m7 évt)HQ

s.t. Lf¢r 1( )+LY¢7 1( )9+ngr—1($)u
2 —ar(r-1(2)) + [| Ly r—1 () [l(2),

which enforces the conditions of Theorem [2 provided the
resulting controller is Lipschitz continuous and % is a valid
HO-RaCBF with u € Y. That is, the above QP @ allows
the nominal policy kg4 to be executed on (@) if k4 can
be formally verified as safe and intervenes in a minimally
invasive fashion to guarantee safety only if k; cannot be
certified as safe. We illustrate in the following section how
one can leverage the same history stack used to reduce
uncertainty in the parameter estimates to synthesize a desired
policy kg with exponential stability guarantees.

min
ueld

Y

4In practice, it is common to simply include multiple CBF-based con-
straints in a quadratic program such as the one proposed in (TI)), which,
as we demonstrate empirically in Sec. [V] allows one to consider safe sets
defined by multiple barrier functions.



IV. EXPONENTIALLY STABILIZING ADAPTIVE CONTROL
LYAPUNOV FUNCTIONS

In this section we introduce the concept of an exponen-
tially stabilizing adaptive control Lyapunov function (ES-
aCLF) as a tool to exponentially stabilize uncertain nonlinear
systems in the presence of parametric uncertainty.

Definition 4. A continuously differentiable positive definite
function V' : R™ — Ry is said to be an exponentially
stabilizing adaptive control Lyapunov function (ES-aCLF)
for (@) if there exist positive constants c1, ca, c3 € Rsq such
that for all € R™ and 6 € RP

(12a)

irellfl{LfV(:r)+LyV(x)9+LgV(a:)u} < —e3V(x). (12b)

allz)* < V(@) < collz]?,

Given the above definition, let
Kclf(ac, 0) Z:{'LL € U| LjV(CU)

+ Ly V(z)0 + LV (z)u < —c3V(2)}, (13)

denote the point-wise set of all control values satisfying
(12b). The following lemma provides a parameter update
law that can be combined with any locally Lipschitz control
policy satisfying k(z,0) € Kqg(x,0) to guarantee stability.

Lemma 2. Consider system (@). Lgl_t V' be an ES-aCLF as in
Def. and define z = [a:T @T} . Provided the estimates
of the unknown parameters are updated according to

. M
0 =TLyV(x)" T V] (Az; - F; = Y;,0 - G;), (14)

j=1

where T' € RP*P s a positive definite gain matrix and
v € Rsg is a user-defined adaptation gain, then any
locally Lipschitz controller v = k(x, é) satisfying k(zx, é) €
Key(z, é) ensures that the composite system trajectory t —
z(t) remains bounded in the sense that for all t € [0, c0)

2@ < /2 12(0)]],

m

15)

where 11 = min{c, %)\min(l“_l)} and 1y =
max{cs, 1 Amax(I'™1)} are positive constants. Moreover

tgrgo x(t) = 0.

Proof. Consider the Lyapunov function candidate V,(z) =
V(x) + 46TT 10, which can be bounded for all z € R"*?
as n1||z||* < Va(2) < ne||z||>. Taking the derivative of V,
along the composite system trajectory yields

Vi =LV (@) + Ly V(@)0 + LV (z)u — 0" Ly V(x) "

M
207> V] (Azj - F; = Y0 - G))
j=1
=L;V(z) 4+ Ly V()0 + L,V (x)u — v A(t)d, 6
where A is from (6). Using the fact that A(t) is at least
positive semi-definite for all time implies V, can be bounded
as Vo < LyV(z) + LyV(x)8 + LyV (z)u. Choosing u =

k(z,0) € Kyi(x,0) and the hypothesis that V' is a valid ES-
aCLF allows Va to be further bounded as Va < —e3V(x) <
0, revealing that V, is negative semi-definite. Hence, V, is
nonincreasing and V,(z(t)) < V,(z(0)) for all ¢t € [0, c0),
which can be combined with the bounds on V, to yield (I3).
Since V' is continuous and Va < —e3V(z) <0, it follows
from the LaSalle-Yoshizawa theorem [15, Thm. A.8] that

limy_, o0 ¢V () = 0, implying lim;_, . z(t) = 0. 0O

The following theorem shows that if sufficiently rich data
is collected along the system trajectory, then x(¢) and 6(t)
both exponentially converge to the origin.

Theorem 3. Under the assumption that the conditions of
Lemma [Z] hold, suppose that there exists a time T € Rxq
and a positive constant A € R~ such that A\(t) > \ for all
t € [T,00). Then, for all t € [0,T), z(t) is bounded in the
sense that holds. Furthermore, for all t € [T, 00), z(t)
exponentially converges to the origin at a rate proportional
to 13 = min{y\, cics} in the sense that for all t € [T, 00)

lO < E =T e H D, an
Proof. Since A(t) > 0 for all ¢ € [0,7T) the conclusions
of Lemma [2] hold, implying z(¢) is bounded as in (I3) for
all ¢ € [0,7). Provided A(t) > A for all ¢t € [T,00) and
u = k(z,0) € Kuys(x,0) for all (x,6) € R"*P, then (T6)
can be bounded as

Vo < —csV (@) —yAI0II2 < —nslz]? < —Z—zva.

Invoking the comparison lemma [31, Lem. 3.4] implies ¢ —
Va(2(t)) is bounded for all ¢ € [T, 00) as

Va(z(0) < Va(=(T))e 1),
which can be combined with the bounds on V;, to yield (T7).
O

Similar to the previpus section, given an estimate of the
uncertain parameters 6, control inputs satisfying (I2b) can
be computed using the following ES-aCLF-QP

min %u—ru
ueU

. (18)
st. LiV(z)+ Ly V(2)0 + L,V (z)u < —csV(z).

A controller guaranteeing stability and safetyE] can then
be synthesized by either taking the solution to as ky
in or by forming a single QP with the HO-RaCBF
constraint from (II)) and a relaxed version of the ES-aCLF
constraint from (I8) to guarantee feasibility provided the
resulting controller is Lipschitz continuous.

Remark 2. Note that asymptotic stability of the origin for
the closed-loop system @) with v = k(z,0) € Kue(z,0)
is guaranteed by Lemma [2] regardless of whether or not the

5Similar to works such as [16], [18], the parameter update laws for the
proposed adaptive CBF and CLF are different — if one wishes to combine
the two in a single QP-based controller, separate estimates of the uncertain
parameters must be maintained. Despite this, note that the data from a single
history stack can be used in both update laws.



richness of data condition A(tf) > A > 0 is satisfied. In this
situation, the stability guarantees induced by the ES-aCLF
reduce to those of the classically defined adaptive CLF from
[15, Ch. 4.1] (see also [16]). In this regard, neither safety nor
stability is predicated upon collecting sufficiently rich data
— this data is exploited only to reduce conservatism of the
HO-RaCBF controller and to endow the ES-aCLF controller
with exponential convergence guarantees.

Remark 3. The concept of an ES-aCLF generalizes the
adaptive control designs from [22] in that the Lyapunov
functions used to verify stability of the controllers proposed
in [22] meet the criteria of an ES-aCLF posed in Def. [4] We
refer the reader to works such as [2] for a discussion on the
potential advantages of using an optimization-based CLF-
based control law as in (I8)) over a traditional closed-form
feedback control law such as those posed in [22].

V. CASE STUDIES

A. Robotic Navigation

Our first example involves a robotic navigation task for a
system modeled as a double integrator with uncertain friction
effects. The system is in the form of (@):

a1 3 0 0 0 0
Ta| |24 0 0 1 0 0 [w
is| ~ Lo Tz o LJ* Lo fu)
iy 0 0 —mi>~ [0 4]
i #(@) Y (@) 9(2)

where m € Ry is a known mass and pq,pue € Ry
are uncertain viscous friction coefficients. For simplicity,
we set m = p; = pe = 1. The objective is to stabilize
the system to the origin while avoiding a set of static
obstacles in the state space. To achieve the stabilization
task, we construct an ES-aCLF as V(z) = z' Pz with
P=12,0,1,00,2,0,1;1,0,1,0;0, 1, 0, 1] and c3 = 1.
The safety objective is achieved by considering a collec-
tion of safe sets of the form (@) with h()(z) = (2, —
p1.i)? + (w2 — p2,i)? — R?, where (p1,,p2:) € R? denotes
the center of a circular disk and R; € Ry its radius.
With straightforward calculations one can verify that this
CBF candidate has relative degree » = 2 with respect to
the dynamics and that Assumption [I] is satisfied. Although
the dynamics and safe set are relatively simple, the aCBF
techniques from [16], [18]-[20] cannot be applied to solve
the problem as currently constructed since the relative degree
of h is larger than oneﬂ To illustrate the efficacy of the
developed approach, we simulate the system under the HO-
RaCBF/ES-aCLF control architecture presented herein and
compare the results to controllers take a purely robust
approach. The HO-RaCBF/ES-aCLF controller is computed
by taking the solution to (I8) as k4 in (II). For each

SNote that it may be possible to construct a relative degree one CBF
for such a problem by including dependence on velocity into the definition
of h. As noted earlier, an advantage of HOCBFs is that the design of C
is greatly simplified since dependence on velocity is naturally encoded by
higher order terms rather than through the explicit definition of A.

1

Fig. 1.  System trajectory under each controller across four different
uncertainty sets with solid lines denoting trajectories under the adaptive
controller and dashed lines denoting trajectories under the purely robust
controller. The gray disks represent the obstacles.

simulation we construct two HOCBFs as outlined previously
with (P1,17p2,1) = (—175,2), (plyz,pg’g) = (—170.5), and
Ry = Ry = 0.5. For each simulation, the system is initialized
as 2(0) = (—2.5,2.5,0,0) and all parameter estimates are
initialized at zero. All extended class K functions used are
defined as «(r) = r. For the learning-based approach, we
maintain a history stack with M = 20 entries, the integration
window is chosen as AT = 0.5, and the learning rates are
chosen as I' = I5 and v = 10.

To demonstrate the relationship between adaptation and
safety, we run set of simulations comparing system per-
formance using the HO-RaCBF/ES-aCLF controller to that
under a purely robust approach (i.e., accounting for the
maximum possible parameter estimation error without adap-
tation), where the set of possible parameters © is varied,
the results of which are presented in Fig. The controller
used in the robust approach is the same as that of the adaptive
approach but with y = 0. As shown in Fig. [T|and Fig. 2] each
trajetory is safe; however, for larger levels of uncertainty the
purely robust controller is overly conservative, causing the
system trajectory to diverge from the origin. In constrast,
the adaptive controller reduces the uncertainty online and
achieves dual objectives of stability and safety. In fact, the
convergence of the trajectory to the origin under the adaptive
controller is minimally affected by the initial level of uncer-
tainty, whereas the trajectory under the robust controller fails
to converge to the origin in the presence of large uncertainty.
The ability of the learning scheme to identify the uncertain
parameters is showcased in Fig.[3] which shows the trajectory
of the estimated parameters used in the ES-aCLF QP and
HO-RaCBF QP, both of which converge to their true values
in just under 15 seconds.

B. Inverted Pendulum

To demonstrate the applicability of the developed results
to an unstable nonlinear system with uncertain parameters,
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Fig. 2. Minimum value among the two HOCBFs point-wise in time
along each system trajectory. The solid and dashes curves have the same
interpretation as those in Fig. and the dashed black line denotes h(z) = 0.
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Fig. 3. Estimates of the uncertain parameters used in the ES-aCLF QP

and HO-RaCBF QP for the simulation corresponding to the uncertainty set
e = [0, 3]2

we now consider an inverted pendulum of the form (@) as

UM* bsir?m) —Hﬂ*&“

@ f(=) Y (z) 0

with length £ = 0.7, mass m = 0.7, gravitational acceleration
g = 9.8, and damping coefficient ¢ = 0.2. The objective is to
regulate x to the origin while satisfying —7 < x,(t) < 7 for
all time. To achieve the stabilization objective we select the
aCLF V(z) = 2" Px with P = [1, 0.5; 0.5, 0.5] and c3 =
2.5%, where (Q = [2, 1;1, 1]. The safety objective is
achieved by constructing two safe sets defined by hq(z) =
zr1 + % and ha(x) = 7 — 71, both of which have relative
degree 2 with respect to the dynamics. Again, the results
of [16], [18]-[20] are not applicable to this example since h
has relative degree larger than one. The uncertain parameters
0 = (61,02) = (g,c) are assumed to take values from O =
[7,13] x [0,3] € R? and higher order terms from (3) are
defined using aq (1) = as(r) = 5r.

To compare the performance between various control
architectures, the system is simulated under the influence

g(x)

T T T T T T T
1 === HO-RaCBF + ES-aCLF === ES-aCLF -
== HO-RaCBF === JC
=
~— 0.5 =
8
0 -
1 1 1 1 1 1 1
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t
Fig. 4. Evolution of the pendulum’s orientation under each control

architecture. The dashed black line denote the boundary of the safe set.

of 1) a HO-RaCBF/ES-aCLF controller as in (IT) with kg4
obtained from solving the ES-aCLF QP (I8); 2) an ES-aCLF
controller as in (I8); 3) an “open-loop” HO-RaCBF con-
troller as in (T1) with k4 = 0 and an initial condition outside
the safe set. For each simulation all parameters associated
with the learning scheme remain the same as in the previous
example. The results the simulations are presented in Fig. ff]
and Fig. [5] Although the ES-aCLF controller achieves the
stabilization objective (orange curves in Fig. [), it does so
at the cost of violating the safety constraints. In essence, for
the ES-aCLF controller to achieve the stabilization objective,
it must first allow the pendulum to tip over to collect
sufficiently rich data for identifying the dynamics, which,
once collected, allows for rapid stabilization to the origin. In
contrast, by augmenting the ES-aCLF controller with a HO-
RaCBF (blue curves in Fig. [), the stabilization objective
is achieved safely in an exponential fashion. As predicted
by Corollary [I] the HO-RaCBF controller is capable of
stabilizing the system to the safe set even when starting
from an unsafe initial condition (purple curve in Fig. [).
Furthermore, all conservatism associated with the initial
parameter uncertainty has essentially been eliminated —
once the system is stabilized to the safe set, the HO-RaCBF
controller allows the pendulum to lie on the boundary of the
safe set without crossing it. Similar to the previous example,
the uncertainty in the parameter estimates is exponentially
driven to zero (see Fig. [3), implying that after only a few
seconds of learning, the HO-RaCBF and ES-aCLF conditions
from Def. [3] and Def. [ respectively, closely approximate
the original HOCBF condition from Def. [2] and ES-CLF
condition from e.g. [2]-[4].

VI. CONCLUSIONS

In this paper we introduced HO-RaCBFs and ES-aCLFs
as a means to synthesize safe and stable control policies for
uncertain nonlinear systems with high relative degree safety
constraints. The novel class of HO-RaCBF is, to the best
of our knowledge, the first to extend the aCBF paradigm
from [16] to CBFs with arbitrary relative degree under
mild assumptions regarding the structure of the uncertainty



Fig. 5. Norm of the parameter estimation error under each control
architecture. The color of each curve shares the same interpretation of those

in Fig. {

and, unlike existing formulations, the proposed HO-RaCBF
inherits desirable robustness properties of zeroing CBFs [30].
The class of ES-aCLFs introduced herein builds upon the
classical aCLF formulation [15, Ch. 4.1] by leveraging data-
driven techniques from CL adaptive control to guarantee
exponential stability. The advantages of the proposed HO-
RaCBFs/ES-aCLFs were illustrated through two numerical
examples that cannot be addressed by existing approaches.
Directions for future research include relaxing Assumption
[ and extending the approach to systems with nonparametric
and actuation uncertainty.
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